Accelerate documentation

DDP Communication Hooks

Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

DDP Communication Hooks

Distributed Data Parallel (DDP) communication hooks provide a generic interface to control how gradients are communicated across workers by overriding the vanilla allreduce in DistributedDataParallel. A few built-in communication hooks are provided, and users can easily apply any of these hooks to optimize communication.

  • FP16 Compression Hook: Compresses gradients by casting them to half-precision floating-point format (torch.float16), reducing communication overhead.
  • BF16 Compression Hook: Similar to FP16, but uses the Brain Floating Point format (torch.bfloat16), which can be more efficient on certain hardware.
  • PowerSGD Hook: An advanced gradient compression algorithm that provides high compression rates and can accelerate bandwidth-bound distributed training.

In this tutorial, you will see how to quickly set up DDP communication hooks and perform training with the utilities provided in 🤗 Accelerate, which can be as simple as adding just one new line of code! This demonstrates how to use DDP communication hooks to optimize gradient communication in distributed training with the 🤗 Accelerate library.

FP16 Compression Hook

PyTorch
Accelerate
import torch
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.algorithms.ddp_comm_hooks import default_hooks

class MyModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.layer = torch.nn.Linear(10, 10)

    def forward(self, x):
        return self.layer(x)

model = MyModel()
model = DDP(model, device_ids=[torch.cuda.current_device()])
model.register_comm_hook(state=None, hook=default_hooks.fp16_compress_hook)

# Training loop
for data, targets in data_loader:
    outputs = model(data)
    loss = criterion(outputs, targets)
    loss.backward()
    optimizer.step()
    optimizer.zero_grad()

BF16 Compression Hook

BF16 Compression Hook API is experimental, and it requires NCCL version later than 2.9.6.

PyTorch
Accelerate
import torch
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.algorithms.ddp_comm_hooks import default_hooks

class MyModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.layer = torch.nn.Linear(10, 10)

    def forward(self, x):
        return self.layer(x)

model = MyModel()
model = DDP(model, device_ids=[torch.cuda.current_device()])
model.register_comm_hook(state=None, hook=default_hooks.bf16_compress_hook)

# Training loop
for data, targets in data_loader:
    outputs = model(data)
    loss = criterion(outputs, targets)
    loss.backward()
    optimizer.step()
    optimizer.zero_grad()

PowerSGD Hook

PowerSGD typically requires extra memory of the same size as the model’s gradients to enable error feedback, which can compensate for biased compressed communication and improve accuracy.

PyTorch
Accelerate
import torch
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.algorithms.ddp_comm_hooks import powerSGD_hook

class MyModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.layer = torch.nn.Linear(10, 10)

    def forward(self, x):
        return self.layer(x)

model = MyModel()
model = DDP(model, device_ids=[torch.cuda.current_device()])
state = powerSGD_hook.PowerSGDState(process_group=None)
model.register_comm_hook(state=state, hook=powerSGD_hook.powerSGD_hook)

# Training loop
for data, targets in data_loader:
    outputs = model(data)
    loss = criterion(outputs, targets)
    loss.backward()
    optimizer.step()
    optimizer.zero_grad()

DDP Communication Hooks utilities

There are two additional utilities for supporting optional functionalities with the communication hooks.

comm_wrapper

comm_wrapper is an option to wrap a communication hook with additional functionality. For example, it can be used to combine FP16 compression with other communication strategies. Currently supported wrappers are no, fp16, and bf16.

from accelerate import Accelerator, DDPCommunicationHookType, DistributedDataParallelKwargs
import torch

class MyModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.layer = torch.nn.Linear(10, 10)

    def forward(self, x):
        return self.layer(x)

# DDP Communication Hook setup
ddp_kwargs = DistributedDataParallelKwargs(
    comm_hook=DDPCommunicationHookType.POWER_SGD,
    comm_wrapper=DDPCommunicationHookType.FP16
)
accelerator = Accelerator(kwargs_handlers=[ddp_kwargs])

model = MyModel()
optimizer = torch.optim.Adam(model.parameters())
data_loader = DataLoader(dataset, batch_size=16)

model, optimizer, data_loader = accelerator.prepare(model, optimizer, data_loader)

# Training loop
for data, targets in data_loader:
    outputs = model(data)
    loss = criterion(outputs, targets)
    accelerator.backward(loss)
    optimizer.step()
    optimizer.zero_grad()

comm_state_option

comm_state_option allows you to pass additional state information required by certain communication hooks. This is particularly useful for stateful hooks like PowerSGD, which require maintaining hyperparameters and internal states across training steps. Below is an example showcasing the use of comm_state_option with the PowerSGD hook.

from accelerate import Accelerator, DDPCommunicationHookType, DistributedDataParallelKwargs
import torch

class MyModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.layer = torch.nn.Linear(10, 10)

    def forward(self, x):
        return self.layer(x)

# DDP Communication Hook setup
ddp_kwargs = DistributedDataParallelKwargs(
    comm_hook=DDPCommunicationHookType.POWER_SGD,
    comm_state_option={"matrix_approximation_rank": 2}
)
accelerator = Accelerator(kwargs_handlers=[ddp_kwargs])

model = MyModel()
optimizer = torch.optim.Adam(model.parameters())
data_loader = DataLoader(dataset, batch_size=16)

model, optimizer, data_loader = accelerator.prepare(model, optimizer, data_loader)

# Training loop
for data, targets in data_loader:
    outputs = model(data)
    loss = criterion(outputs, targets)
    accelerator.backward(loss)
    optimizer.step()
    optimizer.zero_grad()

For more advanced usage and additional hooks, refer to the PyTorch DDP Communication Hooks documentation.

< > Update on GitHub