image_age_classification

This model is a fine-tuned version of nateraw/vit-age-classifier on the fair_face dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9464
  • Accuracy: 0.601

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.9107 1.0 125 0.9360 0.6065
0.7945 2.0 250 0.9545 0.588
1.0256 3.0 375 1.0144 0.586
0.7354 4.0 500 0.9726 0.594
0.6979 5.0 625 0.9735 0.5995

Framework versions

  • Transformers 4.34.0.dev0
  • Pytorch 1.12.1+cu116
  • Datasets 2.14.5
  • Tokenizers 0.12.1
Downloads last month
47
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for dini-r-a/image_age_classification

Finetuned
(6)
this model

Evaluation results