Edit model card

swin-tiny-patch4-window7-224-finetuned-eurosat

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3266
  • Accuracy: 0.8465

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.2941 1.0 17 1.1717 0.4689
1.0655 2.0 34 0.9397 0.5560
0.8008 3.0 51 0.6153 0.7303
0.7204 4.0 68 0.5665 0.7427
0.6931 5.0 85 0.4670 0.7801
0.6277 6.0 102 0.4328 0.8465
0.5689 7.0 119 0.4078 0.8174
0.6103 8.0 136 0.4060 0.8091
0.5501 9.0 153 0.4842 0.7884
0.6018 10.0 170 0.3780 0.8423
0.5668 11.0 187 0.3551 0.8631
0.5192 12.0 204 0.4514 0.8216
0.5133 13.0 221 0.3598 0.8174
0.5753 14.0 238 0.4172 0.8091
0.4833 15.0 255 0.4685 0.8050
0.5546 16.0 272 0.4474 0.7842
0.5179 17.0 289 0.4570 0.7884
0.5017 18.0 306 0.4218 0.8050
0.4808 19.0 323 0.4094 0.8050
0.4708 20.0 340 0.4693 0.7759
0.5033 21.0 357 0.3141 0.8672
0.4859 22.0 374 0.3687 0.8257
0.516 23.0 391 0.3819 0.8216
0.4822 24.0 408 0.3391 0.8506
0.4748 25.0 425 0.3281 0.8506
0.4914 26.0 442 0.3308 0.8631
0.4354 27.0 459 0.3859 0.8133
0.4297 28.0 476 0.3761 0.8133
0.4747 29.0 493 0.2914 0.8672
0.4395 30.0 510 0.3025 0.8548
0.4279 31.0 527 0.3314 0.8506
0.4327 32.0 544 0.4626 0.7842
0.446 33.0 561 0.3499 0.8382
0.4011 34.0 578 0.3408 0.8465
0.4418 35.0 595 0.3159 0.8589
0.484 36.0 612 0.3130 0.8548
0.4119 37.0 629 0.2899 0.8589
0.4453 38.0 646 0.3200 0.8465
0.4074 39.0 663 0.3493 0.8465
0.3937 40.0 680 0.3003 0.8672
0.4222 41.0 697 0.3547 0.8299
0.3922 42.0 714 0.3206 0.8589
0.3973 43.0 731 0.4074 0.8133
0.4118 44.0 748 0.3147 0.8589
0.4088 45.0 765 0.3393 0.8506
0.3635 46.0 782 0.3584 0.8257
0.403 47.0 799 0.3240 0.8506
0.3943 48.0 816 0.3536 0.8216
0.4085 49.0 833 0.3270 0.8465
0.3865 50.0 850 0.3266 0.8465

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.11.0+cu113
  • Datasets 2.3.2
  • Tokenizers 0.12.1
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results