Back to all models
question-answering mask_token: <mask>
Query this model
🔥 This model is currently loaded and running on the Inference API. ⚠️ This model could not be loaded by the inference API. ⚠️ This model can be loaded on the Inference API on-demand.
JSON Output
API endpoint
								$ curl -X POST \
Share Copied link to clipboard

Monthly model downloads

deepset/roberta-base-squad2 deepset/roberta-base-squad2
last 30 days



Contributed by

deepset company
10 models

How to use this model directly from the 🤗/transformers library:

Copy to clipboard
from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2") model = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-base-squad2")

roberta-base for QA


Language model: roberta-base
Language: English
Downstream-task: Extractive QA
Training data: SQuAD 2.0
Eval data: SQuAD 2.0
Code: See example in FARM
Infrastructure: 4x Tesla v100


batch_size = 50
n_epochs = 3
base_LM_model = "roberta-base"
max_seq_len = 384
learning_rate = 3e-5
lr_schedule = LinearWarmup
warmup_proportion = 0.2


Evaluated on the SQuAD 2.0 dev set with the official eval script.

"exact": 78.49743114629833,
"f1": 81.73092721240889


In Transformers

from transformers.pipelines import pipeline
from transformers.modeling_auto import AutoModelForQuestionAnswering
from transformers.tokenization_auto import AutoTokenizer

model_name = "deepset/roberta-base-squad2"

# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
    'question': 'Why is model conversion important?',
    'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
res = nlp(QA_input)

# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)


from farm.modeling.adaptive_model import AdaptiveModel
from farm.modeling.tokenization import Tokenizer
from farm.infer import Inferencer

model_name = "deepset/roberta-base-squad2"

# a) Get predictions
nlp = Inferencer.load(model_name, task_type="question_answering")
QA_input = [{"questions": ["Why is model conversion important?"],
             "text": "The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks."}]
res = nlp.inference_from_dicts(dicts=QA_input, rest_api_schema=True)

# b) Load model & tokenizer
model = AdaptiveModel.convert_from_transformers(model_name, device="cpu", task_type="question_answering")
tokenizer = Tokenizer.load(model_name)

In haystack

For doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in haystack:

reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2")
# or 
reader = TransformersReader(model="deepset/roberta-base-squad2",tokenizer="deepset/roberta-base-squad2")


Branden Chan: branden.chan [at] Timo Möller: timo.moeller [at] Malte Pietsch: malte.pietsch [at] Tanay Soni: tanay.soni [at]

About us

deepset logo

We bring NLP to the industry via open source! Our focus: Industry specific language models & large scale QA systems.

Some of our work:

Get in touch: Twitter | LinkedIn | Website