Dataset Preview
The table displays a preview with only the first rows.
Full Screen Viewer
Full Screen
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code: DatasetGenerationCastError Exception: DatasetGenerationCastError Message: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 4 new columns ({'start', 'text', 'end', 'speaker'}) and 2 missing columns ({'name', 'vec'}). This happened while the csv dataset builder was generating data using hf://datasets/yutakobayashi/diet-members-voice-embeddings/example/artifact.csv (at revision 0fe30217a00bdc39e2dcc0d4b093ac0a3e1c8d3d) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations) Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2011, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 585, in write_table pa_table = table_cast(pa_table, self._schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2302, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2256, in cast_table_to_schema raise CastError( datasets.table.CastError: Couldn't cast start: int64 end: int64 speaker: string text: string -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 692 to {'vec': Value(dtype='string', id=None), 'name': Value(dtype='string', id=None)} because column names don't match During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1321, in compute_config_parquet_and_info_response parquet_operations = convert_to_parquet(builder) File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 935, in convert_to_parquet builder.download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1027, in download_and_prepare self._download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1122, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1882, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2013, in _prepare_split_single raise DatasetGenerationCastError.from_cast_error( datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 4 new columns ({'start', 'text', 'end', 'speaker'}) and 2 missing columns ({'name', 'vec'}). This happened while the csv dataset builder was generating data using hf://datasets/yutakobayashi/diet-members-voice-embeddings/example/artifact.csv (at revision 0fe30217a00bdc39e2dcc0d4b093ac0a3e1c8d3d) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
vec
string | name
string | start
int64 | end
int64 | speaker
string | text
string |
---|---|---|---|---|---|
[-5.9076095,4.387928,-29.459646,3.0258005,23.530071,10.586893,27.408413,6.4744673,-11.312348,8.889176,14.662444,-6.2071915,29.96201,18.330008,24.139639,-7.0167437,20.506922,1.6000346,-4.750381,-1.9914026,0.71751523,-4.283515,25.718601,-3.6598856,-25.837101,10.004993,26.703436,14.304511,22.3417,-23.86323,6.5671334,4.623443,-9.925774,-22.929312,-5.7828765,20.461943,29.365505,18.878689,-7.6512027,12.552464,-4.041456,-4.3622737,-20.224442,-16.144352,-29.14043,-15.141829,-25.417118,-17.063475,-17.506159,-53.971123,-5.9688044,3.5915418,-6.1008983,14.321506,17.23931,15.178385,25.57274,21.257679,2.034486,0.7806004,-15.558622,-2.486521,-15.944829,-21.375576,0.20697492,-2.6036942,10.081743,-0.46268675,-18.057108,-4.864599,2.091089,4.2090297,-52.38802,-32.204563,21.603514,16.917053,-11.122266,-5.5927563,-8.800568,34.08393,-6.953656,21.25674,-14.526637,2.4810197,3.9434383,-9.543565,20.018576,-1.3262272,-17.393517,35.202206,-2.6465342,3.4642453,19.04552,12.57328,20.90837,13.672901,15.357606,-36.329166,-58.561024,-9.526042,-22.415226,13.848654,4.498846,-23.085892,0.57295066,24.65558,-23.397438,-8.960236,-2.9741373,-25.967075,-13.954894,-10.34406,35.778557,-12.379072,14.304018,11.937317,25.773888,16.09369,23.575623,7.760308,16.13324,-2.7664735,3.2312677,18.399536,19.902412,12.940788,19.740015,27.628597,2.7867846,-2.4846134,15.892669,27.949768,-15.138433,-6.236443,-14.565217,-3.174619,-10.314687,-3.4932652,29.228708,0.7180785,12.793583,9.859941,12.462153,27.513332,18.611023,-28.17014,-0.23809195,-5.9338813,10.881957,4.402913,-5.9902706,22.88062,-22.891132,32.902042,13.500423,-28.724161,42.67233,-28.82599,20.31992,28.036654,-6.212726,20.127098,16.496794,-9.218849,20.696665,19.846378,11.489002,3.2353,-32.851017,-2.6131957,15.150593,-28.649221,13.379583,-3.7566924,18.383923,23.321218,-45.85562,6.367398,16.085236,8.795792,24.028145,-3.9298997,-1.8472396,15.777312,13.641012,-30.50176,-13.186024,2.4361959,23.071917,-7.7669773,-19.086782,15.861026] | 蓮舫 | null | null | null | null |
[-3.4796538,12.843595,-10.029274,-16.681776,-1.21088,-7.805417,-1.3830606,13.841712,-33.617123,22.03443,-29.191656,25.902351,-15.117807,-36.04316,9.775278,-1.4876662,-7.05434,20.119465,9.011887,-21.600264,21.1588,-1.6494855,-5.9724627,31.637657,-13.535534,24.15327,-9.6039095,15.553132,-6.313517,10.69278,-26.83964,-2.5229487,4.585293,-10.570828,5.5178623,22.949816,-1.8227609,-0.30081058,-21.137642,16.155516,-4.3954453,-5.025723,-17.680902,2.2620072,-30.950823,30.418612,10.540742,31.406258,-20.034342,-9.820616,10.871078,6.5136085,4.8331637,4.5938134,-2.613338,-18.332008,-36.054226,30.557978,-12.4525585,-21.108477,-19.710573,36.75593,-5.7044964,-6.36343,-1.1270459,2.5924556,12.515998,-27.716852,-36.988945,-18.511362,-25.551497,30.872599,-15.431929,-1.1199505,19.532671,-13.70993,-7.9794173,-18.093918,16.709959,26.340658,8.214639,5.239676,2.8614924,24.033958,24.379816,15.424864,29.957552,0.61213416,-18.162846,-5.5921783,-15.933671,-19.233232,-8.816454,14.416986,-16.841679,9.559164,26.701908,-7.6173143,25.92639,-19.320978,-5.774122,-10.838628,12.354835,-2.3956418,-1.762217,-13.396017,-31.193018,2.0620537,-13.705542,13.652612,-5.6504393,23.9176,-45.764595,-1.6487708,13.458565,-0.98570156,-25.921812,36.41515,8.951523,28.810238,-6.177312,6.626369,-31.883877,-9.8010025,21.650696,21.173637,13.731087,25.769907,-14.46128,-18.269087,-24.053854,12.504462,10.084415,19.728542,-8.01546,24.635736,-6.251094,-17.589785,9.767505,8.973562,-0.9822137,7.470474,21.559587,-17.722607,-15.706709,21.728207,-0.39333344,-14.777197,-2.1144447,17.270592,23.289068,8.174463,6.7883415,-5.051286,6.146869,16.303782,-9.910531,-32.469425,1.1055616,0.5499947,15.245238,4.3745837,-12.268035,-0.39538622,16.216375,5.112631,-4.971673,-10.742688,13.586299,-6.752207,-2.8949578,-7.2285714,1.4301677,-30.734476,-23.102116,7.2527013,-17.836765,-23.366537,26.16847,7.728363,12.123229,-27.013948,10.813821,-33.216835,-3.7819755,3.542197,15.240009,-0.8940092,-8.449934,12.131226,-4.011223,17.036194] | 斉藤鉄夫 | null | null | null | null |
null | null | 0 | 17,520 | 蓮舫 | ただいまから国土交通委員会を開会いたします。委員の異動についてご報告いたします。昨日までに串田誠一君が委員を辞任され、その補欠として青島健太君が占任されました。 |
null | null | 17,520 | 26,240 | 蓮舫 | 理事の補欠占任についてお諮りいたします。委員の異動に伴い、現在、理事が1名決院となっておりますので、その補欠占任を行いたいと存じます。 |
null | null | 26,240 | 32,640 | 蓮舫 | 理事の占任につきましては、選例により委員長の指名にご一人願いたいと存じますが、ご異議ございませんか。 |
null | null | 32,640 | 37,520 | 蓮舫 | ご異議ないと認めます。それでは、理事に石井光子君を指名いたします。 |
null | null | 37,520 | 46,800 | 蓮舫 | 道路整備特別措置法及び独立行政法人日本高速道路保有債務返済機構法の一部を改正する法律案を議題といたします。 |
null | null | 46,800 | 49,600 | 蓮舫 | 政府から趣旨説明を聴取いたします。 |
null | null | 49,600 | 51,600 | 蓮舫 | 斉藤国土交通大臣 |
null | null | 51,600 | 54,000 | 不明な話者 | おはようございます。 |
null | null | 54,000 | 71,040 | 斉藤鉄夫 | ただいま議題となりました、道路整備特別措置法及び独立行政法人日本高速道路保有債務返済機構法の一部を改正する法律案の提案理由につきまして、ご説明申し上げます。 |
null | null | 71,040 | 88,720 | 斉藤鉄夫 | 高速道路について、近年、道路構造物の点検を強化したことにより、重大な損傷の発見が相次いでいることから、道路構造物の抜本的な性能回復を図る更新事業を推進する必要があるとともに、 |
null | null | 88,720 | 98,000 | 斉藤鉄夫 | 国土強靭化等の社会的要請を踏まえ、四車線化等の必要な事業についても推進する必要があります。 |
null | null | 98,000 | 112,000 | 斉藤鉄夫 | また、併せて高速道路料金の見払いがあった場合の事後徴収の強化や、サービスエリア及びパーキングエリアの機能の高度化を図っていく必要があります。 |
null | null | 112,000 | 117,600 | 斉藤鉄夫 | このような趣旨から、このたびこの法律案を提案することとした次第です。 |
null | null | 117,600 | 121,920 | 斉藤鉄夫 | 次に、この法律案の概要につきまして、ご説明申し上げます。 |
null | null | 121,920 | 132,800 | 斉藤鉄夫 | 第一に、高速道路の更新事業等に必要な財源を確保するため、料金徴収期間を延長することとしております。 |
null | null | 132,800 | 141,360 | 斉藤鉄夫 | 併せて債務の返済を確実に行うため、債務返済期間を設定することとしております。 |
null | null | 141,360 | 162,160 | 斉藤鉄夫 | 第二に、高速道路料金について、車両の運転者または使用者に請求できることを明確化するとともに、高速道路株式会社等が、軽自動車及び二輪車の車両の使用者の情報を取得することができることとしております。 |
null | null | 162,160 | 176,800 | 斉藤鉄夫 | 第三に、サービスエリア及びパーキングエリアにおける、利用者の利便の確保に資する施設と一体となった駐車場の整備に対して、新たな財政支援を行うこととしております。 |
null | null | 176,800 | 183,200 | 斉藤鉄夫 | そのほか、これらに関連いたしまして、所要の規定の整備を行うこととしております。 |
null | null | 183,200 | 187,080 | 斉藤鉄夫 | 以上が、この法律案を提案する理由であります。 |
null | null | 187,080 | 197,120 | 斉藤鉄夫 | この法律案が速やかに成立いたしますよう、ご審議をよろしくお願い申し上げます。 |
null | null | 197,120 | 199,680 | 蓮舫 | 以上で、趣旨説明の聴取は終わりました。 |
null | null | 199,680 | 203,280 | 蓮舫 | 法案に対する質疑は、後日に譲ることといたします。 |
null | null | 203,280 | 207,320 | 蓮舫 | 参考人の出席要求に関する件についてお諮りいたします。 |
null | null | 207,320 | 224,360 | 蓮舫 | 道路整備特別措置法及び独立行政法人日本高速道路保有債務返済機構法の一部を改正する法律案の審査のため、来る23日午前10時に参考人の出席を求め、その意見を聴取することにご異議ございませんか。 |
null | null | 224,360 | 225,960 | 蓮舫 | ご異議ないと認めます。 |
null | null | 225,960 | 232,240 | 蓮舫 | なお、その人選等につきましては、これを委員長にご一人願いたいと存じますが、ご異議ございませんか。 |
null | null | 232,240 | 234,520 | 蓮舫 | ご異議ないと認め、採用決定いたします。 |
null | null | 234,520 | 236,520 | 蓮舫 | 本日はこれにて散会いたします。 |
null | null | 0 | 17,520 | null | ただいまから国土交通委員会を開会いたします。委員の異動についてご報告いたします。昨日までに串田誠一君が委員を辞任され、その補欠として青島健太君が占任されました。 |
null | null | 17,520 | 26,240 | null | 理事の補欠占任についてお諮りいたします。委員の異動に伴い、現在、理事が1名決院となっておりますので、その補欠占任を行いたいと存じます。 |
null | null | 26,240 | 32,640 | null | 理事の占任につきましては、選例により委員長の指名にご一人願いたいと存じますが、ご異議ございませんか。 |
null | null | 32,640 | 37,520 | null | ご異議ないと認めます。それでは、理事に石井光子君を指名いたします。 |
null | null | 37,520 | 46,800 | null | 道路整備特別措置法及び独立行政法人日本高速道路保有債務返済機構法の一部を改正する法律案を議題といたします。 |
null | null | 46,800 | 49,600 | null | 政府から趣旨説明を聴取いたします。 |
null | null | 49,600 | 51,600 | null | 斉藤国土交通大臣 |
null | null | 51,600 | 54,000 | null | おはようございます。 |
null | null | 54,000 | 71,040 | null | ただいま議題となりました、道路整備特別措置法及び独立行政法人日本高速道路保有債務返済機構法の一部を改正する法律案の提案理由につきまして、ご説明申し上げます。 |
null | null | 71,040 | 88,720 | null | 高速道路について、近年、道路構造物の点検を強化したことにより、重大な損傷の発見が相次いでいることから、道路構造物の抜本的な性能回復を図る更新事業を推進する必要があるとともに、 |
null | null | 88,720 | 98,000 | null | 国土強靭化等の社会的要請を踏まえ、四車線化等の必要な事業についても推進する必要があります。 |
null | null | 98,000 | 112,000 | null | また、併せて高速道路料金の見払いがあった場合の事後徴収の強化や、サービスエリア及びパーキングエリアの機能の高度化を図っていく必要があります。 |
null | null | 112,000 | 117,600 | null | このような趣旨から、このたびこの法律案を提案することとした次第です。 |
null | null | 117,600 | 121,920 | null | 次に、この法律案の概要につきまして、ご説明申し上げます。 |
null | null | 121,920 | 132,800 | null | 第一に、高速道路の更新事業等に必要な財源を確保するため、料金徴収期間を延長することとしております。 |
null | null | 132,800 | 141,360 | null | 併せて債務の返済を確実に行うため、債務返済期間を設定することとしております。 |
null | null | 141,360 | 162,160 | null | 第二に、高速道路料金について、車両の運転者または使用者に請求できることを明確化するとともに、高速道路株式会社等が、軽自動車及び二輪車の車両の使用者の情報を取得することができることとしております。 |
null | null | 162,160 | 176,800 | null | 第三に、サービスエリア及びパーキングエリアにおける、利用者の利便の確保に資する施設と一体となった駐車場の整備に対して、新たな財政支援を行うこととしております。 |
null | null | 176,800 | 183,200 | null | そのほか、これらに関連いたしまして、所要の規定の整備を行うこととしております。 |
null | null | 183,200 | 187,080 | null | 以上が、この法律案を提案する理由であります。 |
null | null | 187,080 | 197,120 | null | この法律案が速やかに成立いたしますよう、ご審議をよろしくお願い申し上げます。 |
null | null | 197,120 | 199,680 | null | 以上で、趣旨説明の聴取は終わりました。 |
null | null | 199,680 | 203,280 | null | 法案に対する質疑は、後日に譲ることといたします。 |
null | null | 203,280 | 207,320 | null | 参考人の出席要求に関する件についてお諮りいたします。 |
null | null | 207,320 | 224,360 | null | 道路整備特別措置法及び独立行政法人日本高速道路保有債務返済機構法の一部を改正する法律案の審査のため、来る23日午前10時に参考人の出席を求め、その意見を聴取することにご異議ございませんか。 |
null | null | 224,360 | 225,960 | null | ご異議ないと認めます。 |
null | null | 225,960 | 232,240 | null | なお、その人選等につきましては、これを委員長にご一人願いたいと存じますが、ご異議ございませんか。 |
null | null | 232,240 | 234,520 | null | ご異議ないと認め、採用決定いたします。 |
null | null | 234,520 | 236,520 | null | 本日はこれにて散会いたします。 |
diet-members-voice-embeddings
日本の国会議員の声を speechbrain/spkrec-ecapa-voxcelebで embedding したデータセットです。話者分離などのタスクで使用できます。
国会中継や演説等の分析など、ご自由にお使いください。
使用例
以下はトランスクリプトと音声ファイルを元に、話者分析を行う例です。
pip install pandas numpy wave ast scipy pyannote.audio
import pandas as pd
import numpy as np
import contextlib
import wave
import ast
from typing import List, Tuple
from scipy.spatial.distance import cosine
from pyannote.audio import Audio
from pyannote.core import Segment
from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding
class SpeakerRecognizer:
def __init__(self, threshold: float = 0.5, embedding_model_path: str = "speechbrain/spkrec-ecapa-voxceleb"):
self.threshold = threshold
self.embedding_model = PretrainedSpeakerEmbedding(embedding_model_path, device="cpu")
self.audio = Audio()
def recognize(self, target_embedding: np.ndarray, known_speaker_embeddings: List[Tuple[str, np.ndarray]]) -> str:
distances = [cosine(target_embedding, emb) for _, emb in known_speaker_embeddings]
min_distance, recognized_speaker = min((val, spk) for (spk, _), val in zip(known_speaker_embeddings, distances))
return recognized_speaker if min_distance <= self.threshold else "不明な話者"
def embed(self, audio_path: str, duration: float, segment: pd.Series) -> np.ndarray:
segment = segment.copy()
segment["start"] /= 1000
segment["end"] /= 1000
clip = Segment(segment["start"], min(duration, segment["end"]))
waveform, _ = self.audio.crop(audio_path, clip)
return self.embedding_model(waveform[None])
@staticmethod
def load_dataframes(transcript_fp: str, reference_fp: str) -> Tuple[pd.DataFrame, List[Tuple[str, np.ndarray]]]:
transcript = pd.read_csv(transcript_fp)
reference = pd.read_csv(reference_fp)
known_speaker_embeddings = [(row["name"], np.array(ast.literal_eval(row["vec"]))) for _, row in reference.iterrows()]
return transcript, known_speaker_embeddings
@staticmethod
def compute_duration(audio_path: str) -> float:
with contextlib.closing(wave.open(str(audio_path), "r")) as f:
frames = f.getnframes()
rate = f.getframerate()
return frames / float(rate)
def process(self, transcript_fp: str, wav_fp: str, reference_fp: str):
transcript, known_speaker_embeddings = self.load_dataframes(transcript_fp, reference_fp)
duration = self.compute_duration(wav_fp)
embeddings = np.vstack([self.embed(wav_fp, duration, segment) for _, segment in transcript.iterrows()])
embeddings = np.nan_to_num(embeddings)
labeled_segments = [
(segment.start, segment.end, self.recognize(embedding, known_speaker_embeddings), segment.text)
for embedding, segment in zip(embeddings, transcript.itertuples())
]
output_by_segment = pd.DataFrame(labeled_segments, columns=["start", "end", "speaker", "text"])
output_by_segment.to_csv("artifact.csv", index=False)
if __name__ == "__main__":
recognizer = SpeakerRecognizer()
recognizer.process("./transcript.csv","./audio.wav","../data/members.csv")
- Downloads last month
- 40