Datasets:
Tasks:
Text Generation
Modalities:
Text
Formats:
text
Size:
10M - 100M
ArXiv:
Tags:
webdataset
License:
File size: 10,976 Bytes
cb9f5c1 374deb2 cb9f5c1 f2b605b 374deb2 f2b605b 374deb2 f2b605b 374deb2 f2b605b 374deb2 f2b605b 374deb2 8442079 cb9f5c1 aa58593 ee6f539 a7b3ee7 ee6f539 aa58593 3d3b98f a7b3ee7 ee6f539 aa58593 a7b3ee7 aa58593 a7b3ee7 dcb7ea4 a7b3ee7 8442079 a7b3ee7 2f41818 a7b3ee7 2b9d9df aa58593 2b9d9df 8d9aefb 2b9d9df aa58593 69bd18f aa58593 3d3b98f a7b3ee7 3d3b98f a7b3ee7 ee6f539 3d3b98f aa58593 4c15780 aa58593 a7b3ee7 2f41818 a7b3ee7 aa58593 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
---
license: cc-by-sa-4.0
task_categories:
- text-generation
language:
- sr
- hr
- bs
tags:
- webdataset
pretty_name: Kišobran (Umbrella corp.)
size_categories:
- 10B<n<100B
configs:
- config_name: default
data_files:
- split: train
path: '*.txt'
- split: sr
path: '*_sr.txt'
- split: cnr
path: '*_cnr.txt'
- split: hr
path: '*_hr.txt'
- split: bs
path: '*_bs.txt'
---
<img src="cover.png" class="cover">
<table style="width:100%;height:100%">
<!--tr style="width:100%;height:30px">
<td colspan=2 align=center>
<h1>Kišobran (Umbrella corp.)</h1>
</td>
<tr-->
<tr style="width:100%;height:100%">
<td width=50%>
<h2><span class="highlight-container"><b class="highlight">Kišobran korpus</b></span> - krovni veb korpus srpskog i srpskohrvatskog jezika</h2>
<p>Najveća agregacija veb korpusa do sada, pogodna za obučavanje velikih jezičkih modela za srpski jezik.</p>
<p>Ukupno x dokumenata, ukupno sa <span class="highlight-container"><span class="highlight">preko 18.5 milijardi reči</span></span>.</p>
<p></p>
<p>Svaka linija predstavlja novi dokument</p>
<p>Rečenice unutar dokumenata su obeležene.</p>
<h4>Sadrži obrađene i deduplikovane verzije sledećih korpusa:</h4>
</td>
<td>
<h2><span class="highlight-container"><b class="highlight">Umbrella corp.</b></span> - umbrella web corpus of Serbian and Serbo-Croatian</h2>
<p>The largest aggregation of web corpora so far, suitable for training Serbian large language models.</p>
<p>A total of x documents containing <span class="highlight-container"><span class="highlight">over 18.5 billion words</span></span>.</p>
<p></p>
<p>Each line represents a document.</p>
<p>Each Sentence in a document is delimited.</p>
<h4>Contains processed and deduplicated versions of the following corpora:</h4>
</td>
</tr>
</table>
<table class="lista">
<tr>
<td>Korpus<br/>Corpus</td>
<td>Jezik<br/>Language</td>
<td>Broj dokumenata<br/>Doc. count</td>
<td>Broj reči<br/>Word count</td>
<td>Udeo<br/>Share</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/HPLT/hplt_monolingual_v1_2">HPLT_sr</a></td>
<td>🇷🇸</td>
<td>2.9 M</td>
<td>2.5 B</td>
<td>13.74%</td>
</tr>
<tr>
<td><a href="https://www.clarin.si/repository/xmlui/handle/11356/1807">MaCoCu_sr</a></td>
<td>🇷🇸</td>
<td>6.7 M</td>
<td>2.1 B</td>
<td>11.54%</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/allenai/c4">MC4_sr</a></td>
<td>🇷🇸</td>
<td>2.3 M</td>
<td>782 M</td>
<td>4.19%</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/cc100">cc100_sr</a></td>
<td>🇷🇸</td>
<td>2.3 M</td>
<td>659 M</td>
<td>3.53%</td>
</tr>
<tr>
<td><a href="https://www.clarin.si/repository/xmlui/handle/11356/1752">PDRS1.0</a></td>
<td>🇷🇸</td>
<td>400 K</td>
<td>506 M</td>
<td>2.71%</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/jerteh/SrpKorNews">SrpKorNews</a></td>
<td>🇷🇸</td>
<td>35 K</td>
<td>469 M</td>
<td>2.51%</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/oscar-corpus/OSCAR-2301">OSCAR_sr</a></td>
<td>🇷🇸</td>
<td>500 K</td>
<td>410 M</td>
<td>2.2%</td>
</tr>
<tr>
<td><a href="https://www.clarin.si/repository/xmlui/handle/11356/1063">srWaC</a></td>
<td>🇷🇸</td>
<td>1.2 M</td>
<td>307 M</td>
<td>1.65%</td>
</tr>
<tr>
<td><a href="https://www.clarin.si/repository/xmlui/handle/11356/1426">CLASSLA_sr</a></td>
<td>🇷🇸</td>
<td>1.3 M</td>
<td>240 M</td>
<td>1.29%</td>
</tr>
<tr>
<td><a href="https://www.clarin.si/repository/xmlui/handle/11356/1809">MaCoCu_cnr</a></td>
<td>🇷🇸/🇲🇪</td>
<td>500 K</td>
<td>152 M</td>
<td>0.82%</td>
</tr>
<tr>
<td><a href="https://www.clarin.si/repository/xmlui/handle/11356/1429">meWaC</a></td>
<td>🇷🇸/🇲🇪</td>
<td>200 K</td>
<td>41 M</td>
<td>0.22%</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/cc100">cc100_hr</a></td>
<td>🇭🇷</td>
<td>13.3 M</td>
<td>2.5 B</td>
<td>13.73%</td>
</tr>
<tr>
<td><a href="https://www.clarin.si/repository/xmlui/handle/11356/1806">MaCoCu_hr</a></td>
<td>🇭🇷</td>
<td>8 M</td>
<td>2.3 B</td>
<td>12.63%</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/HPLT/hplt_monolingual_v1_2">HPLT_hr</a></td>
<td>🇭🇷</td>
<td>2.3 M</td>
<td>1.8 B</td>
<td>9.95%</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/classla/xlm-r-bertic-data">hr_news</a></td>
<td>🇭🇷</td>
<td>4.1 M</td>
<td>1.4 B</td>
<td>7.65%</td>
</tr>
<tr>
<td><a href="https://www.clarin.si/repository/xmlui/handle/11356/1064">hrWaC</a></td>
<td>🇭🇷</td>
<td>3.1 M</td>
<td>935 M</td>
<td>5.01%</td>
</tr>
<tr>
<td><a href="https://www.clarin.si/repository/xmlui/handle/11356/1426">CLASSLA_hr</a></td>
<td>🇭🇷</td>
<td>1.2 M</td>
<td>160 M</td>
<td>0.86%</td>
</tr>
<tr>
<td><a href="https://www.clarin.si/repository/xmlui/handle/11356/1180">riznica</a></td>
<td>🇭🇷</td>
<td>20 K</td>
<td>69 M</td>
<td>0.37%</td>
</tr>
<tr>
<td><a href="https://www.clarin.si/repository/xmlui/handle/11356/1808">MaCoCu_bs</a></td>
<td>🇧🇦</td>
<td>2.6 M</td>
<td>700 M</td>
<td>3.75%</td>
</tr>
<tr>
<td><a href="https://www.clarin.si/repository/xmlui/handle/11356/1062">bsWaC</a></td>
<td>🇧🇦</td>
<td>800 K</td>
<td>194 M</td>
<td>1.04%</td>
</tr>
<tr>
<td><a href="https://www.clarin.si/repository/xmlui/handle/11356/1426">CLASSLA_bs</a></td>
<td>🇧🇦</td>
<td>800 K</td>
<td>105 M</td>
<td>0.56%</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/cc100">cc100_bs</a></td>
<td>🇧🇦</td>
<td>300 K</td>
<td>9 M</td>
<td>0.05%</td>
</tr>
<tr>
<td><b>TOTAL</b></td>
<td></td>
<td><b>54.75 M</b></td>
<td><b>18.65 B</b></td>
<td>100%</td>
</tr>
</table>
Load complete dataset / Učitavanje kopletnog dataseta
```python
from datasets import load_dataset
dataset = load_dataset("procesaur/umbrella")
```
Load a specific language / Učitavanje pojedinačnih jezika
```python
from datasets import load_dataset
dataset_sr = load_dataset("procesaur/umbrella", split="sr")
dataset_cnr = load_dataset("procesaur/umbrella", split="cnr")
dataset_hr = load_dataset("procesaur/umbrella", split="hr")
dataset_bs = load_dataset("procesaur/umbrella", split="bs")
```
<div class="inline-flex flex-col" style="line-height: 1.5;padding-right:50px">
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">Editor</div>
<a href="https://huggingface.co/procesaur">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%;
background-size: cover; background-image: url('https://cdn-uploads.huggingface.co/production/uploads/1673534533167-63bc254fb8c61b8aa496a39b.jpeg?w=200&h=200&f=face')">
</div>
</div>
</a>
<div style="text-align: center; font-size: 16px; font-weight: 800">Mihailo Škorić</div>
<div>
<a href="https://huggingface.co/procesaur">
<div style="text-align: center; font-size: 14px;">@procesaur</div>
</a>
</div>
</div>
</div>
Citation:
```bibtex
@article{skoric24korpusi,
author = {\vSkori\'c, Mihailo and Jankovi\'c, Nikola},
title = {New Textual Corpora for Serbian Language Modeling},
journal = {Infotheca},
volume = {24},
issue = {1},
year = {2024},
publisher = {Zajednica biblioteka univerziteta u Srbiji, Beograd},
url = {https://arxiv.org/abs/2405.09250}
}
```
<table style="width:100%;height:100%">
<tr style="width:100%;height:100%">
<td width=50%>
<p>Istraživanje je sprovedeno uz podršku Fonda za nauku Republike Srbije, #7276, Text Embeddings – Serbian Language Applications – TESLA.</p>
<p>Svaki korpus u tabeli vezan je za URL sa kojeg je preuzet. Prikazani brojevi dokumenata i reči, odnose se na stanje nakon čićenja i deduplikacije.</p>
<p>Deduplikacija je izvršena pomoću alata <a href="http://corpus.tools/wiki/Onion">onion</a> korišćenjem pretrage 6-torki i pragom dedumplikacije 75%.</p>
<p>Računarske resursre neophodne za deduplikaciju korpusa obezbedila je Nacionalna platforma za veštačku inteligenciju Srbije.</p>
</td>
<td>
<p>This research was supported by the Science Fund of the Republic of Serbia, #7276, Text Embeddings - Serbian Language Applications - TESLA.</p>
<p>Each corpus in the table is linked to the URL from which it was downloaded. The displayed numbers of documents and words refer to after cleaning and deduplication.</p>
<p>The dataset was deduplicated using <a href="http://corpus.tools/wiki/Onion">onion</a> using 6-tuples search and a duplicate threshold of 75%.</p>
<p>Computer resources necessary for the deduplication of the corpus were provided by the National Platform for Artificial Intelligence of Serbia.</p>
</td>
</tr>
</table>
<div id="zastava">
<div class="grb">
<img src="https://www.ai.gov.rs/img/logo_60x120-2.png" style="position:relative; left:30px; z-index:10; height:85px">
</div>
<table width=100% style="border:0px">
<tr style="background-color:#C6363C;width:100%;border:0px;height:30px"><td style="width:100vw"></td></tr>
<tr style="background-color:#0C4076;width:100%;border:0px;height:30px"><td></td></tr>
<tr style="background-color:#ffffff;width:100%;border:0px;height:30px"><td></td></tr>
</table>
</div>
<style>
.ffeat: {
color:red
}
.cover {
width: 100%;
margin-bottom: 5pt
}
.highlight-container, .highlight {
position: relative;
text-decoration:none
}
.highlight-container {
display: inline-block;
}
.highlight{
color:white;
text-transform:uppercase;
font-size: 16pt;
}
.highlight-container{
padding:5px 10px
}
.highlight-container:before {
content: " ";
display: block;
height: 100%;
width: 100%;
margin-left: 0px;
margin-right: 0px;
position: absolute;
background: #e80909;
transform: rotate(2deg);
top: -1px;
left: -1px;
border-radius: 20% 25% 20% 24%;
padding: 10px 18px 18px 10px;
}
div.grb, #zastava>table {
position:absolute;
top:0px;
left: 0px;
margin:0px
}
div.grb>img, #zastava>table{
margin:0px
}
#zastava {
position: relative;
margin-bottom:120px
}
p {
font-size:14pt
}
.lista tr{
line-height:1
}
</style> |