Datasets:

Modalities:
Image
Text
Formats:
parquet
Libraries:
Datasets
Dask
License:
id
stringlengths
4
8
image
imagewidth (px)
4
1.34k
latex
stringlengths
90
2.83k
CV-26906
\begin{tabular}{|l|c|c|} \hline Model & Test Accuracy & Perplexity \\ \hline Nearest Neighbor & $14.09$ & \texttt{N/A} \\ \hline CNN & $14.61$ & $0.1419$ \\ \hline Our Model & $\mathbf{19.77}$ & $\mathbf{0.2362}$ \\ \hline \end{tabular}
AI-8358
\begin{tabular}{|p{50pt}|p{50pt}<{\centering}|p{50pt}<{\centering}|p{50pt}<{\centering}|} \hline & \textbf{Types} & \textbf{HAS} & \textbf{HAS+r} \\ \hline \textbf{L.MDB} & Film & 0.38 & \textbf{0.44} \\ \hline \multirow{15}{*}{\textbf{DBpedia}} & Airl. & 0.402 & \textbf{0.424} \\ & Band & 0.26 & \textbf{0.56} \\ & Base. & 0.46 & \textbf{0.7} \\ & Lake & 0.28 & \textbf{0.4} \\ & Univ. & 0.177 & \textbf{0.406} \\ & Phil. & 0.288 & \textbf{0.667} \\ & Song & 0.538 & \textbf{0.807} \\ & Poli. & 0.209 & \textbf{0.524} \\ & TVsh. & 0.186 & \textbf{0.478} \\ & Come. & 0.528 & \textbf{0.575} \\ & Acad & \textbf{0.84} & \textbf{0.84} \\ & Acto. & 0.36 & \textbf{0.42} \\ & Book. & \textbf{0.6} & \textbf{0.6} \\ & Moun. & 0.609 & \textbf{0.645} \\ & Radi. & \textbf{0.62} & 0.532 \\ \hline \multicolumn{2}{|c|}{\textbf{Average}} & 0.421 & \textbf{0.566} \\ \hline \end{tabular}
CV-10464
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline \multirow{3}*{Method} & \multicolumn{6}{c|}{IoU = 0.5} & \multicolumn{6}{c|}{IoU = 0.7} \\ \cline{2-13} ~ & \multicolumn{2}{c|}{ Easy} & \multicolumn{2}{c|}{Moderate} & \multicolumn{2}{c|}{Hard} & \multicolumn{2}{c|}{ Easy} & \multicolumn{2}{c|}{Moderate} & \multicolumn{2}{c|}{Hard} \\ \cline{2-13} ~ & t/v 1 & t/v 2 & t/v 1 & t/v 2 & t/v 1 & t/v 2 & t/v 1 & t/v 2 & t/v 1 & t/v 2 & t/v 1 & t/v 2 \\ \hline\hline 3DOP & 46.04 & - & 34.63 & - & 30.09 & - & 6.55 & - & 5.07 & - & 4.10 & - \\ Mono3D & 25.19 & - & 18.20 & - & 15.52 & - & 2.53 & - & 2.31 & - & 2.31 & - \\ Deep3DBox & - & 27.04 & - & 20.55 & - & 15.88 & - & 5.85 & - & 4.10 & - & 3.84 \\ \hline Our Method & 28.16 & 28.98 & 21.02 & 20.71 & 19.91 & 18.59 & 5.98 & 5.45 & 5.50 & 5.11 & 4.75 & 4.45 \\ \hline \end{tabular}
SE-20655
\begin{tabular}[c]{@{}l@{}}a)DifferentorganizationsgenerateSBOMsatdifferentSDLCstages.\\b)MoreorganizationsfavorincludingmorethanbaselineSBOMinformation.\end{tabular}
CV-28515
\begin{tabular}{l|c|c|c|c} \hline Benchmark & Easy & Moderate & Hard & mAP \\ \hline Cars~(3D Detection) & 88.21 & 77.85 & 75.62 & 80.56 \\ Cars~(BEV Detection) & 90.17 & 87.55 & 87.14 & 88.29 \\ Pedestrians~(3D Detection) & 70.80 & 63.45 & 58.22 & 64.16 \\ Pedestrians~(BEV Detection) & 76.70 & 70.76 & 65.13 & 70.86 \\ Cyclists~(3D Detection) & 85.98 & 64.95 & 60.40 & 70.44 \\ Cyclists~(BEV Detection) & 87.17 & 66.71 & 63.79 & 72.56 \\ \hline \end{tabular}
AI-22172
\begin{tabular}{rl|rl|rl|rl|rl} Freq. & Word & Freq. & Word & Freq. & Word & Freq. & Word & Freq. & Word \\ \hline 3,205 & sport & 464 & use & 296 & carrying & 155 & crossing & 92 & popular \\ 1,153 & appear & 461 & chair & 287 & face & 150 & tires & 92 & planning \\ 976 & fire & 430 & parked & 283 & writing & 148 & cabinets & 88 & batters \\ 898 & pattern & 415 & coming & 230 & television & 145 & beds & 85 & enjoy \\ 845 & material & 399 & buses & 223 & vegetarian & 127 & mountain & 85 & dirt \\ 689 & bed & 395 & take & 220 & beside & 119 & levels & 85 & carpet \\ 669 & facing & 357 & utensil & 201 & graffiti & 117 & catcher & 83 & slice \\ 612 & big & 335 & dish & 167 & foot & 113 & falling & 80 & salad \\ 565 & trying & 321 & sink & 163 & couch & 101 & faces & 79 & square \\ 474 & sandwich & 317 & three & 160 & silver & 98 & fireplace & 78 & roll \\ \end{tabular}
CR-44831
\begin{tabular}{ccc} \hline Notations & Description & Time (ms) \\ \hline ${T_C}$ & Time cost of encryption & 0.096 \\ ${T_{agg}}$ & Time cost of aggregating 200 readings & 2.21 \\ ${T_{decAgg}}$ & Time cost of decrypting aggregated readings & 0.135 \\ ${T_{DM}}$ & Time cost of public key generation $DW$ & 45.36 \\ ${T_{decDW}}$ & Time cost of decrypting to obtain $\bm{rW}$ & 49.63 \\ $T{S_t}$ & Time cost of generating timestamp & 0.852 \\ ${T_{sig}}$ & Time cost of signature operation & 13.18 \\ ${T_{versig}}$ & Time cost of the verify signature operation & 127.29 \\ ${T_m}$ & Time cost of model detection & 56.03 \\ \hline \end{tabular}
SE-22997
\begin{tabular}{lllll} \hline\hline program & size(KLOC) & Times(secs) & Bug Count & False Count \\ \hline gcc & 230.4 & 213.1 & 36 & 6 \\ ammp & 13.4 & 10.4 & 23 & 5 \\ bash & 100.0 & 90.1 & 16 & 3 \\ mesa & 61.3 & 48.6 & 9 & 8 \\ cluster & 10.7 & 9.5 & 12 & 4 \\ openCV & 794.6 & 756.8 & 74 & 11 \\ bitcoin & 94.4 & 78.7 & 22 & 7 \\ Total & 1304.8 & 1257.9 & 192 & 44 \\ \hline\hline \end{tabular}
CR-29638
\begin{tabular}{ccccc} \toprule Image size & $1024\times 768$ & $1600\times 1200$ & $3240\times 2592$ & $4800\times 4800$ \\ \hline DCT on laptop GPU & 0.41 ms & 0.79 ms & 3.67 ms & 9.98 ms \\ AES on laptop CPU & 0.19 ms & 0.47 ms & 2.05 ms & 5.87 ms \\ \bottomrule \end{tabular}
AI-29454
\begin{tabular}{|p{0.30\textwidth}|p{0.275\textwidth}|p{0.28\textwidth}|} \hline \textbf{Dynamic conbditions} & \textbf{Action} & \textbf{Static Conditions} \\ \hline \makecell*[lt]{$robAt(R1)$} & \makecell*[lt]{$moveTo(R1,R0,D0)$} & \makecell*[lt]{$connected(D0,R0,R1)$} \\ \hline \makecell*[lt]{$isHeld(K,G)$} & \makecell*[lt]{$pickup(K,G,L0,R0)$} & \makecell*[lt]{$key(K)$ \\ \& $isCard(K)$} \\ \hline \makecell*[lt]{$isHeld(K,G)$} & \makecell*[lt]{$semi\_e\_isHeld(K,G)$} & \makecell*[lt]{$key(K)$ \\ \& $isCard(K)$ \\ \& $hand(G)$} \\ \hline \end{tabular}
SE-4760
\begin{tabular}{lccc} Action class & Mean LOC & Formula & P(class) \\ \hline \vspace{0.01in} {\tt <int> := <[1..20]>} & 0 & $\frac{0.20}{2}$ & 0.100 \\ {\tt <ch> := <['r','w']>} & 0 & $\frac{0.20}{2}$ & 0.100 \\ \vspace{0.03in} {\tt f(<int>)} & 30 & $\frac{30}{64} \times 0.80$ & 0.375 \\ {\tt g(<int>)} & 20 & $\frac{6+14}{64} \times 0.80$ & 0.250 \\ {\tt h(<ch>)} & 14 & $\frac{14}{64} \times 0.80$ & 0.175 \\ \end{tabular}
CR-12294
\begin{tabular}{|c|c|c|c|c|} \hline Vulnerability & Arbiter & MEM & GNG & AES \\ \hline Permissions and Privileges & & \checkmark & & \\ \hline Resource Management & & & & \checkmark \\ \hline Illegal States \& Transitions & \checkmark/\checkmark & \checkmark & & \\ \hline Buffer Issues & & \checkmark & & \\ \hline Information Leakage & \checkmark/\checkmark & & & \\ \hline Numeric Exceptions & & & \checkmark & \\ \hline Malicious Implants & & & & \checkmark \\ \hline \end{tabular}
CR-40148
\begin{tabular}{llcccccc} \hline \textbf{Label} & \textbf{Person} & \textbf{Sex} & \textbf{Language} & \textbf{Length(seconds)} & \textbf{Testing words} & \textbf{Training words} & \textbf{Overlapping words} \\ \hline \hline User$_1$ & Bill Gates & male & English & 7068 & 179 & 12593 & 19 \\ \hline User$_2$ & Feifei Li & female & English & 7120 & 182 & 17626 & 15 \\ \hline User$_3$ & Pony Ma & male & Chinese & 5180 & 215 & 28554 & 20 \\ \hline User$_4$ & Jane Goodall & female & English & 7484 & 188 & 11339 & 23 \\ \hline User$_5$ & Jiaying Ye & female & Chinese & 9032 & 188 & 11339 & 16 \\ \hline User$_6$ & Mingzhu Dong & female & Chinese & 5428 & 234 & 18709 & 22 \\ \hline User$_7$ & Steve Job & male & English & 14836 & 190 & 37751 & 17 \\ \hline User$_8$ & Yansong Bai & male & Chinese & 6792 & 251 & 27317 & 22 \\ \hline User$_9$ & Anne Hathaway & female & English & 60 & 197 & * & 21 \\ \hline User$_{10}$ & Elon Musk & male & English & 60 & 156 & * & 17 \\ \hline User$_{11}$ & Mark Zuckerberg & male & English & 60 & 177 & * & 15 \\ \hline User$_{12}$ & Oprah Winfrey & female & English & 60 & 167 & * & 18 \\ \hline User$_{13}$ & Lan Yang & female & Chinese & 60 & 289 & * & 25 \\ \hline User$_{14}$ & Minhong Yu & male & Chinese & 60 & 199 & * & 17 \\ \hline User$_{15}$ & Robin Li & male & Chinese & 60 & 244 & * & 20 \\ \hline User$_{16}$ & Yingtai Long & female & Chinese & 60 & 198 & * & 18 \\ \hline \end{tabular}
AI-6294
\begin{tabular}{|l|l|l|} \hline \multirow{2}{*}{Pretraining} & \# of Stays in Stay Level Pretraining & 100563 \\ & \# of Admissions in Admission Level Pretraining & 99000 \\ \hline \multirow{2}{*}{Stay Level Tasks} & \# of Stays in ARF Prediction & 4205 \\ & \# of Stays in Shock Prediction & 6190 \\ \hline Admission Level Tasks & \# of Admissions in Readmission Prediction & 33179 \\ \hline \multirow{4}{*}{Patient Level Tasks} & \# of Patients in Heart Failure Prediction & 12320 \\ & \# of Patients in COPD Prediction & 29256 \\ & \# of Patients in Amnesia Prediction & 11928 \\ & \# of Patients in Heart Failure Prediction (MIMIC-III) & 7522 \\ \hline \end{tabular}
AI-935
\begin{tabular}{lrrrrrr} \hline & Sum Sq & Mean Sq & NumDF & DenDF & F value & Pr($>$F) \\ \hline transparency & 0.10 & 0.10 & 1.00 & 994.00 & 5.83 & 0.0159 \\ num\_features & 0.04 & 0.04 & 1.00 & 994.00 & 2.15 & 0.1427 \\ transparency:num\_features & 0.00 & 0.00 & 1.00 & 994.00 & 0.06 & 0.8143 \\ \hline \end{tabular}
AI-27264
\begin{tabular}{l|l|l|l|l} \toprule \makecell[l]{Engage- \\ment} & \makecell[l]{Question\\difficulty} & $P_{Rresp}$ & $P_{IRresp}$ & $P_{Nresp}$ \\ \midrule \multirow{3}{*}{High} & Easy & $1$ & $0$ & $0$ \\ {} & Moderate & $1$ & $0$ & $0$ \\ {} & Difficult & $1$ & $0$ & $0$ \\ \hline \multirow{3}{*}{Medium} & Easy & $0.95$ & $0$ & $0.05$ \\ {} & Moderate & $0.92$ & $0$ & $0.08$ \\ {} & Difficult & $0.90$ & $0$ & $0.10$ \\ \hline \multirow{3}{*}{Low} & Easy & $0.90$ & $0$ & $0.10$ \\ {} & Moderate & $0.88$ & $0$ & $0.12$ \\ {} & Difficult & $0.85$ & $0$ & $0.15$ \\ \bottomrule \end{tabular}
CR-40936
\begin{tabular}{|cc|} \hline \multicolumn{2}{|c|}{A2Y} \\ \hline local & cloud \\ \hline \hline 0 & 0 \\ \hline \end{tabular}
SE-6501
\begin{tabular}{@{}p{65mm}@{}} \emph{Project: avajs/ava; Issue: $1400$} \\ ``... There is already a PR for this though, thanks to @tdeschryver ...'' \end{tabular}
CR-10565
\begin{tabular}{lrrrrrr} \multicolumn{1}{c}{Dataset} & \multicolumn{3}{c}{CIFAR-10} & \multicolumn{3}{c}{CIFAR-100} \\ \cmidrule(lr){1-1} \cmidrule(lr){2-4} \cmidrule(lr){5-7} Defense level & No Def. & Mixup+MMD & Mem-Guard & No Def. & Mixup+MMD & Mem-Guard \\ \cmidrule(lr){1-4} \cmidrule(lr){4-7} Training accuracy & 0.994 & {\bf 0.881} & 0.997 & 0.995 & {\bf 0.665} & 0.979 \\ Testing accuracy & 0.761 & {\bf 0.765} & 0.762 & 0.326 & {\bf 0.337} & {\bf 0.338} \\ \cmidrule(lr){1-4} \cmidrule(lr){4-7} \textbf{Generalization gap} & 0.232 & {\bf 0.116} & 0.235 & 0.669 & {\bf 0.328} & 0.641 \\ \textbf{Largest attack advantage} & 0.166 & {\bf 0.067} & 0.113 & 0.356 & {\bf 0.166} & 0.324 \\ \textbf{Baseline attack advantage} & 0.116 & {\bf 0.067} & 0.112 & 0.333 & {\bf 0.166} & 0.324 \\ \cmidrule(lr){1-4} \cmidrule(lr){4-7} Global-Probability attack advantage & 0.156 & {\bf 0.067} & 0.112 & 0.356 & {\bf 0.166} & 0.320 \\ Global-Loss attack advantage & 0.166 & {\bf 0.056} & 0.113 & 0.356 & {\bf 0.155} & 0.319 \\ Global-TopOne attack advantage & 0.120 & 0.049 & {\bf 0.028} & 0.249 & 0.103 & {\bf 0.093} \\ Global-TopThree attack advantage & 0.140 & 0.052 & {\bf 0.027} & 0.273 & 0.104 & {\bf 0.063} \\ Class-Vector attack advantage & 0.137 & {\bf 0.054} & 0.113 & 0.320 & {\bf 0.115} & 0.316 \\ \bottomrule \end{tabular}
PL-1297
\begin{tabular}{@{}p{7em}cccccp{6em}@{}} Unrelated & $\bigcirc$ & $\bigcirc$ & $\bigcirc$ & $\bigcirc$ & $\bigcirc$ & Related \\ \end{tabular}
AI-522
\begin{tabular}{|l|c|c|c|} \hline Variant & hit@30 & Mean Rank & Mean Percentile\tabularnewline \hline \hline Original & 0.368 & 1298.44 & 92.70\tabularnewline \hline Relation-weighted & \textbf{0.375} & \textbf{1186.81} & \textbf{93.32}\tabularnewline \hline \end{tabular}
CV-2727
\begin{tabular}{lccclll} & \multicolumn{3}{c}{Dice} & \multicolumn{3}{c}{HD95} \\ \multicolumn{1}{c}{} & enh. & whole & core & enh. & whole & core \\ \hline Isensee et al. (2017) & 70.69 & 89.51 & 82.76 & 6.24 & 6.04 & 6.95 \\ baseline & 73.43 & 89.76 & 82.17 & 4.88 & 5.86 & 7.11 \\ baseline + reg & 73.81 & 90.02 & 82.87 & 5.01 & 6.26 & 6.48 \\ baseline + reg + cotr (dec) & 75.94 & 91.33 & 85.28 & 4.29 & 4.82 & 5.05 \\ baseline + reg + cotr (dec) + post & \textbf{78.68} & 91.33 & 85.28 & 3.49 & \textbf{4.82} & \textbf{5.05} \\ baseline + reg + cotr (dec) + post + DC\&CE & 78.62 & \textbf{91.75} & \textbf{85.69} & \textbf{2.84} & 4.88 & 5.11 \\ baseline + reg + cotr (inst) + post + DC\&CE & 76.32 & 90.35 & 84.36 & 3.74 & 5.64 & 5.98 \\ baseline + reg + post + DC\&CE & 76.78 & 90.30 & 83.55 & 3.66 & 5.36 & 6.03 \end{tabular}
CR-36686
\begin{tabular}{ccccc} \toprule \textbf{} & \textbf{Time(s)} & \textbf{Space(KB)} & \textbf{$T_{total}\Delta$Acc} & \textbf{$T_{total}\Delta$Loss} \\ \midrule $^v$BN & \cellcolor[HTML]{67000d}\color{white}263.5 & \cellcolor[HTML]{fff5f0}4 & \cellcolor[HTML]{f7f6f6} -0.53 & \cellcolor[HTML]{f7f5f4} 0.02 \\ $^v$ME & \cellcolor[HTML]{fff5f0}90.2 & \cellcolor[HTML]{fdccb8}12 & \cellcolor[HTML]{f8f4f2} -1.64 & \cellcolor[HTML]{f8f1ed} 0.08 \\ $^v$BF & \cellcolor[HTML]{fcab8f}142.1 & \cellcolor[HTML]{67000d}\color{white}1233 & \cellcolor[HTML]{f8f4f2} -1.54 & \cellcolor[HTML]{f8f2ef} 0.06 \\ \textbf{$^v$EM} & \cellcolor[HTML]{ffece3}99.6 & \cellcolor[HTML]{fff5f0}4 & \cellcolor[HTML]{f8f2ef} -2.82 & \cellcolor[HTML]{fee8dd} 0.15 \\ \textbf{$^v$FM} & \cellcolor[HTML]{fbfaf9}10.26 & \cellcolor[HTML]{fff5f0}4 & \cellcolor[HTML]{f8f2ef} -2.73 & \cellcolor[HTML]{fee8dd} 0.13 \\ \bottomrule \end{tabular}
AI-39429
\begin{tabular}{ccc} \toprule \multicolumn{1}{c}{\multirow{1}[1]{*}{\textbf{Shorthand}}} & \multirow{1}[1]{*}{$\mathcal{T}_\text{train}$} & \multicolumn{1}{c}{\multirow{1}[1]{*}{$\mathcal{T}_\text{test}$}} \\ \midrule \textit{random} & $100$ random & $20$ random \\ \textit{non-cls} & $35$ non-cls. & $42$ non-cls.($\mathcal{T}_\text{test}^\text{in}$) / $43$ cls.($\mathcal{T}_\text{test}^\text{out}$) \\ \textit{cls} & $35$ cls. & $8$ cls.($\mathcal{T}_\text{test}^\text{in}$) / $77$ non-cls.($\mathcal{T}_\text{test}^\text{out}$) \\ \bottomrule \end{tabular}
AI-24546
\begin{tabular}{l|c|c|c} \hline & $P_1$ & $P_2$ & $P_3$ \\ \hline Accuracy & 99.6 & 99.6 & 100 \\ \hline \end{tabular}
CR-46597
\begin{tabular}{|c|c|c|c|c|c|} \hline & ANN & SVM & NBC & Random Forest & Average \\ \hline Precision & 0.9985 & 0.9833 & 0.9937 & \textbf{0.9987} & 0.9936 \\ \hline Recall & 0.9112 & \textbf{0.9339} & 0.8537 & 0.9084 & 0.9018 \\ \hline F1-Score & 0.9529 & \textbf{0.9579} & 0.9185 & 0.9514 & 0.9452 \\ \hline \end{tabular}
SE-25170
\begin{tabular}[l]{@{}l@{}}\textit{``Promotingwomentoseniorjobsandleadershipwouldhelpyoungertalentstoidentify}\\\textit{themselveswiththecompany,givingthemconfidenceandmoreprospectsofcontinuingtheir}\\\textit{careerinthecompany"}(S65) \end{tabular}
PL-1837
\begin{tabular}{lr} \toprule \textbf{Category} & \textbf{\#Apps Studied} \\ \midrule Banking & 6 \\ Business & 10 \\ Education & 8 \\ Entertainment & 16 \\ Health & 10 \\ Online Payments & 25 \\ Music & 13 \\ News & 19 \\ Shopping & 17 \\ Social & 11 \\ Top Grossing & 30 \\ Top Apps & 22 \\ Travel & 9 \\ \midrule Total & 196 \\ \bottomrule \end{tabular}
SE-23461
\begin{tabular}{lcccccccccc} & KNN & LNR & SVR & RFT & CART & RDCART & GSCART & FLASH & DECART & ASKL \\ commit & \cellcolor[HTML]{F0F0F0}160\ contributor & \cellcolor[HTML]{EFEFEF}102\ openPR & \cellcolor[HTML]{F0F0F0}151\ closePR & \cellcolor[HTML]{EFEFEF}100\ openISSUE & \cellcolor[HTML]{F0F0F0}150\ closedISSUE & \cellcolor[HTML]{EFEFEF}147\ \end{tabular}
CR-21878
\begin{tabular}{rcl} \hline $U_{i}$ & & $S$ \\ \hline Chooses $b$ as random number and inputs $ID_{i}$, $PW_{i}$ \& $b$ & & \\ Computes $PWB_{i}=h(PW_{i}\oplus b)$ & $\xrightarrow{PWB_{i}, ID_{i}}$ & Computes \\ & & $Q_{i}=h(ID_{i}\Vert x)\oplus PWB_{i}$ \\ & & $R_{i}=h(PWB_{i}\Vert ID_{i})$ \\ Stores random number $b$ on smart card and smart & & Stores ($Q_{i}$,$R_{i}$ \& $Q_{i}\oplus PWB_{i}$) in $DBS$ \\ card contains [$R_{i}$, $Q_{i}$ \& $b$] & $\xleftarrow{[R_{i}, Q_{i}]}$ & Issues a smart card containing [$R_{i}$, $Q_{i}$] \\ \hline \end{tabular}
CV-2811
\begin{tabular}{|l||r|r|r||r|} \hline {} & {\em ss} & {\em gs} & {\em noa} & Total \\ \hline\hline Training & $648$ & $2\rm{,}002$ & $7\rm{,}000$ & $ 9\rm{,}650$ \\ \hline Testing & $237$ & $618$ & $2\rm{,}828$ & $ 3\rm{,}683$ \\ \hline\hline Total & $885$ & $2\rm{,}620$ & $9\rm{,}828$ & $13\rm{,}333$ \\ \hline \end{tabular}
CV-24619
\begin{tabular}{|l|c|} \hline Method & Accuracy \\ \hline\hline Chance & 0.1 \\ Analogous Attr & 1.4 \\ Red wine & 13.1 \\ Attribute as Operator & 14.2 \\ VisProd NN & 13.9 \\ Label Embedded+ & 14.8 \\ Our & \textbf{15.2} \\ \hline \end{tabular}
CR-43677
\begin{tabular}{|l|l|l|l|} \hline \multicolumn{2}{|c|}{\textbf{Sample of Secret Set}} & \multicolumn{2}{|c|}{\textbf{Sample of Camouflaged Training Set}} \\\hline \multicolumn{1}{|c|}{\textbf{Class}} & \multicolumn{1}{|c|}{\textbf{Article}} & \multicolumn{1}{|c|}{\textbf{Class}} & \multicolumn{1}{|c|}{\textbf{Article}} \\\hline Christianity & $\ldots$Christ that often causes christians to be very & Baseball & $\ldots$The Angels won their home opener against the \\ & critical of themselves and other christinas. We$\ldots$ & & Brewers today before 33,000+ at Anaheim Stadium$\ldots$ \\\cline{2-2}\cline{4-4} & $\ldots$I've heard it said that the accounts we have & & $\ldots$ interested in finding out how I might be able \\ & of Christs life and ministry in the Gospels were$\ldots$ & & to get two tickets for the All Star game in Baltimore$\ldots$ \\\hline Atheism & $\ldots$This article attempts to provide a general & Hockey & $\ldots$ user and not necessarily those could anyone post \\ & introduction to atheism. Whilst I have tried to be$\ldots$ & & the game summary for the Sabres-Bruins game.$\ldots$ \\\cline{2-2}\cline{4-4} & $\ldots$Science is wonderful at answering most of our & & $\ldots$Tuesday, and the isles/caps game is going into \\ & questions. I'm not the type to question scientific$\ldots$ & & overtime. what does ESPN do. Tom Mees says, "we$\ldots$ \\\hline \end{tabular}
CV-332
\begin{tabular}{|c|c|cc|} \hline & & Surface & Joint \\ Output & Method & Error & Error \\ \hline \multirow{3}{*}{P} & Tung \textit{et al.} & 74.5 & 64.4 \\ & Pavlakos \textit{et al.} & 151.5 & - \\ & SMPLR & 75.4 & 55.8 \\ \hline V & BodyNet & 65.8 & - \\ \hline \multirow{2}{*}{S} & Baseline & 101 & 85.7 \\ & HMNet[subsampled] & 86.9 & 72.4 \\ & HMNet & 86.6 & 71.9 \\ & HMNetOracle & \textbf{63.5} & \textbf{49.1} \\ \hline \end{tabular}
AI-24907
\begin{tabular}{c|ccc} & \multicolumn{2}{c}{Evaluation Level} \\ Game & 1 & 3 \\ \hline Clusters & 0.00 $\pm$ 0.00 & 0.7 $\pm$ 0.46 \\ Cook Me Pasta & 4.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 \\ Bait & -0.09 $\pm$ 0.29 & 1.78 $\pm$ 0.42 \\ Sokoban 2 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 \\ Zen Puzzle & 23.00 $\pm$ 0.00 & 10.9 $\pm$ 5.01 \\ Labyrinth & 0.00 $\pm$ 0.00 & \textbf{1.00} $\pm$ 0.00 \\ \end{tabular}
CV-19981
\begin{tabular}{c|c|c} \hline & w/o & w/ \\ & noise module & noise module \\ \hline\hline DSQ & 84.11 & \textbf{84.46} \\ BNN+ & 84.59 & \textbf{84.87} \\ FDA-BNN & 85.83 & \textbf{86.20} \\ \hline \end{tabular}
CR-12610
\begin{tabular}{|c|c|c|c|c|} \hline solution & abbreviation & sparsification & perturbation & budget \\ \hline non-private & NP & full/random/topk & - & $\infty$ \\ \hline flat & PM/HM/Duchi & random sampling & $\epsilon^{\prime}$ & $\epsilon^{\prime}$ \\ \hline compressed & -RP & random projection & $\epsilon^{\prime}$ & $\epsilon^{\prime}$ \\ \hline two-stage & EXP/PE/PS- & $\epsilon_1=\mu \cdot \epsilon^{\prime}$ & $\epsilon_2=\epsilon^{\prime}-\epsilon_1$ & $\epsilon^{\prime}$ \\ \hline \end{tabular}
AI-16366
\begin{tabular}{|l|l|l|l|l|} \hline \textbf{Algorithm} & \textbf{F1 Score} & \textbf{Precision} & \textbf{Recall} & \textbf{AUC} \\ \hline \textit{RECON} & 0.61 & 0.56 & 0.68 & 0.51 \\ \hline \textit{ImRec} & 0.71 & 0.60 & 0.88 & 0.65 \\ \hline \textit{TIRR} & 0.87 & 0.86 & 0.88 & 0.91 \\ \hline \end{tabular}
AI-19935
\begin{tabular}{ll} \hline \hline \textbf{dialogue His.} & what is your favorite food ? [SEP] ice cream . \\ \textbf{Gold Resp.} & what flavor ? \\ \hline TA-Seq2Seq & what kind of ice cream ? \\ THRED & what kind of ice cream ? \\ C-Trans-ED & ice cream is the best food i have ever eaten \\ C-Trans-Dec & i 'm not sure if you 're joking but i 'm not sure if you 're serious . \\ BERT & i do n't like ice cream . \\ Ours & i do n't like ice cream . it 's coarse and irritating and it gets everywhere . \\ \quad Two-Step FT & i 've never had ice cream . what 's it like ? \\ \quad w/o ctext & i 've never had ice cream . what 's it taste like ? \\ \quad w/o tfidf & what kind of ice cream do you like ? \\ \hline \hline C-Trans-ED & ice cream is the best food i 've ever seem . \\ C-Trans-Dec & i 've never had ice cream . \\ BERT & i 've never had ice cream . \\ Ours & i do n ' t like ice cream . \\ \quad Two-Step FT & i like ice cream , but i do n ' t like it . \\ \quad w/o ctext & i 've never had ice cream , but it 's so good . \\ \quad w/o tfidf & i ' ve never had ice cream . \\ \hline \end{tabular}
SE-9694
\begin{tabular}{lll} \hline Paper & Context & Type of study \\ \hline Abdullah et al. & Compliance management & Case study \\ Conmy and Paige & Safety standards (avionics) & Educated opinion \\ Boella et al. & Business processes & Educated opinion \\ Ghanavati et al. & Business processes & Experience \\ Nekvi and Madhavji & Railway regulations & Case study \\ \hline \end{tabular}
CV-3840
\begin{tabular}{c|cccc|cccc|cccc|cccc} Model & \multicolumn{4}{c|}{OMP Models} & \multicolumn{4}{c}{25 mm} & \multicolumn{4}{c}{50 mm} & \multicolumn{4}{c}{ 100 mm} \\ \hline ZV & 42 & 100 & 149 & 188 & 53 & 106 & 154 & 191 & \textbf{66} & 118 & 164 & 199 & 106 & 151 & 187 & 223 \\ RNN & 41 & 93 & 135 & 169 & 52 & 99 & 141 & 174 & 69 & 113 & 151 & 183 & \textbf{105} & 142 & 181 & 208 \\ C-RNN+OMP+LI & \textbf{40} & \textbf{81} & \textbf{109} & \textbf{129} & \textbf{51} & \textbf{88} & \textbf{115} & \textbf{134} & 67 & \textbf{100} & \textbf{126} & \textbf{144} & 106 & \textbf{132} & \textbf{156} & \textbf{172} \\ \hline \end{tabular}
CR-30622
\begin{tabular}{c|c|c|c|c} \hline & $\delta$-reweight & $\gamma$-reweight & Soft($\delta=1.0$) & Soft($\delta=2.0$) \\ \midrule[0.1pt] $\epsilon=0.0$ & $0.9997 \pm 0.0005$ & $0.9936 \pm 0.0016$ & $0.8446 \pm 0.0069$ & $0.9705 \pm 0.0030$ \\ $\epsilon=0.1$ & $0.9569 \pm 0.0021$ & $0.9297 \pm 0.0030$ & $0.7871 \pm 0.0081$ & $0.9239 \pm 0.0070$ \\ $\epsilon=0.2$ & $0.8881 \pm 0.0043$ & $0.8391 \pm 0.0018$ & $0.7339 \pm 0.0110$ & $0.8680 \pm 0.0088$ \\ $\epsilon=0.3$ & $0.8152 \pm 0.0059$ & $0.7574 \pm 0.0054$ & $0.6741 \pm 0.0119$ & $0.7956 \pm 0.0110$ \\ $\epsilon=0.4$ & $0.7487 \pm 0.0056$ & $0.6942 \pm 0.0107$ & $0.6334 \pm 0.0084$ & $0.7312 \pm 0.0121$ \\ $\epsilon=0.5$ & $0.6851 \pm 0.0067$ & $0.6502 \pm 0.0068$ & $0.5859 \pm 0.0079$ & $0.6561 \pm 0.0124$ \\ \hline \end{tabular}
SE-15205
\begin{tabular}{lrrl} \hline {\bfseries Method} & {\bfseries Mean Recall} & {\bfseries Dunn's test Rank} & {\bfseries Comments} \\ \hline \hline Proportion Moving Window & 0.84 & 1 & \\ Proportion Cold Start & 0.82 & 1 & \\ Proportion Increment & 0.81 & 1.5 & Significantly lower than Proportion Moving Window \\ SZZ\_B+ & 0.71 & 2 & \\ SZZ\_B & 0.71 & 2 & \\ SZZ\_RA & 0.70 & 2 & \\ SZZ\_U & 0.70 & 2 & \\ SZZ\_RA+ & 0.70 & 2 & \\ SZZ\_U+ & 0.70 & 2 & \\ Simple & 0.61 & 3 & \\ \hline \hline \end{tabular}
CR-55836
\begin{tabular}[c]{@{}l@{}}1.Thestrategybasedonknowledgeextractionwasusedtoovercome\\thecommunicationbottleneckinFL.\\2.Thearticleproducedsatisfactoryresultsonthreedifferent\\medicaldatasets.\end{tabular}
CR-21138
\begin{tabular}{|l|r|} \cline{2-2} \multicolumn{1}{c|}{\ } & Mean ($\pm$ Std) \\ \hline \hline Capacity per Token & 4.41 ($\pm$ 0.78) \\ \hline Encoded Expansion & 8.13 ($\pm$ 2.12) \\ \hline Plaintext Bits per Covertext Bits & 0.11 ($\pm$ 0.02) \\ \hline Median Sender-side Time & 5.21 \\ \hline Sentinel Value Check Time & 0.13 ($\pm$ 0.15) \\ \hline Median Receiver-side Time & 5.15 \\ \hline \addlinespace[0.2cm] \hline Tokenizer Decoding & 6.99 ($\pm$ 4.68) \\ \hline Backtracking Rate Overall & 0.125 \\ \hline Path Decoding Rate $N=5$ & 0.961 \\ \hline Path Decoding Time $N=5$ & 54.75. ($\pm$ 21.15) \\ \hline Path Decoding Rate $N=10$ & 0.986 \\ \hline Path Decoding Time $N=10$ & 142.18. ($\pm$ 14.07) \\ \hline Path Decoding Rate $N=40$ & 1 \\ \hline Path Decoding Time $N=40$ & 496.32 ($\pm$ 51.44) \\ \hline Overall Mean Receiver-side Time & 20.60 ($\pm$ 57.58) \\ \hline Receiver-side Failure Rate & 0.00 \\ \hline \end{tabular}
AI-18467
\begin{tabular}{|c|c|c|c|} \hline \textbf{Algorithm} & \textbf{Rounds} & \textbf{MNIST} & \textbf{CIFAR-10} \\ \hline Genetic CFL & 10 & 97.99 & 76.88 \\ \hline Byzantine Robustness of CFL & 200 & 97.4 & 75.3 \\ \hline FedZip & 20 & 98.03 & - \\ \hline Iterative federated clustering & - & 95.25 & 81.51 \\ \hline \end{tabular}
CL-885
\begin{tabular}{lcccc} \hline Features & Category & $P$ & $R$ & $F1$ \\ \hline \multirow {2} {*} {all} & $I$ & 66.93 & \textbf{77.32} & \textbf{71.75} \\ & $NI$ & \textbf{73.13} & 61.78 & \textbf{66.97} \\ \hline \multirow {2} {*} {- tropes} & $I$ & \textbf{67.70} & {48.00} & 56.18 \\ & $NI$ & {59.70} & \textbf{77.09} & \textbf{67.29} \\ \hline \multirow {2} {*} {- MS} & $I$ & 63.59 & \textbf{78.09} & 70.10 \\ & $NI$ & \textbf{71.59} & {55.27} & 62.38 \\ \hline \multirow {2} {*} {- typography} & $I$ & 57.30 & 77.95 & 66.05 \\ & $NI$ & 65.49 & 41.86 & 51.07 \\ \hline \end{tabular}
AI-22501
\begin{tabular}{|c|c|c|c|c|} \hline \textbf{Contr.} & \textbf{Domain} & \textbf{Application} & \textbf{Focus} & \textbf{Value} (main) \\ \hline \hline & Business & Decision Support System & Conceptual & Interoperability \\ & N\textbackslash A & N\textbackslash A & Conceptual & Interoperability \\ & N\textbackslash A & N\textbackslash A & Conceptual & Interoperability \\ & Healthcare & Explainable models & Conceptual & Explainability \\ & N\textbackslash A & Explainable models & Conceptual & Explainability \\ & Education & System Thinking & Conceptual & System Engineering \\ & Smart Systems & Ambient Assisting Living & Conceptual & System Engineering \\ & N\textbackslash A & N\textbackslash A & Conceptual & Explainability \\ & N\textbackslash A & Collective Intelligence & Conceptual & Quality and Accuracy \\ & N\textbackslash A & Knowledge Graph & Conceptual & Explainability \\ & N\textbackslash A & Collective Intelligence & Conceptual & Quality and Accuracy \\ & N\textbackslash A & N\textbackslash A & Conceptual & Quality and Accuracy \\ & N\textbackslash A & N\textbackslash A & Conceptual & System Engineering \\ & N\textbackslash A & N\textbackslash A & Conceptual & System Engineering \\ \hline \hline \end{tabular}
SE-23702
\begin{tabular}{ccrrrc} \toprule & sub- & fail-only & pass-only & fail \& & failure \\ signature & pattern & events & events & pass & strings* \\ \midrule A & 1 & 1 & 0 & 0 & yes \\ A & 2 & 2 & 0 & 0 & no \\ B & 1 & 2 & 0 & 0 & yes \\ C & 1 & 21 & 0 & 0 & yes \\ C & 2 & 21 & 0 & 0 & yes \\ D & 1 & 4 & 0 & 0 & yes \\ \textbf{D$^{\#}$} & \textbf{2} & 69 & 267 & 115 & no \\ \textbf{D$^{\#}$} & \textbf{3} & 2 & 10 & 13 & no \\ \textbf{E$^{\#}$} & \textbf{1} & 24 & 239 & 171 & no \\ E & 1 & 1 & 0 & 0 & no \\ E & 2 & 9 & 0 & 0 & no \\ E & 3 & 9 & 0 & 0 & yes \\ E & 4 & 23 & 0 & 0 & yes \\ F & 1 & 19 & 0 & 0 & yes \\ F & 2 & 19 & 0 & 0 & no \\ F & 3 & 19 & 0 & 0 & yes \\ F & 4 & 14 & 0 & 0 & yes \\ G & 1 & 2 & 0 & 0 & yes \\ G & 2 & 1 & 0 & 0 & no \\ G & 3 & 1 & 0 & 0 & no \\ \bottomrule \multicolumn{6}{l}{* signature contains the lexical patterns 'error', 'fault' or 'fail*'} \\ \multicolumn{6}{l}{$^{\#}$ sub-patterns that were removed to ensure a clean ground truth} \end{tabular}
AI-1767
\begin{tabular}{lrrrrrr} \toprule \multirow{2}*{Methods} & \multicolumn{3}{c}{CNNDM} & \multicolumn{3}{c}{XSum} \\ \cmidrule(r{4pt}){2-4} \cmidrule{5-7} ~ & IF & RL & FL & IF & RL & FL \\ \midrule PSP & {\bf 0.500} & {\bf 0.708} & {\bf 0.667} & {\bf 0.217} & {\bf 0.275} & {\bf 0.492} \\ Prompt Tuning & -0.317 & -0.758 & -0.975 & -0.336 & -0.400 & -0.867 \\ Prefix-Tuning & -0.233 & 0.067 & 0.158 & 0.017 & -0.008 & 0.292 \\ Full-Model Tuning & 0.067 & -0.025 & 0.075 & 0.117 & 0.092 & 0.075 \\ \bottomrule \end{tabular}
CV-28731
\begin{tabular}{@{\hspace{1mm}}c@{\hspace{9mm}}c@{\hspace{15mm}}c@{\hspace{16mm}}c@{\hspace{13mm}}c@{\hspace{13mm}}c} (a) ground-truth & (b) RPM-HTB & (c) Go-ICP & (d) FRS & (e) TEASER++ & (f) GORE \end{tabular}
CR-28559
\begin{tabular}{lc} \hline \textbf{Command} & \textbf{Output} \\ \hline \verb|{\c c}| & {\c c} \\ \verb|{\u g}| & {\u g} \\ \verb|{\l}| & {\l} \\ \verb|{\~n}| & {\~n} \\ \verb|{\H o}| & {\H o} \\ \verb|{\v r}| & {\v r} \\ \verb|{\ss}| & {\ss} \\ \hline \end{tabular}
CV-409
\begin{tabular}{lccccccc} \toprule $D$ & 2 & 8 & 16 & 32 & 64 & 128 & 256 \\ \midrule Scenes-daytime & 85 & 87 & \textbf{91} & 92 & 92 & 95 & 95 \\ \midrule Handbags-color & 96.3 & \textbf{99.1} & 99.0 & 99.3 & 98.3 & 98.9 & 98.4 \\ Handbags-texture & 64.2 & 65.2 & 66.4 & \textbf{87.0} & 91.3 & 92.8 & 95.4 \\ \bottomrule \end{tabular}
AI-19315
\begin{tabular}{|l|l|} \hline $P(x|z_1)$ & 0.1 \\ \hline $P(x|z_2)$ & 0.4 \\ \hline $P(x|z_3)$ & 0.5 \\ \hline $P(x|z_4)$ & 0.7 \\ \hline \end{tabular}
CR-56856
\begin{tabular}{|c|c|c|c|c|} \hline Candidate Models & DNN1 & DNN2 & DNN3 & VGG-16 \\ \hline Accuracy & 79.63\ \end{tabular}
CV-27536
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|} \hline \multicolumn{2}{|c|}{Branches} & \multicolumn{4}{c|}{Regular Text} & \multicolumn{4}{c|}{Irregular Text} \\ \hline Attn & CTC & IIIT5K & SVT & IC03 & IC13 & IC15-2077 & IC15-1811 & SVTP & CUTE \\ \hline & \checkmark & 88.6 & 87.3 & 92.4 & 90.3 & 72.1 & 76.5 & 77.1 & 78.8 \\ \hline \checkmark & & \textbf{91.0} & 90.6 & 94.3 & 93.3 & \textbf{75.7} & 80.2 & \textbf{84.2} & 82.3 \\ \hline \checkmark & \checkmark & \textbf{91.0} & \textbf{91.2} & \textbf{96.1} & \textbf{94.5} & 75.1 & \textbf{80.4} & 83.3 & \textbf{83.7} \\ \hline \end{tabular}
SE-4747
\begin{tabular}{|lc|c|c|c|c|c|c|c|} \hline \multicolumn{1}{|l|}{\textbf{Distance}} & \textbf{Total} & \textbf{TP} & \textbf{FP} & \textbf{FN} & \textbf{P} & \textbf{R} & \textbf{F1} & \textbf{AP@0.5} \\ \hline \multicolumn{1}{|l|}{All} & 139,526 & 134,948 & 711 & 191 & 0.9948 & 0.9986 & 0.9967 & 0.9942 \\ \hline \multicolumn{2}{|c|}{+OOD} & 134,927 & 20 & 212 & 0.9999 & 0.9984 & 0.9991 & 0.995 \\ \hline \hline \multicolumn{1}{|l|}{$\le$ 80 m} & 105,588 & 101,320 & 444 & 173 & 0.9956 & 0.9983 & 0.997 & 0.9948 \\ \hline \multicolumn{2}{|c|}{+OOD} & 101,300 & 13 & 193 & 0.9999 & 0.9981 & 0.999 & 0.995 \\ \hline \hline \multicolumn{1}{|l|}{$\le$ 50 m} & 61,845 & 57,877 & 186 & 173 & 0.9968 & 0.9970 & 0.9969 & 0.9944 \\ \hline \multicolumn{2}{|c|}{+OOD} & 57,857 & 13 & 193 & 0.9998 & 0.9967 & 0.9982 & 0.995 \\ \hline \end{tabular}
AI-33039
\begin{tabular}{@{~}lll} \toprule \textbf{Notation} & \textbf{Desription} \\ \midrule $\bm{\mathcal{G}}$ & a directed graph \\ $\bm{\mathcal{V}} $ & set of nodes \\ $\bm{\mathcal{E}} $ & set of edges \\ $\bm{\mathcal{S}}$ & set of multiple-paths \\ $\bm{\mathcal{T}}$ & set of single-paths \\ $N$ & number of nodes \\ $E$ & number of edges \\ $K$ & embedding dimension of nodes and relationships \\ $\mathbf{A} \in \mathcal{R}^{N \times N}$ & adjacency matrix of nodes \\ $\mathbf{\Phi}^{\mathcal{V} } \in \mathcal{R}^{N \times K}$ & embedding matrix for all nodes \\ $\mathbf{Z}^{\mathcal{E} } \in \mathcal{R}^{E \times K}$ & embedding matrix for all relationships of node-pairs \\ \bottomrule \end{tabular}
AI-30452
\begin{tabular}{lccccc} \toprule Symbol & $a_1$ & $a_2$ & $a_3$ & $a_4$ & $a_5$ \\ \midrule Probability & $0.32$ & $0.08$ & $0.16$ & $0.02$ & $0.42$ \\ $\ell_{a_i}$ & $32$ & $8$ & $16$ & $2$ & $42$ \\ $b_{a_i}$ & $0$ & $32$ & $40$ & $56$ & $58$ \\ \bottomrule \end{tabular}
CR-48768
\begin{tabular}{l|l|c} \toprule[1.5pt] \multicolumn{2}{l|}{Violated Rules} & \# of Apps\tabularnewline \midrule[1pt] \multicolumn{2}{l|}{Rule 1} & 41 \tabularnewline \hline \multirow{4}{*}{Rule 2} & Rule 2-1 & 162\tabularnewline \cline{2-3} & Rule 2-2 & 67\tabularnewline \cline{2-3} & Rule 2-3 & 125\tabularnewline \cline{2-3} & Total & 354 \tabularnewline \hline \multicolumn{2}{l|}{Rule 3} & 4\tabularnewline \hline \multicolumn{2}{l|}{Total} & 399 (out of 2,022) \tabularnewline \bottomrule[1.5pt] \end{tabular}
PL-303
\begin{tabular}{l|r|r|r|r|r} \toprule Service type & \thead{\# Positive \\ responses} & \thead{\# Negative\\ responses} & \thead{\# Total\\ responses} & \thead{\# No\\ responses} & \thead{\# Total\\ PRs}\\ \midrule Nudge-LT & 1829 & 2062 & 3891 & 226 & 4117 \\ Nudge-FULL & 3199 & 882 & 4081 & 302 & 4383 \\ \bottomrule \end{tabular}
CL-2692
\begin{tabular}{lcccc} \toprule & \multicolumn{2}{c}{Train (sec.)} & \multicolumn{2}{c}{Test (sec.)} \\ Model & Turn & Total & Turn & Total \\ \toprule \small GLAD & 1.78 & 89 & 2.32 & 76 \\ \small GCE (Ours) & \textbf{1.16} & \textbf{60} & \textbf{1.92} & \textbf{63} \\ \bottomrule \end{tabular}
SE-23563
\begin{tabular}{p{5cm}|p{2cm}} \hline \textbf{Survey item} & \textbf{Average score} \\ \hline My understanding of real world problems related to project management was promoted. & 1.4 \\ \hline My interest on the course objectives and content was aroused. & 1.9 \\ \hline The importance of the material for my professional activity became clear to me. & 1.5 \\ \hline Overall, I rate the didactic method (eduScrum) positively. & 1.6 \\ \hline \end{tabular}
CV-8215
\begin{tabular}{||c|c|c|c||} \hline Method & PSNR & SSIM & CPBD \\ [0.5ex] \hline\hline $L_{pix}$ & 25.874 & 0.813 & 0.366 \\ $L_{pix}+L_{adv}$ & 25.951 & 0.814 & 0.373 \\ $L_{pix}+L_{adv}+L_{reg}$ & \textbf{26.153} & \textbf{0.818} & \textbf{0.386} \\ \hline \end{tabular}
SE-4363
\begin{tabular}{lrrrrrrrr} \toprule \multirow{2}{*}{Models} & \multicolumn{4}{c}{Accuracy} & \multicolumn{4}{c}{MRR} \\ \cmidrule(lr){2-5} \cmidrule(lr){6-9} & k = 1 & k=3 & k=5 & k=7 & k = 1 & k=3 & k=5 & k=7 \\ \hline (1) No words or files & 0.02 & 0.08 & 0.13 & 0.16 & 0.01 & 0.04 & 0.05 & 0.06 \\ (2) Words only & 0.21 & 0.30 & 0.32 & 0.34 & 0.21 & 0.25 & 0.26 & 0.32 \\ (3) Files only & 0.29 & 0.69 & 0.73 & 0.76 & 0.29 & 0.48 & 0.49 & 0.50 \\ (4) Words + Files & \textbf{0.49} & \textbf{0.73} & \textbf{0.77} & \textbf{0.80} & \textbf{0.49} & \textbf{0.61} & \textbf{0.68} & \textbf{0.72} \\ \bottomrule \end{tabular}
CV-5301
\begin{tabular}{|l|c|c|c|c|c|c|c|} \hline \textbf{Model} & \textbf{\# Par. Subnets} & \textbf{48 cores} & \textbf{2 GPUs} & \textbf{4 GPUs} & \textbf{8 GPUs} \\ \hline \multicolumn{6}{|c|}{\textbf{without multi-rate clocks}} \\ \hline sequential & 1 & $6.0~(1.0\times)$ & $18.6~(1.0\times)$ & $18.0~(1.0\times)$ & $18.1~(1.0\times)$ \\ \hline semi-parallel & 5 & $7.9~(1.3\times)$ & $33.8~(1.8\times)$ & $48.7~(2.7\times)$ & $49.2~(2.7\times)$ \\ \hline parallel & 10 & $7.8~(1.3\times)$ & $33.2~(1.8\times)$ & $46.4~(2.6\times)$ & $48.1~(2.6\times)$ \\ \hline \multicolumn{6}{|c|}{\textbf{with multi-rate clocks}} \\ \hline sequential & 1 & $14.3~(2.4\times)$ & $48.2~(2.6\times)$ & $47.1~(2.6\times)$ & $47.1~(2.6\times)$ \\ \hline semi-parallel & 5 & $18.1~(3.0\times)$ & $63.9~(3.4\times)$ & $90.9~(5.0\times)$ & $90.3~(5.0\times)$ \\ \hline parallel & 10 & $18.1~(3.0\times)$ & $63.7~(3.4\times)$ & $88.6~(4.9\times)$ & $90.7~(5.0\times)$ \\ \hline \end{tabular}
CR-11747
\begin{tabular}{llrrr} \toprule Application & Description & Version & LOC & Files \\ \midrule Nodegoat & Educational & 1.3.0 & 970\,450 & 12\,180 \\ Keystone & CMS & 4.0.0 & 1\,393\,144 & 13\,891 \\ Apostrophe & CMS & 2.0.0 & 774\,203 & 5\,701 \\ Juice-shop & Educational & 8.3.0 & 725\,101 & 7\,449 \\ Mongo-express & DB manager & 0.51.0 & 646\,403 & 7\,378 \\ \bottomrule \end{tabular}
CV-29652
\begin{tabular}{|l|l|l|} \hline Index & Layer Description & Output \\ \hline 1 & Warp($I_R$,$\mathbf{d_L^3}$) - $I_L$ & H x W x 3 \\ 2 & concat 1, $I_L$ & H x W x 6 \\ 3 & Warp($\mathbf{d_R^3}$, $\mathbf{d_L^3}$) - $\mathbf{d_L^3}$ & H x W x 1 \\ 4 & concat 3, $\mathbf{d_L^3}$ & H x W x 2 \\ 5 & 3x3 conv on 2, 16 features & H x W x 16 \\ 6 & 3x3 conv on 4, 16 features & H x W x 16 \\ 7 & concat 5,6 $I_L$ & H x W x 32 \\ \multirow{2}{*}{8-13} & (3x3 conv, residual block) x 6, & \multirow{2}{*}{H x W x 32} \\ & dil rate 1,2,4,8,1,1 & \\ 14 & 3x3 conv, 2 features as 14(a) and 14(b) & H x W x 2 \\ 15 & $\mathbf{d^r}$: 14(a) + $\mathbf{d_L^3}$ & H x W \\ 16 & \textbf{O}: sigmoid on 14(b) & H x W \\ \hline \end{tabular}
CR-48333
\begin{tabular}{ccccc} \toprule \textbf{Subjects} & \textbf{Version} & \textbf{Format} & \textbf{Size} & \textbf{LoC} \\ \midrule boringssl @@ & 2016-02-12 & lib & 6.8M & 0.3k \\ freetype @@ & 2017 & font & 6.3M & 0.5k \\ libcxx @@ & 2017-01-27 & lib & 1.9M & 5.0k \\ libxml @@ & libxml2-v2.9.2 & xml & 12M & 15.7k \\ re2 @@ & 2014-12-09 & lib & 5.6M & 0.9k \\ libarch @@ & libarch 2017-01-04 & text & 3.7M & 3.0k \\ size @@ & Binutils-2.34 & elf & 10M & 7.9k \\ readelf -a @@ & Binutils-2.34 & elf & 5.4M & 20.5k \\ objdump -d @@ & Binutils-2.34 & elf & 16M & 5.4k \\ avconv -y -i @@ -f null & Libav-12.3 & mp4 & 77M & 2.9k \\ infotocap @@ & ncurses-6.1 & text & 1.1M & 4.9k \\ pdftotext @@ /dev/null & xpdf-4.02 & pdf & 7.9M & 0.9k \\ tiff2bw @@ /dev/null & tiff-4.1 & tiff & 2.6M & 0.5k \\ ffmpeg -i @@ & ffmpeg-4.1.3 & mp4 & 41M & 4.9k \\ gnuplot @@ & gnuplot-5.5 & text & 8.5M & 1.0k \\ tcpdump -nr @@ & tcpdump-4.9.3 & pcap & 6.3M & 2.6k \\ \bottomrule \end{tabular}
AI-25582
\begin{tabular}{|c|c|c|c|} \hline \multirow{2}{*}{Embedding} & \multicolumn{3}{c|}{Distance} \\\cline{2-4} & $\ell_1$ & $\ell_2$ & Cosine \\\hline FACSNet-CL-F & 47.1 & 47.1 & 40.7 \\\hline FACSNet-CL-P & 45.3 & 44.2 & 48.3 \\\hline AFFNet-CL-F & 49.0 & 47.7 & 49.0 \\\hline AFFNet-CL-P & 52.4 & 51.6 & 53.3 \\\hline AFFNet-TL & - & 49.6 & - \\\hline FECNet-16d & - & 81.8 & - \\\hline \end{tabular}
CR-29305
\begin{tabular}{@{}l@{}} Substitute \\ Gap($i$)$\rightarrow$Msg($j$) \\ Msg($j$)$\rightarrow$Gap($i$) \end{tabular}
CR-6454
\begin{tabular}{|p{8cm}|} \Xhline{1pt} \begin{center} $\mathtt{\pi}_{\rm S-SIP}$: Functionality of S-SIP \end{center} \textbf{Input:} The client (named $P_0$) holds a set of $t$ pairs $(X, S)=\{(x_1, s_1), \cdots, (x_t, s_t)\}$, while the server (named $P_1$) holds dataset of key-values pairs $(Y, G)=\{(y_1, g_1), \cdots, (y_n, g_n)\}$ \\ \textbf{Output:} $P_b$ learns a set $\mathbf{U}_b=\{\left \langle \mathtt{u}_i\right \rangle_b\}_{i\in t}$, where $\left \langle \mathtt{u}_i\right \rangle_b=\left \langle s_ig_j\right \rangle_b$ if $x_i=y_j$ for some $j\in [n]$. otherwise $\left \langle \mathtt{u}_i\right \rangle_b=\left \langle 0\right \rangle_b$. \\ \\\Xhline{1pt} \end{tabular}
CR-33963
\begin{tabular}{|c|c|c|} \hline \textbf{Parameter} & \textbf{Type} & \textbf{Description} \\ \hline drcId & bytes32 & Identifier of the DRC \\ \hline farAvailable & uint256 & FAR (Floor Area Ratio) available for allocation \\ \hline landCount & uint256 & Total count of sub-divided lands \\ \hline owner & address & Owner of NFT \\ \hline lands & mapping & Mapping of land sub-divisions \\ \hline \end{tabular}
CR-16760
\begin{tabular}{ll|ll|ll} \textbf{Training / Testing Set} & $\bm{\sigma^2}$ & \textbf{PP (dev)} & \textbf{PP (test)} & \textbf{PP (dev, large)} & \textbf{PP (test, large)} \\ \hline Brown / Reddit\_10k & 0 & 1561.20 & 1584.54 & 1652.65 & 1677.42 \\ Reddit\_10k / Reddit\_10k & 0 & 3805.83 & 3787.68 & 1254.48 & 1259.23 \\ fine-tuned / Reddit\_10k & 0.0 & 1035.45 & 1037.81 & 1016.65 & 1019.31 \\ fine-tuned / Reddit\_10k & 0.1 & 1457.94 & 1480.84 & 1604.42 & 1627.56 \\ fine-tuned / Reddit\_10k & 1.1 & 1450.01 & 1473.48 & inf & inf \end{tabular}
SE-19395
\begin{tabular}{lc} \hline \multicolumn{1}{c}{\textbf{Search engines}} & \textbf{\#non-duplicated search result} \\ \hline Google search & 495 \\ Medium search & 358 \\\hline \textbf{Total} & \textbf{853} \\\hline \hline \end{tabular}
SE-23962
\begin{tabular}{l|r|cccc} \toprule Model & \# outputs & 256 & 512 & 768 & 1024 \\ \midrule \multirow{4}{*}{\texttt{CodeParrot-small}} & 5,000 & 6,666 & 9,080 & 11,041 & 14,031 \\ & 10,000 & 10,627 & 14,655 & 17,664 & 22,243 \\ & 15,000 & 14,015 & 19,444 & 23,863 & 29,133 \\ & 20,000 & 16,966 & 23,574 & 29,204 & 35,363 \\ \midrule \multirow{4}{*}{\texttt{CodeParrot}} & 5,000 & 9,785 & 14,645 & 18,325 & 22,570 \\ & 10,000 & 16,062 & 24,345 & 32,519 & 37,448 \\ & 15,000 & 21,560 & 32,666 & 42,853 & 50,127 \\ & 20,000 & 26,420 & 40,125 & 51,059 & 61,787 \\ \bottomrule \end{tabular}
SE-22543
\begin{tabular}{lrrr} \toprule \multirow{2}{*}{\bf Selection Rule} & \multicolumn{3}{c}{\bf Dataset} \\ \cmidrule{2-4} & {\bf Spark} & {\bf Hadoop} & {\bf Kibana} \\ \midrule None & 81 & 92 & 184 \\ Length & 33 & 25 & 77 \\ Length+Content & 59 & 57 & 114 \\ \bottomrule \end{tabular}
AI-2635
\begin{tabular}{||ccc||} \hline Cube no. & Edge length & Color \\ [0.5ex] \hline\hline 1 & 5cm & Red \\ \hline 2 & 4cm & Red \\ \hline 3 & 3cm & Red \\ \hline 4 & 2cm & Red \\ \hline 5 & 10cm & Blue \\ \hline 6 & 8cm & Blue \\ \hline 7 & 6cm & Blue \\ \hline 8 & 2cm & Blue \\ \hline \end{tabular}
CR-44786
\begin{tabular}{ccccc} \toprule Method & Avg. of AUROC & Avg. of F1 score & Std. of AUROC & Std. of F1 score \\ \midrule STRIP & 0.3930 & 0.5026 & 0.0997 & 0.0027 \\ FreqDetector & 0.7911 & 0.7671 & 0.2235 & 0.2027 \\ \rowcolor[rgb]{ .906, .902, .902} Ours & 0.7749 & 0.7856 & 0.0306 & 0.0336 \\ \bottomrule \end{tabular}
CR-36658
\begin{tabular}{|c|l|l|} \hline No & Rule & Description \\ \hline 1 & Feature indifference & A value of a feature is indifferent at \\ & & bot and normal user \\ \hline 2 & Feature invariance & Summation of a feature is 0, and \\ & & standard deviation of a feature is 0 \\ & & at bot and normal user, respectively \\ \hline \end{tabular}
CL-2666
\begin{tabular}{>{\raggedright\arraybackslash}p{2.7cm}>{\raggedright\arraybackslash}p{2.7cm}|p{0.6cm}} \hline External representation & Internal representation & Test BLEU \\ \hline Plain BPE & Plain BPE & 29.2 \\ Linearized derivation & Linearized derivation & 28.8 \\ \hline Linearized tree & Plain BPE & 28.9 \\ Plain BPE & Linearized derivation & 28.8 \\ Linearized derivation & Plain BPE & 29.4$^\dagger$ \\ POS/BPE & Plain BPE & 29.3$^\dagger$ \\ Plain BPE & POS/BPE & 29.4$^\dagger$ \\ \end{tabular}
CV-5329
\begin{tabular}{|p{3.5cm}|p{0.8cm}|p{0.8cm}|p{0.8cm}|p{0.8cm}||p{0.8cm}|p{0.8cm}|p{0.8cm}|p{0.8cm}|} \hline \multirow{2}{*}{Method} & \multicolumn{4}{c|}{Market1501 $\rightarrow$ DukeMTMC-reID} & \multicolumn{4}{c|}{DukeMTMC-reID $\rightarrow$ Market1501 } \\ \cline{2-9} \cline{2-9} & R1 & R5 & R10 & mAP & R1 & R5 & R10 & mAP \\ \hline Direct Transfer & 42.4 & 56.5 & 63.2 & 23.0 & 52.0 & 70.2 & 76.5 & 22.0 \\ CycleGAN & 44.1 & 58.6 & 65.0 & 23.6 & 55.2 & 72.8 & 79.4 & 23.2 \\ PTGAN & 27.4 & - & 50.7 & - & 38.6 & - & 66.1 & - \\ SPGAN & 41.1 & 56.6 & 63.0 & 22.3 & 51.5 & 70.1 & 76.8 & 22.8 \\ ATNet & 45.1 & 59.5 & 64.2 & 24.9 & 55.7 & 73.2 & 79.4 & 25.6 \\ M2M-GAN & 49.6 & - & - & 26.1 & 57.5 & - & - & 26.8 \\ CR-GAN & 52.2 & - & - & 30.0 & 59.6 & - & - & 29.6 \\ \hline EDAAN with Triplet & 55.2 & 68.0 & 72.6 & 33.5 & 62.3 & 81.8 & 84.0 & 32.7 \\ EDAAN with Quartet & \textbf{57.8} & \textbf{72.2} & \textbf{78.3} & \textbf{39.6} & \textbf{64.5} & \textbf{83.0} & \textbf{86.3} & \textbf{35.4} \\ \hline \end{tabular}
AI-11117
\begin{tabular}{ccccccccc} \hline Dataset & level1 & level2 & level3 & level4 & level5 & level6 & level7 & level8 \\ \hline RCV1 & 236334 & 20523 & 11850 & 23211 & - & - & - & - \\ NYT & 15161 & 2923 & 1160 & 842 & 1066 & 925 & 992 & 1460 \\ WOS & 6712 & 351 & - & - & - & - & - & - \\ \hline \end{tabular}
CR-46823
\begin{tabular}{|l||p{1.5cm}|p{1.5cm}|p{1.25cm}||p{1.5cm}|p{1.5cm}|p{1.25cm}|} \hline ~ & \multicolumn{3}{c||}{TCP} & \multicolumn{3}{c|}{DCCP} \\ ~ & Reported Attacks & Interesting \newline (Off-path) Attacks & Unique Attacks & Reported Attacks & Interesting \newline (Off-path) Attacks & Unique Attacks \\ \hline Random & 996 & 0 & 0 & 992 & 0 & 0 \\ Manual & 219 & 63 & 5 & 209 & 44 & 2 \\ NLP-based & 220 & 69 & 5 & 254 & 47 & 2 \\ \hline \end{tabular}
CR-8746
\begin{tabular}[c]{@{}l@{}}CopywritingTranslations,SocialMediaMarketingServices,\\OptimizationPromotionandAudit\end{tabular}
CR-7160
\begin{tabular}{cccccccccc} \toprule \multirow{2}{*}{Data} & \multirow{2}{*}{Measures} & \multicolumn{3}{c}{\texttt{CFD}} & \multicolumn{3}{c}{\texttt{CFD LRT}} \\ \cmidrule(lr){3-8} & {} & \texttt{SCFE} & \texttt{GS} & \texttt{CCHVAE} & \texttt{SCFE} & \texttt{GS} & \texttt{CCHVAE} \\ \midrule \multirow{4}{*}{A} & AUC & 0.4971 & 0.5038 & 0.5008 & 0.4988 & \textbf{0.5103 } & 0.5066 \\ & BA & 0.5115 & 0.5125 & 0.5056 & \textbf{0.5132} & 0.5098 & 0.5176 \\ & TPR (0.1) & 0.1039 & 0.1020 & 0.1058 & 0.1010 & 0.1043 & \textbf{0.1298} \\ & TPR (0.01) & 0.0121 & 0.0097 & 0.0157 & \textbf{0.0158} & 0.0095 & 0.0134 \\ \midrule \multirow{4}{*}{H} & AUC & 0.5887 & 0.5410 & 0.4874 & 0.5829 & 0.5027 & \textbf{0.6789} \\ & BA & 0.5904 & 0.5404 & 0.5473 & 0.5924 & 0.5326 & \textbf{0.6389} \\ & TPR (0.1) & 0.1130 & 0.1223 & 0.0863 & 0.1106 & 0.1142 & \textbf{0.2635} \\ & TPR (0.01) & 0.0155 & 0.0176 & 0.0016 & 0.0135 & 0.0372 & \textbf{0.0513} \\ \midrule \multirow{4}{*}{D} & AUC & \textbf{0.5051} & 0.5000 & NA & 0.5050 & 0.5047 & NA \\ & BA & 0.5100 & 0.5133 & NA & \textbf{0.5145} & 0.5136 & NA \\ & TPR (0.1) & 0.1020 & 0.0950 & NA & 0.0894 & \textbf{0.1181} & NA \\ & TPR (0.01) & 0.0093 & 0.0083 & NA & 0.0113 & \textbf{0.0159} & NA \\ \bottomrule \end{tabular}
SE-15978
\begin{tabular}{lllr} \hline \textbf{ID} & \textbf{Mistake Type} & \textbf{Associated Mistake Class} & \textbf{Occurance} \\ \hline 1 & Lack of preparation & \textit{Teamwork and Planning} & 4 \\ 2 & Lack of planning & \textit{Teamwork and Planning} & 3 \\ \hline 3 & Not identifying stakeholders & \textit{Question Omission} & 1 \\ 4 & Not asking about existing system & \textit{Question Omission} & 6 \\ \hline 5 & Asking long question & \textit{Question Formulation} & 3 \\ 6 & Asking unnecessary question & \textit{Question Formulation} & 7 \\ 7 & Asking stakeholder for solution & \textit{Question Formulation} & 15 \\ 8 & Asking vague question & \textit{Question Formulation} & 32 \\ 9 & Asking technical question & \textit{Question Formulation} & 5 \\ \hline 10 & Incorrect ending of the interview & \textit{Order of interview} & 6 \\ \hline 11 & Influencing stakeholder & \textit{stakeholder interaction} & 9 \\ 12 & No rapport with stakeholder & \textit{stakeholder interaction} & 16 \\ 13 & Unnatural dialogue style & \textit{Communication skills} & 11 \\ \hline \end{tabular}
PL-2065
\begin{tabular}{l|lll} \hline \multirow{2}{*}{$b_0$} & \texttt{int i = 0;} & & \\ & & \verb|Update|: $\phi(b_1)$ & \verb|Goto| $b_1$ \\ \cline{1-1}\cline{3-4} \multirow{3}{*}{$b_1$} & & Skip to $b_2$ unless $SAT(\phi(b_1))$ & \\ & \texttt{while (i < b) \{} & & \\ & & \verb|Update|: $\phi(b_2)$, $\phi(b_5)$ & \verb|Goto| $b_2$ \\ \cline{1-1}\cline{3-4} \multirow{4}{*}{$b_2$} & & Skip to $b_3$ unless $SAT(\phi(b_2))$ & \\ & \texttt{\quad i++} & & \\ & \texttt{\quad if (i != a)} & & \\ & & \verb|Update|: $\phi(b_3)$, $\phi(b_4)$ & \verb|Goto| $b_3$ \\ \cline{1-1}\cline{3-4} \multirow{3}{*}{$b_3$} & & Skip to $b_4$ unless $SAT(\phi(b_3))$ & \\ & \texttt{\quad\quad continue;} & & \\ & & \verb|Update|: $\phi(b_1)$ & \verb|Goto| $b_1$ \\ \cline{1-1}\cline{3-4} \multirow{3}{*}{$b_4$} & & Skip to $b_5$ unless $SAT(\phi(b_4))$ & \\ & \texttt{\quad \ldots} & & \\ & \texttt{\}} & \verb|Update|: $\phi(b_1)$ & \verb|Goto| $b_1$ \\ \cline{1-1}\cline{3-4} \multirow{1}{*}{$b_5$} & \texttt{return;} & & \\ \hline \end{tabular}
CV-8720
\begin{tabular}{ccccccccc} \hline Model & 0.25 & 0.5 & 1 & 2 & 4 & 8 & 16 & 32 \\[0.5ex] \hline Chained & 4.76 & 8.33 & 15.55 & 28.23 & 44.69 & 58.62 & 65.89 & 67.49 \\ 2-SHG & 5.59 & 10.87 & 22.25 & 41.62 & 61.78 & 73.9 & 79.21 & 79.78 \\ DeepPose & 3.3 & 4.86 & 7.99 & 12.98 & 18.26 & 21.33 & 22.79 & 23.12 \\ \hline \end{tabular}
SE-1008
\begin{tabular}{l|c|c|} \cline{2-3} \multicolumn{1}{c|}{} & Description & Artifact Type \\ \hline \multicolumn{1}{|l|}{{CR01}} & \makecell{Every lifeline must have \\ a corresponding class.} & uml:Lifeline \\ \hline \multicolumn{1}{|l|}{{CR02}} & \makecell{Every transition has to have \\ a corresponding message.} & uml:Transition \\ \hline \multicolumn{1}{|l|}{{CR03}} & \makecell{Statechart Action must be defined \\ as an operation in the owner’s class.} & uml:Transition \\ \hline \multicolumn{1}{|l|}{{CR04}} & \makecell{Message actions must be defined \\ as an operation in receiver’s class.} & uml:Message \\ \hline \multicolumn{1}{|l|}{{CR05}} & \makecell{Operation parameters \\ must have unique names.} & uml:Operation \\ \hline \multicolumn{1}{|l|}{{CR06}} & \makecell{An Operation has at most \\ one return parameter.} & uml:Operation \\ \hline \multicolumn{1}{|l|}{{CR07}} & \makecell{An interface can have at \\ most one generalization.} & uml:Interface \\ \hline \multicolumn{1}{|l|}{{CR08}} & \makecell{An interface can only contain \\ public operations and no attributes.} & uml:Interface \\ \hline \multicolumn{1}{|l|}{{CR09}} & \makecell{No two class operations may \\ have the same signature.} & uml:Class \\ \hline \multicolumn{1}{|l|}{{CR10}} & \makecell{No two fields may have \\ the same name.} & uml:Class \\ \hline \end{tabular}
CR-52556
\begin{tabular}{||cccc||} \hline \textbf{Datasets} & \textbf{Nodes (N)} & \textbf{Dimension (d)} & \textbf{Classes (c)} \\ [0.5ex] \hline\hline Iris & 150 & 4 & 3 \\ \hline Glass & 214 & 9 & 6 \\ \hline Wine & 178 & 13 & 3 \\ \hline Control Chart & 600 & 60 & 6 \\ \hline Parkinsons & 195 & 22 & 2 \\ \hline Vertebral & 310 & 6 & 3 \\ \hline Breast tissue & 106 & 9 & 6 \\ \hline Seeds & 210 & 7 & 3 \\ [1ex] \hline \end{tabular}
CR-29421
\begin{tabular}{p{3cm}<{\raggedright}p{5cm}<{\raggedright}p{9cm}<{\raggedright}} \hline \textbf{Type} & \textbf{Approach} & \textbf{Brief Introduction} \\ \hline \multirow{4}{3cm}{Original Approaches with complete process frameworks} & E-Safety Vehicle Intrusion Protected Applications (EVITA) & EVITA approach considers four security objectives (safety, privacy, financial, operational) and uses attacks trees to identify threats and assess risks . \\ \cline{2-3} & Threat, Vulnerabilities, and implementation Risks Analysis (TVRA) & TVRA is a process-driven TARA approach to systematically identify unwanted incidents which need to be avoided . \\ \cline{2-3} & Operationally Critical Threat, Asset, and Vulnerability Evaluation (OCTAVE) & OCTAVE is a process-driven TARA method which is best suited for enterprise information security risk assessments . \\ \cline{2-3} & HEAling Vulnerabilities to ENhance Software Security and Safety (HEAVENS) & HEAVENS is a systematic approach of deriving security requirements for vehicle E/E systems, including processes and tools supporting for TARA . \\ \hline \multirow{3}{3cm}{Approaches evolved from other disciplines and support co-analysis} & A Security-Aware Hazard and Risk Analysis Method (SAHARA) & SAHARA is a combined approach of the Hazard Analysis and Risk Assessment (HARA) with the STRIDE model and outlines the impacts of security issues on safety concepts . \\ \cline{2-3} & Failure Mode, Vulnerabilities and Effects Analysis (FMVEA) & FMVEA is an approach evolved from the Failure Mode and Effect Analysis (FMEA) to identify vulnerability cause-effect chains for security . \\ \cline{2-3} & Combined Harm Assessment of Safety and Security (CHASSIS) & CHASSIS is a unified process for safety and security by using UML-based models (e.g. misuse cases and sequence diagrams) . \\ \hline \end{tabular}
CV-13976
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline Methods & Land & Forest & Residential & Haystack & Road & Church & Car & Water & Sky & Hill & Person & Fence & Overall \\ \hline w/ Base Train & .495 & .496 & .774 & .000 & .252 & .166 & .000 & .006 & .952 & .371 & .000 & .060 & .298 \\ w/ SegProp Train & \textbf{.540} & \textbf{.516} & \textbf{.822} & .586 & \textbf{.432} & \textbf{.382} & \textbf{.066} & .146 & \textbf{.985} & \textbf{.407} & \textbf{.471} & \textbf{.233} & \textbf{.466} \\ \hline \end{tabular}
CV-24411
\begin{tabular}{l|cc|cc} \specialrule{1.2pt}{1pt}{1pt} \multirow{2}{*}{\hspace{0.08cm} Method} & \multicolumn{2}{c|}{Segmentation} & \multicolumn{2}{c}{Robustness} \\ \cline{2-5} & \textbf{B} & \textbf{W} & \textbf{B} & \textbf{W} \\ \specialrule{1.2pt}{1pt}{1pt} DeepLabv3-Res50 & 73.9 & 74.1 & 53.7 & \textbf{55.8} \\ DeepLabv3-Res101 & 75.5 & 75.2 & 49.8 & \textbf{51.9} \\ \specialrule{1.2pt}{1pt}{1pt} \end{tabular}
CL-1656
\begin{tabular}{lrr} \toprule $K$ & Successor surprisal & Total entropy \\ \midrule 5 & 0.212 & 0.541 \\ 50 & 0.335 & 0.820 \\ 500 & 0.397 & 0.947 \\ 5000 & 0.434 & 0.992 \\ 50000 & 0.454 & 1 \\ \bottomrule \end{tabular}
CR-49011
\begin{tabular}{cc} \toprule Component & Types considered \\ \midrule Trend & linear model, local level, local linear \\ Seasonal & hourly, daily \\ Error & Gaussian, AR(p): autoregressive model of order p=1,2 \\ \bottomrule \end{tabular}
CR-2892
\begin{tabular}{cccccc} \toprule & CIFAR10 & CIFAR100 & Purchase100 & Texas100 & Location \\ \midrule $p^*$ & 0.13 & 0.11 & 0.015 & 0.005 & 0.015 \\ \bottomrule \end{tabular}
CR-39239
\begin{tabular}{lccc} \textbf{Dataset} & \textbf{Classes} & \textbf{Instances/Class} & \textbf{Total} \\ \hline Undefended & 95 & 1000 & 95,000 \\ WTF-PAD & 95 & 1000 & 95,000 \\ Walkie-Talkie (sim.) & 100 & 900 & 90,000 \\ Walkie-Talkie (real) & 100 & 750 & 75,000 \\ Onion Sites & 538 & 77 & 41,426 \\ \hline \end{tabular}
AI-37528
\begin{tabular}{c|c|c|c} \hline $\pi_b$ & 20$\times$20 & 50$\times$20 & 100$\times$20 \\ \hline \hline MWKR & \textbf{1803.1} & \textbf{3147.3} & \textbf{5676.0} \\ MOR & 1831.7 & 3229.8 & 5728.3 \\ SPT & 1813.8 & 3201.7 & 5718.7 \\ FIFO & 1826.4 & 3177.6 & 5692.9 \\ \hline \end{tabular}
AI-18721
\begin{tabular}{r|r|r|r} & \textbf{Wikipedia} & \textbf{Wikinews} & \textbf{Science} \\ \hline \textbf{Sentences} & 15,000 & 14,682 & 46,715 \\ \textbf{Verbs} & 32,758 & 34,026 & 66,653 \\ \textbf{Questions} & 75,867 & 80,081 & 143,388 \\ \textbf{Valid Qs} & 67,146 & 70,555 & 127,455 \end{tabular}

LATTE: Improving Latex Recognition for Tables and Formulae with Iterative Refinement

Tab2Latex: a Latex table recognition dataset, with 87,513 training, 5,000 validation, and 5,000 test instances. The LaTeX sources are collected from academic papers within these six distinct sub-fields of computer science—Artificial Intelligence, Computation and Language, Computer Vision and Pattern Recognition, Cryptography and Security, Programming Languages, and Software Engineering—from the arXiv repository, covering the years 2018 to 2023. Once the paper sources are downloaded, tables are identified and extracted from the LaTeX source code by matching \begin{tabular} and \end{tabular} and removing the comments. Then, the LaTeX table source scripts are rendered to PDF format and converted to PNG format at 160 dpi.

Data Fields

  • id: instance id
  • image: the rendered image (PIL.Image) from the Latex source code
  • latex: the Latex source code for the table
Downloads last month
32