Dataset Viewer
text
stringlengths 29
317k
| id
stringlengths 22
166
| metadata
dict | __index_level_0__
int64 0
231
|
---|---|---|---|
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN pip install --no-cache-dir 'torch' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "transformers[sklearn,sentencepiece,vision,testing]" seqeval albumentations jiwer
RUN pip uninstall -y transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/*
|
transformers/docker/examples-torch.dockerfile/0
|
{
"file_path": "transformers/docker/examples-torch.dockerfile",
"repo_id": "transformers",
"token_count": 277
}
| 0 |
# https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel-23-11.html#rel-23-11
FROM nvcr.io/nvidia/pytorch:23.04-py3
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
ARG PYTORCH='2.2.0'
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu121'
RUN apt -y update
RUN apt install -y libaio-dev
RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir ./transformers[deepspeed-testing]
# Install latest release PyTorch
# (PyTorch must be installed before pre-compiling any DeepSpeed c++/cuda ops.)
# (https://www.deepspeed.ai/tutorials/advanced-install/#pre-install-deepspeed-ops)
RUN python3 -m pip uninstall -y torch torchvision torchaudio && python3 -m pip install --no-cache-dir -U torch==$PYTORCH torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
# Uninstall `transformer-engine` shipped with the base image
RUN python3 -m pip uninstall -y transformer-engine
# Uninstall `torch-tensorrt` shipped with the base image
RUN python3 -m pip uninstall -y torch-tensorrt
# recompile apex
RUN python3 -m pip uninstall -y apex
# RUN git clone https://github.com/NVIDIA/apex
# `MAX_JOBS=1` disables parallel building to avoid cpu memory OOM when building image on GitHub Action (standard) runners
# TODO: check if there is alternative way to install latest apex
# RUN cd apex && MAX_JOBS=1 python3 -m pip install --global-option="--cpp_ext" --global-option="--cuda_ext" --no-cache -v --disable-pip-version-check .
# Pre-build **latest** DeepSpeed, so it would be ready for testing (otherwise, the 1st deepspeed test will timeout)
RUN python3 -m pip uninstall -y deepspeed
# This has to be run (again) inside the GPU VMs running the tests.
# The installation works here, but some tests fail, if we don't pre-build deepspeed again in the VMs running the tests.
# TODO: Find out why test fail.
RUN DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop
# The base image ships with `pydantic==1.8.2` which is not working - i.e. the next command fails
RUN python3 -m pip install -U --no-cache-dir "pydantic>=2.0.0"
RUN python3 -c "from deepspeed.launcher.runner import main"
|
transformers/docker/transformers-pytorch-deepspeed-latest-gpu/Dockerfile/0
|
{
"file_path": "transformers/docker/transformers-pytorch-deepspeed-latest-gpu/Dockerfile",
"repo_id": "transformers",
"token_count": 895
}
| 1 |
# تشريح عملية تدريب النموذج
لفهم تقنيات تحسين الأداء التي يمكن تطبيقها لتحسين كفاءة استخدام الذاكرة وسرعة تدريب النموذج، من المفيد التعرف على كيفية استخدام وحدة معالجة الرسوميات (GPU) أثناء التدريب، وكيف تختلف كثافة العمليات الحسابية باختلاف العملية التي يتم تنفيذها.
لنبدأ باستكشاف مثال توضيحي على استخدام وحدة GPU وتشغيل تدريب نموذج. وللتوضيح، سنحتاج إلى تثبيت بعض المكتبات:
```bash
pip install transformers datasets accelerate nvidia-ml-py3
```
تتيح مكتبة `nvidia-ml-py3` إمكانية مراقبة استخدام الذاكرة في النماذج من داخل بايثون. قد تكون على دراية بأمر `nvidia-smi` في الجهاز - تسمح هذه المكتبة بالوصول إلى نفس المعلومات مباشرة في بايثون.
ثم، نقوم بإنشاء بعض البيانات الوهمية:معرّفات رموز عشوائية بين 100 و30000 وتصنيفات ثنائية للمصنف.
في المجموع، نحصل على 512 تسلسلًا، لكل منها طول 512، ونخزنها في [`~datasets.Dataset`] بتنسيق PyTorch.
```py
>>> import numpy as np
>>> from datasets import Dataset
>>> seq_len, dataset_size = 512, 512
>>> dummy_data = {
... "input_ids": np.random.randint(100, 30000, (dataset_size, seq_len)),
... "labels": np.random.randint(0, 1, (dataset_size)),
... }
>>> ds = Dataset.from_dict(dummy_data)
>>> ds.set_format("pt")
```
لطباعة إحصائيات موجزة لاستخدام وحدة GPU وتشغيل التدريب مع [`Trainer`]، نقوم بتعريف دالتين مساعدتين:
```py
>>> from pynvml import *
>>> def print_gpu_utilization():
... nvmlInit()
... handle = nvmlDeviceGetHandleByIndex(0)
... info = nvmlDeviceGetMemoryInfo(handle)
... print(f"GPU memory occupied: {info.used//1024**2} MB.")
>>> def print_summary(result):
... print(f"Time: {result.metrics['train_runtime']:.2f}")
... print(f"Samples/second: {result.metrics['train_samples_per_second']:.2f}")
... print_gpu_utilization()
```
دعنا نتأكد من أننا نبدأ بذاكرة وحدة GPU خالية:
```py
>>> print_gpu_utilization()
GPU memory occupied: 0 MB.
```
يبدو ذلك جيدًا: لم يتم شغل ذاكرة وحدة معالجة الرسومات كما نتوقع قبل تحميل أي نماذج. إذا لم يكن الأمر كذلك على جهازك، فتأكد من إيقاف جميع العمليات التي تستخدم ذاكرة وحدة GPU. ومع ذلك، لا يمكن للمستخدم استخدام كل ذاكرة وحدة GPU الفارغة. عندما يتم تحميل نموذج إلى وحدة GPU، يتم أيضًا تحميل النواة، والتي يمكن أن تستهلك 1-2 جيجابايت من الذاكرة. ولرؤية مقدار ذلك، نقوم بتحميل مصفوفة صغيرة إلى وحدة GPU والتي تؤدي إلى تحميل النواة أيضًا.
```py
>>> import torch
>>> torch.ones((1, 1)).to("cuda")
>>> print_gpu_utilization()
GPU memory occupied: 1343 MB.
```
نلاحظ أن النواة وحدها تستهلك 1.3 جيجابايت من ذاكرة وحدة GPU. الآن دعنا نرى مقدار المساحة التي يستخدمها النموذج.
## تحميل النموذج
أولاً، نقوم بتحميل نموذج `google-bert/bert-large-uncased`. نقوم بتحميل أوزان النموذج مباشرة إلى وحدة GPU حتى نتمكن من التحقق من مقدار المساحة التي تستخدمها الأوزان فقط.
```py
>>> from transformers import AutoModelForSequenceClassification
>>> model = AutoModelForSequenceClassification.from_pretrained("google-bert/bert-large-uncased").to("cuda")
>>> print_gpu_utilization()
GPU memory occupied: 2631 MB.
```
يمكننا أن نرى أن أوزان النموذج وحدها تستهلك 1.3 جيجابايت من ذاكرة وحدة GPU. يعتمد الرقم الدقيق على وحدة GPU المحددة التي تستخدمها. لاحظ أنه في وحدات GPU الأحدث، قد يستغرق النموذج في بعض الأحيان مساحة أكبر نظرًا لأن الأوزان يتم تحميلها بطريقة مُحسّنة تُسرّع من استخدام النموذج. الآن يمكننا أيضًا التحقق بسرعة مما إذا كنا نحصل على نفس النتيجة كما هو الحال مع `nvidia-smi` CLI:
```bash
nvidia-smi
```
```bash
Tue Jan 11 08:58:05 2022
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.91.03 Driver Version: 460.91.03 CUDA Version: 11.2 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla V100-SXM2... On | 00000000:00:04.0 Off | 0 |
| N/A 37C P0 39W / 300W | 2631MiB / 16160MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| 0 N/A N/A 3721 C ...nvs/codeparrot/bin/python 2629MiB |
+-----------------------------------------------------------------------------+
```
نحصل على نفس الرقم كما كان من قبل، ويمكنك أيضًا أن ترى أننا نستخدم GPU من طراز V100 مع 16 جيجابايت من الذاكرة. لذا الآن يمكننا بدء تدريب النموذج ورؤية كيف يتغير استخدام ذاكرة GPU. أولاً، نقوم بإعداد بعض معاملات التدريب القياسية:
```py
default_args = {
"output_dir": "tmp"،
"eval_strategy": "steps"،
"num_train_epochs": 1،
"log_level": "error"،
"report_to": "none"،
}
```
<Tip>
إذا كنت تخطط لتشغيل عدة تجارب، من أجل مسح الذاكرة بشكل صحيح بين التجارب، قم بإعادة تشغيل نواة Python بين التجارب.
</Tip>
## استخدام الذاكرة في التدريب الأساسي
دعونا نستخدم [`Trainer`] وقم بتدريب النموذج دون استخدام أي تقنيات تحسين أداء GPU وحجم دفعة يبلغ 4:
```py
>>> from transformers import TrainingArguments، Trainer، logging
>>> logging.set_verbosity_error()
>>> training_args = TrainingArguments(per_device_train_batch_size=4، **default_args)
>>> trainer = Trainer(model=model، args=training_args، train_dataset=ds)
>>> result = trainer.train()
>>> print_summary(result)
```
```
الوقت: 57.82
العينات / الثانية: 8.86
ذاكرة GPU المشغولة: 14949 ميجابايت.
```
يمكننا أن نرى أن حجم دفعة صغير نسبيًا يملأ تقريبًا ذاكرة GPU بالكامل. ومع ذلك، غالبًا ما يؤدي حجم دفعة أكبر في تقارب نموذج أسرع أو أداء أفضل في النهاية. لذلك نريد أن نضبط حجم الدفعة وفقًا لاحتياجات النموذج لدينا وليس مع قيود وحدة GPU. ما يثير الاهتمام هو أننا نستخدم ذاكرة أكثر بكثير من حجم النموذج.
لفهم سبب ذلك بشكل أفضل، دعنا نلقي نظرة على عمليات النموذج واحتياجاته من الذاكرة.
## تشريح عمليات النموذج
تتضمن بنية المحولات 3 مجموعات رئيسية من العمليات مُجمعة أدناه حسب كثافة العمليات الحسابية.
1. **عمليات ضرب المصفوفات**
تقوم الطبقات الخطية ومكونات الانتباه متعدد الرؤوس جميعها بعمليات ضرب ** المصفوفة بالمصفوفة** على دفعات. هذه العمليات هي أكثر أجزاء تدريب المحولات كثافة من الناحية الحسابية.
2. **عمليات التسوية الإحصائية**
تُعد عمليات Softmax والتسوية الطبقية أقل كثافة من ناحية الحسابية من عمليات ضرب المصفوفات، وتنطوي على عملية أو أكثر من عمليات **الاختزال**، والتي يتم تطبيق نتيجتها بعد ذلك عبر خريطة.
3. **العمليات على مستوى العناصر**
هذه هي العمليات المتبقية: **الانحيازات، والتسرب، ووظائف التنشيط، والوصلات المتبقية**. هذه هي عمليات أقل كثافة من الناحية الحسابية.
يمكن أن تكون هذه المعرفة مفيدة لمعرفة عند تحليل اختناقات الأداء.
هذا الملخص مُشتق من [نقل البيانات هو كل ما تحتاجه: دراسة حالة حول تحسين المحولات 2020](https://arxiv.org/abs/2007.00072)
## تشريح ذاكرة النموذج
لقد رأينا أن تدريب النموذج يستخدم ذاكرة أكثر بكثير من مجرد وضع النموذج على GPU. ويرجع ذلك إلى
هناك العديد من المكونات أثناء التدريب التي تستخدم ذاكرة GPU. المكونات الموجودة في ذاكرة GPU هي التالية:
1. أوزان النموذج
2. الدول المُحسّن
3. المُتدرجات
4. تنشيطات المسار الأمامي المحفوظة لحساب المُتدرجات
5. المخازن المؤقتة
6. ذاكرة محددة الوظائف
يتطلب نموذج نموذجي مدرب بدقة مختلطة 18 بايت للمُحسّن AdamW كل معلمة نموذج بالإضافة إلى ذاكرة التنشيط. للاستدلال لا توجد حالات مُحسّن و مُتدرجات، لذلك يمكننا طرح تلك. وهكذا ننتهي مع 6 بايت لكل
معلمة نموذج للدقة المختلطة الاستدلال، بالإضافة إلى ذاكرة التنشيط.
دعنا نلقي نظرة على التفاصيل.
**أوزان النموذج:**
- 4 بايت * عدد المعلمات للتدريب على دقة fp32
- 6 بايت * عدد المعلمات لتدريب الدقة المختلطة (يحافظ على نموذج في fp32 وآخر بدقة fp16 في الذاكرة)
**حالات المُحسّن:**
- 8 بايت * عدد المعلمات للمُحسّن AdamW العادي (يحافظ على حالتين)
- 2 بايت * عدد المعلمات لمُحسّنات 8 بت AdamW مثل [bitsandbytes](https://github.com/TimDettmers/bitsandbytes)
- 4 بايت * عدد المعلمات لمُحسّنات مثل SGD مع الزخم momentum (يحافظ على حالة واحدة فقط)
**المُتدرجات**
- 4 بايت * عدد المعلمات للتدريب بدقة fp32 أو بدقة مختلطة (المُتدرجات تكون دائمًا بدقة fp32)
**تنشيطات المسار الأمامي**
- يعتمد الحجم على العديد من العوامل، وأهمها طول التسلسل وحجم المخفية وحجم الدُفعة.
هناك المدخلات والمخرجات لذي يتم تمريرها وإرجاعها بواسطة وظائف المسار الأمامي والمسار الخلفي وتنشيطات المسار الأمامي المحفوظة لحساب المُتدرجات.
**الذاكرة المؤقتة**
بالإضافة إلى ذلك، هناك جميع أنواع المتغيرات المؤقتة التي يتم تحريرها بمجرد الانتهاء من الحساب، ولكن في
لحظة يمكن أن تتطلب هذه المتغيرات المؤقتة ذاكرة إضافية ويقد تؤدي إلى نفاد الذاكرة المُخصصة (OOM). لذلك، عند البرمجة، من المهم التفكير بشكل استراتيجي حول هذه المتغيرات المؤقتة وأحيانًا تحريرها بشكل صريح بمجرد عدم الحاجة إليها.
**ذاكرة محددة الوظائف**
ثم، قد يكون لبرنامجك احتياجات خاصة بالذاكرة. على سبيل المثال، عند إنشاء نص باستخدام البحث الشعاعي، يحتاج البرنامج
إلى الاحتفاظ بنسخ متعددة من المدخلات والمخرجات.
**سرعة تنفيذ `forward` مقابل `backward`**
بالنسبة للالتفافات والطبقات الخطية، هناك ضِعف عدد العمليات 2x flops في المسار الخلفى مقارنة بالمسار الأمامي، والتي يُترجم عمومًا إلى ~2x أبطأ (أحيانًا أكثر، لأن الأحجام في المسار الخلفى تميل إلى أن تكون أكثر صعوبة). عادةً ما تكون عمليات التنشيط محدودة بعرض النطاق الترددي، ومن المعتاد أن يتعين على التنشيط قراءة المزيد من البيانات في المسار الخلفى أكثر من المسار الأمامى.
(على سبيل المثال، قراءة التنشيط المسار الأمامى مرة واحدة، وتكتب مرة واحدة، وبينما تقرأ عملية التنشيط الخلفي مرتين، gradOutput وإخراج الأمام، وتكتب مرة واحدة، gradInput).
كما ترى، هناك بضعة أماكن يمكننا فيها توفير ذاكرة GPU أو تسريع العمليات.
الآن بعد أن فهمت ما يؤثر على استخدام GPU وسرعة الحساب، راجع
صفحة وثائق [أساليب وأدوات التدريب الفعال على GPU واحد](perf_train_gpu_one) لمعرفة المزيد حول تقنيات تحسين الأداء.
|
transformers/docs/source/ar/model_memory_anatomy.md/0
|
{
"file_path": "transformers/docs/source/ar/model_memory_anatomy.md",
"repo_id": "transformers",
"token_count": 8004
}
| 2 |
# التصدير إلى ONNX
غالباً ما يتطلب نشر نماذج 🤗 Transformers في بيئات الإنتاج أو يمكن أن يستفيد من تصدير النماذج إلى تنسيق تسلسلي يُمكن تحميله وتنفيذه على أجهزة وبرامج تشغيل مُتخصصة.
🤗 Optimum هو امتداد لـ Transformers يمكّن من تصدير النماذج من PyTorch أو TensorFlow إلى تنسيقات مُتسلسلة مثل ONNX و TFLite من خلال وحدة `exporters` الخاصة به. يوفر 🤗 Optimum أيضًا مجموعة من أدوات تحسين الأداء لتدريب النماذج وتشغيلها على أجهزة مستهدفة بكفاءة قصوى.
يوضح هذا الدليل كيفية تصدير نماذج 🤗 Transformers إلى ONNX باستخدام 🤗 Optimum، وللحصول على الدليل الخاص بتصدير النماذج إلى TFLite، يُرجى الرجوع إلى صفحة [التصدير إلى TFLite](tflite).
## التصدير إلى ONNX
مجمد [ONNX (Open Neural Network Exchange)](http://onnx.ai) هو معيار مفتوح يُحدد مجموعة مشتركة من العوامل وتنسيق ملف مشترك لتمثيل نماذج التعلم العميق في مجموعة متنوعة واسعة من الأطر، بما في ذلك PyTorch وTensorFlow. عندما يتم تصدير نموذج إلى تنسيق ONNX، يتم استخدام هذه المشغلات لبناء رسم بياني حاسوبي (يُطلق عليه غالبًا اسم _تمثيل وسيط_) والذي يمثل تدفق البيانات عبر الشبكة العصبية.
من خلال عرض رسم بياني بعوامل وأنواع بيانات معيارية، يُسهّل ONNX التبديل بين الأطر. على سبيل المثال، يُمكن تصدير نموذج مدرب في PyTorch إلى تنسيق ONNX ثم استيراده في TensorFlow (والعكس صحيح).
بمجرد التصدير إلى تنسيق ONNX، يُمكن:
- تحسين النموذج للاستدلال عبر تقنيات مثل [تحسين الرسم البياني](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/optimization) و [التكميم](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/quantization).
- تشغيله باستخدام ONNX Runtime عبر فئات [`ORTModelForXXX`](https://huggingface.co/docs/optimum/onnxruntime/package_reference/modeling_ort)، والتي تتبع نفس واجهة برمجة التطبيقات (API) لـ `AutoModel` التي اعتدت عليها في 🤗 Transformers.
- تشغيله باستخدام [قنوات معالجة الاستدلال مُحسّنة](https://huggingface.co/docs/optimum/main/en/onnxruntime/usage_guides/pipelines)، والتي لها نفس واجهة برمجة التطبيقات (API) مثل وظيفة [`pipeline`] في 🤗 Transformers.
يوفر 🤗 Optimum دعمًا لتصدير ONNX من خلال الاستفادة من كائنات التكوين. تأتي كائنات التكوين هذه جاهزة لعدد من معماريات النماذج، وقد تم تصميمها لتكون قابلة للتوسعة بسهولة إلى معماريات أخرى.
للاطلاع على قائمة بالتكوينات الجاهزة، يُرجى الرجوع إلى [وثائق 🤗 Optimum](https://huggingface.co/docs/optimum/exporters/onnx/overview).
هناك طريقتان لتصدير نموذج 🤗 Transformers إلى ONNX، نعرض هنا كليهما:
- التصدير باستخدام 🤗 Optimum عبر واجهة سطر الأوامر (CLI).
- التصدير باستخدام 🤗 Optimum مع `optimum.onnxruntime`.
### تصدير نموذج 🤗 Transformers إلى ONNX باستخدام واجهة سطر الأوامر
لتصدير نموذج 🤗 Transformers إلى ONNX، قم أولاً بتثبيت اعتماد إضافي:
```bash
pip install optimum[exporters]
```
للاطلاع على جميع المعامﻻت المتاحة، يرجى الرجوع إلى [وثائق 🤗 Optimum](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/export_a_model#exporting-a-model-to-onnx-using-the-cli)، أو عرض المساعدة في سطر الأوامر:
```bash
optimum-cli export onnx --help
```
```bash
optimum-cli export onnx --help
```
لتصدير نقطة تفتيش نموذج من 🤗 Hub، على سبيل المثال، `distilbert/distilbert-base-uncased-distilled-squad`، قم بتشغيل الأمر التالي:
```bash
optimum-cli export onnx --model distilbert/distilbert-base-uncased-distilled-squad distilbert_base_uncased_squad_onnx/
```
يجب أن تشاهد السجلات التي تشير إلى التقدم المحرز وتظهر المكان الذي تم فيه حفظ ملف `model.onnx` الناتج، مثل هذا:
```bash
Validating ONNX model distilbert_base_uncased_squad_onnx/model.onnx...
-[✓] ONNX model output names match reference model (start_logits, end_logits)
- Validating ONNX Model output "start_logits":
-[✓] (2, 16) matches (2, 16)
-[✓] all values close (atol: 0.0001)
- Validating ONNX Model output "end_logits":
-[✓] (2, 16) matches (2, 16)
-[✓] all values close (atol: 0.0001)
The ONNX export succeeded and the exported model was saved at: distilbert_base_uncased_squad_onnx
```
يوضح المثال أعلاه تصدير نقطة تفتيش من 🤗 Hub. عند تصدير نموذج محلي، تأكد أولاً من حفظ ملفات أوزان النموذج ومحول الرموز في نفس الدليل (`local_path`). عند استخدام واجهة سطر الأوامر، قم بتمرير `local_path` إلى وسيط `model` بدلاً من اسم نقطة التفتيش على 🤗 Hub وقدم وسيط `--task`. يمكنك مراجعة قائمة المهام المدعومة في [وثائق 🤗 Optimum](https://huggingface.co/docs/optimum/exporters/task_manager). إذا لم يتم توفير وسيط `task`، فسيتم تعيينه افتراضيًا إلى هندسة النموذج دون أي رأس محدد للمهمة.
```bash
optimum-cli export onnx --model local_path --task question-answering distilbert_base_uncased_squad_onnx/
```
يمكن بعد ذلك تشغيل ملف `model.onnx` الناتج على أحد [المسرعات](https://onnx.ai/supported-tools.html#deployModel) العديدة التي تدعم معيار ONNX. على سبيل المثال، يمكننا تحميل النموذج وتشغيله باستخدام [ONNX Runtime](https://onnxruntime.ai/) كما يلي:
```python
>>> from transformers import AutoTokenizer
>>> from optimum.onnxruntime import ORTModelForQuestionAnswering
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert_base_uncased_squad_onnx")
>>> model = ORTModelForQuestionAnswering.from_pretrained("distilbert_base_uncased_squad_onnx")
>>> inputs = tokenizer("What am I using?", "Using DistilBERT with ONNX Runtime!", return_tensors="pt")
>>> outputs = model(**inputs)
```
تكون العملية مماثلة بالنسبة إلى نقاط تفتيش TensorFlow على Hub. على سبيل المثال، إليك كيفية تصدير نقطة تفتيش TensorFlow نقية من [منظمة Keras](https://huggingface.co/keras-io):
```bash
optimum-cli export onnx --model keras-io/transformers-qa distilbert_base_cased_squad_onnx/
```
### تصدير نموذج 🤗 Transformers إلى ONNX باستخدام `optimum.onnxruntime`
كبديل لواجهة سطر الأوامر، يُمكنك تصدير نموذج 🤗 Transformers إلى ONNX برمجيًا كما يلي:
```python
>>> from optimum.onnxruntime import ORTModelForSequenceClassification
>>> from transformers import AutoTokenizer
>>> model_checkpoint = "distilbert_base_uncased_squad"
>>> save_directory = "onnx/"
>>> # تحميل نموذج من transformers وتصديره إلى ONNX
>>> ort_model = ORTModelForSequenceClassification.from_pretrained(model_checkpoint, export=True)
>>> tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
>>> # حفظ نموذج onnx ومجزىء النصوص
>>> ort_model.save_pretrained(save_directory)
>>> tokenizer.save_pretrained(save_directory)
```
### تصدير نموذج لهندسة غير مدعومة
إذا كنت ترغب في المساهمة من خلال إضافة دعم لنموذج لا يُمكن تصديره حاليًا، فيجب عليك أولاً التحقق مما إذا كان مدعومًا في [`optimum.exporters.onnx`](https://huggingface.co/docs/optimum/exporters/onnx/overview)، وإذا لم يكن مدعومًا، [فيمكنك المساهمة في 🤗 Optimum](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/contribute) مُباشرةً.
### تصدير نموذج باستخدام `transformers.onnx`
<Tip warning={true}>
لم يعد يتم دعم `tranformers.onnx` يُرجى تصدير النماذج باستخدام 🤗 Optimum كما هو موضح أعلاه. سيتم إزالة هذا القسم في الإصدارات القادمة.
</Tip>
لتصدير نموذج 🤗 Transformers إلى ONNX باستخدام `tranformers.onnx`، ثبّت التبعيات الإضافية:
```bash
pip install transformers[onnx]
```
استخدم حزمة `transformers.onnx` كنموذج Python لتصدير نقطة حفظ باستخدام تكوين جاهز:
```bash
python -m transformers.onnx --model=distilbert/distilbert-base-uncased onnx/
```
يُصدّر هذا رسمًا بيانيًا ONNX لنقطة الحفظ المُحددة بواسطة وسيطة `--model`. مرر أي نقطة حفظ على 🤗 Hub أو نقطة حفظ مُخزنة محليًا.
يُمكن بعد ذلك تشغيل ملف `model.onnx` الناتج على أحد المُسرعات العديدة التي تدعم معيار ONNX. على سبيل المثال، قم بتحميل وتشغيل النموذج باستخدام ONNX Runtime كما يلي:
```python
>>> from transformers import AutoTokenizer
>>> from onnxruntime import InferenceSession
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased")
>>> session = InferenceSession("onnx/model.onnx")
>>> # يتوقع ONNX Runtime مصفوفات NumPy كمدخلات
>>> inputs = tokenizer("Using DistilBERT with ONNX Runtime!", return_tensors="np")
>>> outputs = session.run(output_names=["last_hidden_state"], input_feed=dict(inputs))
```
يُمكن الحصول على أسماء المخرجات المطلوبة (مثل `["last_hidden_state"]`) من خلال إلقاء نظرة على تكوين ONNX لكل نموذج. على سبيل المثال، بالنسبة لـ DistilBERT، لدينا:
```python
>>> from transformers.models.distilbert import DistilBertConfig, DistilBertOnnxConfig
>>> config = DistilBertConfig()
>>> onnx_config = DistilBertOnnxConfig(config)
>>> print(list(onnx_config.outputs.keys()))
["last_hidden_state"]
```
العمليات مُتطابقة لنقاط الحفظ TensorFlow على Hub. على سبيل المثال، صدّر نقطة حفظ TensorFlow خالصة كما يلي:
```bash
python -m transformers.onnx --model=keras-io/transformers-qa onnx/
```
لتصدير نموذج مُخزن محليًا، احفظ أوزان النموذج ومجزىء اللغوى في نفس الدليل (على سبيل المثال `local-pt-checkpoint`)، ثم قم بتصديره إلى ONNX عن طريق توجيه وسيط `--model` لحزمة `transformers.onnx` إلى الدليل المطلوب:
```bash
python -m transformers.onnx --model=local-pt-checkpoint onnx/
```
|
transformers/docs/source/ar/serialization.md/0
|
{
"file_path": "transformers/docs/source/ar/serialization.md",
"repo_id": "transformers",
"token_count": 5878
}
| 3 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Vorverarbeiten
[[open-in-colab]]
Bevor Sie Ihre Daten in einem Modell verwenden können, müssen die Daten in ein für das Modell akzeptables Format gebracht werden. Ein Modell versteht keine Rohtexte, Bilder oder Audiodaten. Diese Eingaben müssen in Zahlen umgewandelt und zu Tensoren zusammengesetzt werden. In dieser Anleitung werden Sie:
* Textdaten mit einem Tokenizer vorverarbeiten.
* Bild- oder Audiodaten mit einem Feature Extractor vorverarbeiten.
* Daten für eine multimodale Aufgabe mit einem Prozessor vorverarbeiten.
## NLP
<Youtube id="Yffk5aydLzg"/>
Das wichtigste Werkzeug zur Verarbeitung von Textdaten ist ein [Tokenizer](main_classes/tokenizer). Ein Tokenizer zerlegt Text zunächst nach einer Reihe von Regeln in *Token*. Die Token werden in Zahlen umgewandelt, die zum Aufbau von Tensoren als Eingabe für ein Modell verwendet werden. Alle zusätzlichen Eingaben, die ein Modell benötigt, werden ebenfalls vom Tokenizer hinzugefügt.
<Tip>
Wenn Sie ein vortrainiertes Modell verwenden möchten, ist es wichtig, den zugehörigen vortrainierten Tokenizer zu verwenden. Dadurch wird sichergestellt, dass der Text auf die gleiche Weise aufgeteilt wird wie das Pretraining-Korpus und die gleichen entsprechenden Token-zu-Index (in der Regel als *vocab* bezeichnet) während des Pretrainings verwendet werden.
</Tip>
Laden Sie einen vortrainierten Tokenizer mit der Klasse [AutoTokenizer], um schnell loszulegen. Damit wird das *vocab* heruntergeladen, das verwendet wird, wenn ein Modell vortrainiert wird.
### Tokenize
Laden Sie einen vortrainierten Tokenizer mit [`AutoTokenizer.from_pretrained`]:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-cased")
```
Dann übergeben Sie Ihren Satz an den Tokenizer:
```py
>>> encoded_input = tokenizer("Do not meddle in the affairs of wizards, for they are subtle and quick to anger.")
>>> print(encoded_input)
{'input_ids': [101, 2079, 2025, 19960, 10362, 1999, 1996, 3821, 1997, 16657, 1010, 2005, 2027, 2024, 11259, 1998, 4248, 2000, 4963, 1012, 102],
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
```
Der Tokenizer gibt ein Wörterbuch mit drei wichtigen Elementen zurück:
* [input_ids](glossary#input-ids) sind die Indizes, die den einzelnen Token im Satz entsprechen.
* [attention_mask](glossary#attention-mask) gibt an, ob ein Token beachtet werden soll oder nicht.
* [token_type_ids](glossary#token-type-ids) gibt an, zu welcher Sequenz ein Token gehört, wenn es mehr als eine Sequenz gibt.
Sie können die `input_ids` dekodieren, um die ursprüngliche Eingabe zurückzugeben:
```py
>>> tokenizer.decode(encoded_input["input_ids"])
'[CLS] Do not meddle in the affairs of wizards, for they are subtle and quick to anger. [SEP]'
```
Wie Sie sehen können, hat der Tokenisierer zwei spezielle Token - `CLS` und `SEP` (Klassifikator und Separator) - zum Satz hinzugefügt. Nicht alle Modelle benötigen
spezielle Token, aber wenn dies der Fall ist, fügt der Tokenisierer sie automatisch für Sie hinzu.
Wenn Sie mehrere Sätze verarbeiten wollen, übergeben Sie die Sätze als Liste an den Tokenizer:
```py
>>> batch_sentences = [
... "But what about second breakfast?",
... "Don't think he knows about second breakfast, Pip.",
... "What about elevensies?",
... ]
>>> encoded_inputs = tokenizer(batch_sentences)
>>> print(encoded_inputs)
{'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102],
[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
[101, 1327, 1164, 5450, 23434, 136, 102]],
'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]],
'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1]]}
```
### Pad
Dies bringt uns zu einem wichtigen Thema. Wenn Sie einen Haufen von Sätzen verarbeiten, sind diese nicht immer gleich lang. Das ist ein Problem, weil Tensoren, die Eingabe für das Modell, eine einheitliche Form haben müssen. Padding ist eine Strategie, die sicherstellt, dass Tensoren rechteckig sind, indem ein spezielles *Padding-Token* zu Sätzen mit weniger Token hinzugefügt wird.
Setzen Sie den Parameter "padding" auf "true", um die kürzeren Sequenzen im Stapel so aufzufüllen, dass sie der längsten Sequenz entsprechen:
```py
>>> batch_sentences = [
... "But what about second breakfast?",
... "Don't think he knows about second breakfast, Pip.",
... "What about elevensies?",
... ]
>>> encoded_input = tokenizer(batch_sentences, padding=True)
>>> print(encoded_input)
{'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0],
[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
[101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]],
'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]]}
```
Beachten Sie, dass der Tokenizer den ersten und den dritten Satz mit einer "0" aufgefüllt hat, weil sie kürzer sind!
### Kürzung
Auf der anderen Seite des Spektrums kann es vorkommen, dass eine Sequenz zu lang für ein Modell ist. In diesem Fall müssen Sie die Sequenz auf eine kürzere Länge kürzen.
Setzen Sie den Parameter "truncation" auf "true", um eine Sequenz auf die vom Modell akzeptierte Höchstlänge zu kürzen:
```py
>>> batch_sentences = [
... "But what about second breakfast?",
... "Don't think he knows about second breakfast, Pip.",
... "What about elevensies?",
... ]
>>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True)
>>> print(encoded_input)
{'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0],
[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
[101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]],
'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]]}
```
### Tensoren erstellen
Schließlich möchten Sie, dass der Tokenizer die tatsächlichen Tensoren zurückgibt, die dem Modell zugeführt werden.
Setzen Sie den Parameter `return_tensors` entweder auf `pt` für PyTorch, oder `tf` für TensorFlow:
<frameworkcontent>
<pt>
```py
>>> batch_sentences = [
... "But what about second breakfast?",
... "Don't think he knows about second breakfast, Pip.",
... "What about elevensies?",
... ]
>>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True, return_tensors="pt")
>>> print(encoded_input)
{'input_ids': tensor([[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0],
[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
[101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]]),
'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]),
'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]])}
```
</pt>
<tf>
```py
>>> batch_sentences = [
... "But what about second breakfast?",
... "Don't think he knows about second breakfast, Pip.",
... "What about elevensies?",
... ]
>>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True, return_tensors="tf")
>>> print(encoded_input)
{'input_ids': <tf.Tensor: shape=(2, 9), dtype=int32, numpy=
array([[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0],
[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
[101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]],
dtype=int32)>,
'token_type_ids': <tf.Tensor: shape=(2, 9), dtype=int32, numpy=
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)>,
'attention_mask': <tf.Tensor: shape=(2, 9), dtype=int32, numpy=
array([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)>}
```
</tf>
</frameworkcontent>
## Audio
Audioeingaben werden anders vorverarbeitet als Texteingaben, aber das Endziel bleibt dasselbe: numerische Sequenzen zu erstellen, die das Modell verstehen kann. Ein [feature extractor](main_classes/feature_extractor) dient dem ausdrücklichen Zweck, Merkmale aus Rohbild- oder Audiodaten zu extrahieren und in Tensoren zu konvertieren. Bevor Sie beginnen, installieren Sie 🤗 Datasets, um einen Audio-Datensatz zu laden, mit dem Sie experimentieren können:
```bash
pip install datasets
```
Laden Sie den [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) Datensatz (weitere Informationen zum Laden eines Datensatzes finden Sie im 🤗 [Datasets tutorial](https://huggingface.co/docs/datasets/load_hub)):
```py
>>> from datasets import load_dataset, Audio
>>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train")
```
Greifen Sie auf das erste Element der `audio`-Spalte zu, um einen Blick auf die Eingabe zu werfen. Durch den Aufruf der Spalte "audio" wird die Audiodatei automatisch geladen und neu gesampelt:
```py
>>> dataset[0]["audio"]
{'array': array([ 0. , 0.00024414, -0.00024414, ..., -0.00024414,
0. , 0. ], dtype=float32),
'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav',
'sampling_rate': 8000}
```
Dies gibt drei Elemente zurück:
* "array" ist das Sprachsignal, das als 1D-Array geladen - und möglicherweise neu gesampelt - wurde.
* Pfad" zeigt auf den Speicherort der Audiodatei.
* `sampling_rate` bezieht sich darauf, wie viele Datenpunkte im Sprachsignal pro Sekunde gemessen werden.
### Resample
Für dieses Tutorial werden Sie das Modell [Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base) verwenden. Wie Sie aus der Modellkarte ersehen können, ist das Wav2Vec2-Modell auf 16kHz abgetastetes Sprachaudio vortrainiert. Es ist wichtig, dass die Abtastrate Ihrer Audiodaten mit der Abtastrate des Datensatzes übereinstimmt, der für das Pre-Training des Modells verwendet wurde. Wenn die Abtastrate Ihrer Daten nicht dieselbe ist, müssen Sie Ihre Audiodaten neu abtasten.
Der Datensatz [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) hat zum Beispiel eine Abtastrate von 8000 kHz. Um das Wav2Vec2-Modell mit diesem Datensatz verwenden zu können, müssen Sie die Abtastrate auf 16 kHz erhöhen:
```py
>>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train")
>>> dataset[0]["audio"]
{'array': array([ 0. , 0.00024414, -0.00024414, ..., -0.00024414,
0. , 0. ], dtype=float32),
'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav',
'sampling_rate': 8000}
```
1. Verwenden Sie die Methode [`~datasets.Dataset.cast_column`] von 🤗 Datasets, um die Abtastrate auf 16kHz zu erhöhen:
```py
>>> dataset = dataset.cast_column("audio", Audio(sampling_rate=16_000))
```
2. Laden Sie die Audiodatei:
```py
>>> dataset[0]["audio"]
{'array': array([ 2.3443763e-05, 2.1729663e-04, 2.2145823e-04, ...,
3.8356509e-05, -7.3497440e-06, -2.1754686e-05], dtype=float32),
'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav',
'sampling_rate': 16000}
```
Wie Sie sehen können, ist die Abtastrate jetzt 16kHz!
### Merkmalsextraktor
Der nächste Schritt ist das Laden eines Merkmalsextraktors, um die Eingabe zu normalisieren und aufzufüllen. Beim Auffüllen von Textdaten wird für kürzere Sequenzen ein `0` hinzugefügt. Die gleiche Idee gilt für Audiodaten, und der Audio-Feature-Extraktor fügt eine `0` - interpretiert als Stille - zu `array` hinzu.
Laden Sie den Merkmalsextraktor mit [`AutoFeatureExtractor.from_pretrained`]:
```py
>>> from transformers import AutoFeatureExtractor
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base")
```
Übergeben Sie das Audio-"Array" an den Feature-Extraktor. Wir empfehlen auch, das Argument `sampling_rate` im Feature Extractor hinzuzufügen, um eventuell auftretende stille Fehler besser zu beheben.
```py
>>> audio_input = [dataset[0]["audio"]["array"]]
>>> feature_extractor(audio_input, sampling_rate=16000)
{'input_values': [array([ 3.8106556e-04, 2.7506407e-03, 2.8015103e-03, ...,
5.6335266e-04, 4.6588284e-06, -1.7142107e-04], dtype=float32)]}
```
### Auffüllen und Kürzen
Genau wie beim Tokenizer können Sie variable Sequenzen in einem Stapel durch Auffüllen oder Abschneiden behandeln. Werfen Sie einen Blick auf die Sequenzlänge dieser beiden Audiobeispiele:
```py
>>> dataset[0]["audio"]["array"].shape
(173398,)
>>> dataset[1]["audio"]["array"].shape
(106496,)
```
Wie Sie sehen können, hat das erste Beispiel eine längere Sequenz als das zweite Beispiel. Lassen Sie uns eine Funktion erstellen, die den Datensatz vorverarbeitet. Geben Sie eine maximale Länge der Probe an, und der Feature-Extraktor wird die Sequenzen entweder auffüllen oder abschneiden, damit sie dieser Länge entsprechen:
```py
>>> def preprocess_function(examples):
... audio_arrays = [x["array"] for x in examples["audio"]]
... inputs = feature_extractor(
... audio_arrays,
... sampling_rate=16000,
... padding=True,
... max_length=100000,
... truncation=True,
... )
... return inputs
```
Wenden Sie die Funktion auf die ersten paar Beispiele im Datensatz an:
```py
>>> processed_dataset = preprocess_function(dataset[:5])
```
Schauen Sie sich nun noch einmal die verarbeiteten Beispiel-Längen an:
```py
>>> processed_dataset["input_values"][0].shape
(100000,)
>>> processed_dataset["input_values"][1].shape
(100000,)
```
Die Länge der ersten beiden Beispiele entspricht nun der von Ihnen angegebenen Maximallänge.
## Bildverarbeitung
Ein Merkmalsextraktor wird auch verwendet, um Bilder für Bildverarbeitungsaufgaben zu verarbeiten. Auch hier besteht das Ziel darin, das Rohbild in eine Reihe von Tensoren als Eingabe zu konvertieren.
Laden wir den [food101](https://huggingface.co/datasets/food101) Datensatz für dieses Tutorial. Verwenden Sie den Parameter 🤗 Datasets `split`, um nur eine kleine Stichprobe aus dem Trainingssplit zu laden, da der Datensatz recht groß ist:
```py
>>> from datasets import load_dataset
>>> dataset = load_dataset("food101", split="train[:100]")
```
Als Nächstes sehen Sie sich das Bild mit dem Merkmal 🤗 Datensätze [Bild](https://huggingface.co/docs/datasets/package_reference/main_classes?highlight=image#datasets.Image) an:
```py
>>> dataset[0]["image"]
```

### Merkmalsextraktor
Laden Sie den Merkmalsextraktor mit [`AutoImageProcessor.from_pretrained`]:
```py
>>> from transformers import AutoImageProcessor
>>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
```
### Datenerweiterung
Bei Bildverarbeitungsaufgaben ist es üblich, den Bildern als Teil der Vorverarbeitung eine Art von Datenerweiterung hinzuzufügen. Sie können Erweiterungen mit jeder beliebigen Bibliothek hinzufügen, aber in diesem Tutorial werden Sie das Modul [`transforms`](https://pytorch.org/vision/stable/transforms.html) von torchvision verwenden.
1. Normalisieren Sie das Bild und verwenden Sie [`Compose`](https://pytorch.org/vision/master/generated/torchvision.transforms.Compose.html), um einige Transformationen - [`RandomResizedCrop`](https://pytorch.org/vision/main/generated/torchvision.transforms.RandomResizedCrop.html) und [`ColorJitter`](https://pytorch.org/vision/main/generated/torchvision.transforms.ColorJitter.html) - miteinander zu verknüpfen:
```py
>>> from torchvision.transforms import Compose, Normalize, RandomResizedCrop, ColorJitter, ToTensor
>>> normalize = Normalize(mean=image_processor.image_mean, std=image_processor.image_std)
>>> _transforms = Compose(
... [RandomResizedCrop(image_processor.size["height"]), ColorJitter(brightness=0.5, hue=0.5), ToTensor(), normalize]
... )
```
2. Das Modell akzeptiert [`pixel_values`](model_doc/visionencoderdecoder#transformers.VisionEncoderDecoderModel.forward.pixel_values) als Eingabe. Dieser Wert wird vom Merkmalsextraktor erzeugt. Erstellen Sie eine Funktion, die `pixel_values` aus den Transformationen erzeugt:
```py
>>> def transforms(examples):
... examples["pixel_values"] = [_transforms(image.convert("RGB")) for image in examples["image"]]
... return examples
```
3. Dann verwenden Sie 🤗 Datasets [`set_transform`](https://huggingface.co/docs/datasets/process#format-transform), um die Transformationen im laufenden Betrieb anzuwenden:
```py
>>> dataset.set_transform(transforms)
```
4. Wenn Sie nun auf das Bild zugreifen, werden Sie feststellen, dass der Feature Extractor die Modelleingabe "pixel_values" hinzugefügt hat:
```py
>>> dataset[0]["image"]
{'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=384x512 at 0x7F1A7B0630D0>,
'label': 6,
'pixel_values': tensor([[[ 0.0353, 0.0745, 0.1216, ..., -0.9922, -0.9922, -0.9922],
[-0.0196, 0.0667, 0.1294, ..., -0.9765, -0.9843, -0.9922],
[ 0.0196, 0.0824, 0.1137, ..., -0.9765, -0.9686, -0.8667],
...,
[ 0.0275, 0.0745, 0.0510, ..., -0.1137, -0.1216, -0.0824],
[ 0.0667, 0.0824, 0.0667, ..., -0.0588, -0.0745, -0.0980],
[ 0.0353, 0.0353, 0.0431, ..., -0.0039, -0.0039, -0.0588]],
[[ 0.2078, 0.2471, 0.2863, ..., -0.9451, -0.9373, -0.9451],
[ 0.1608, 0.2471, 0.3098, ..., -0.9373, -0.9451, -0.9373],
[ 0.2078, 0.2706, 0.3020, ..., -0.9608, -0.9373, -0.8275],
...,
[-0.0353, 0.0118, -0.0039, ..., -0.2392, -0.2471, -0.2078],
[ 0.0196, 0.0353, 0.0196, ..., -0.1843, -0.2000, -0.2235],
[-0.0118, -0.0039, -0.0039, ..., -0.0980, -0.0980, -0.1529]],
[[ 0.3961, 0.4431, 0.4980, ..., -0.9216, -0.9137, -0.9216],
[ 0.3569, 0.4510, 0.5216, ..., -0.9059, -0.9137, -0.9137],
[ 0.4118, 0.4745, 0.5216, ..., -0.9137, -0.8902, -0.7804],
...,
[-0.2314, -0.1922, -0.2078, ..., -0.4196, -0.4275, -0.3882],
[-0.1843, -0.1686, -0.2000, ..., -0.3647, -0.3804, -0.4039],
[-0.1922, -0.1922, -0.1922, ..., -0.2941, -0.2863, -0.3412]]])}
```
Hier sehen Sie, wie das Bild nach der Vorverarbeitung aussieht. Wie von den angewandten Transformationen zu erwarten, wurde das Bild willkürlich beschnitten und seine Farbeigenschaften sind anders.
```py
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> img = dataset[0]["pixel_values"]
>>> plt.imshow(img.permute(1, 2, 0))
```

## Multimodal
Für multimodale Aufgaben werden Sie eine Kombination aus allem, was Sie bisher gelernt haben, verwenden und Ihre Fähigkeiten auf eine Aufgabe der automatischen Spracherkennung (ASR) anwenden. Dies bedeutet, dass Sie einen:
* Feature Extractor zur Vorverarbeitung der Audiodaten.
* Tokenizer, um den Text zu verarbeiten.
Kehren wir zum [LJ Speech](https://huggingface.co/datasets/lj_speech) Datensatz zurück:
```py
>>> from datasets import load_dataset
>>> lj_speech = load_dataset("lj_speech", split="train")
```
Da Sie hauptsächlich an den Spalten "Audio" und "Text" interessiert sind, entfernen Sie die anderen Spalten:
```py
>>> lj_speech = lj_speech.map(remove_columns=["file", "id", "normalized_text"])
```
Schauen Sie sich nun die Spalten "Audio" und "Text" an:
```py
>>> lj_speech[0]["audio"]
{'array': array([-7.3242188e-04, -7.6293945e-04, -6.4086914e-04, ...,
7.3242188e-04, 2.1362305e-04, 6.1035156e-05], dtype=float32),
'path': '/root/.cache/huggingface/datasets/downloads/extracted/917ece08c95cf0c4115e45294e3cd0dee724a1165b7fc11798369308a465bd26/LJSpeech-1.1/wavs/LJ001-0001.wav',
'sampling_rate': 22050}
>>> lj_speech[0]["text"]
'Printing, in the only sense with which we are at present concerned, differs from most if not from all the arts and crafts represented in the Exhibition'
```
Erinnern Sie sich an den früheren Abschnitt über die Verarbeitung von Audiodaten: Sie sollten immer die Abtastrate Ihrer Audiodaten [resample](preprocessing#audio), damit sie mit der Abtastrate des Datensatzes übereinstimmt, der für das Vortraining eines Modells verwendet wird:
```py
>>> lj_speech = lj_speech.cast_column("audio", Audio(sampling_rate=16_000))
```
### Prozessor
Ein Processor kombiniert einen Feature-Extraktor und einen Tokenizer. Laden Sie einen Processor mit [`AutoProcessor.from_pretrained`]:
```py
>>> from transformers import AutoProcessor
>>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h")
```
1. Erstellen Sie eine Funktion, die die Audiodaten zu `input_values` verarbeitet und den Text zu `labels` tokenisiert. Dies sind Ihre Eingaben für das Modell:
```py
>>> def prepare_dataset(example):
... audio = example["audio"]
... example.update(processor(audio=audio["array"], text=example["text"], sampling_rate=16000))
... return example
```
2. Wenden Sie die Funktion "prepare_dataset" auf ein Beispiel an:
```py
>>> prepare_dataset(lj_speech[0])
```
Beachten Sie, dass der Processor `input_values` und `labels` hinzugefügt hat. Auch die Abtastrate wurde korrekt auf 16kHz heruntergerechnet.
Toll, Sie sollten jetzt in der Lage sein, Daten für jede Modalität vorzuverarbeiten und sogar verschiedene Modalitäten zu kombinieren! Im nächsten Kurs lernen Sie, wie Sie ein Modell mit Ihren neu aufbereiteten Daten feinabstimmen können.
|
transformers/docs/source/de/preprocessing.md/0
|
{
"file_path": "transformers/docs/source/de/preprocessing.md",
"repo_id": "transformers",
"token_count": 10560
}
| 4 |
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# BERTology
There is a growing field of study concerned with investigating the inner working of large-scale transformers like BERT
(that some call "BERTology"). Some good examples of this field are:
- BERT Rediscovers the Classical NLP Pipeline by Ian Tenney, Dipanjan Das, Ellie Pavlick:
https://arxiv.org/abs/1905.05950
- Are Sixteen Heads Really Better than One? by Paul Michel, Omer Levy, Graham Neubig: https://arxiv.org/abs/1905.10650
- What Does BERT Look At? An Analysis of BERT's Attention by Kevin Clark, Urvashi Khandelwal, Omer Levy, Christopher D.
Manning: https://arxiv.org/abs/1906.04341
- CAT-probing: A Metric-based Approach to Interpret How Pre-trained Models for Programming Language Attend Code Structure: https://arxiv.org/abs/2210.04633
In order to help this new field develop, we have included a few additional features in the BERT/GPT/GPT-2 models to
help people access the inner representations, mainly adapted from the great work of Paul Michel
(https://arxiv.org/abs/1905.10650):
- accessing all the hidden-states of BERT/GPT/GPT-2,
- accessing all the attention weights for each head of BERT/GPT/GPT-2,
- retrieving heads output values and gradients to be able to compute head importance score and prune head as explained
in https://arxiv.org/abs/1905.10650.
To help you understand and use these features, we have added a specific example script: [bertology.py](https://github.com/huggingface/transformers/tree/main/examples/research_projects/bertology/run_bertology.py) which extracts information and prune a model pre-trained on
GLUE.
|
transformers/docs/source/en/bertology.md/0
|
{
"file_path": "transformers/docs/source/en/bertology.md",
"repo_id": "transformers",
"token_count": 640
}
| 5 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Hyperparameter Search using Trainer API
🤗 Transformers provides a [`Trainer`] class optimized for training 🤗 Transformers models, making it easier to start training without manually writing your own training loop. The [`Trainer`] provides API for hyperparameter search. This doc shows how to enable it in example.
## Hyperparameter Search backend
[`Trainer`] supports four hyperparameter search backends currently:
[optuna](https://optuna.org/), [sigopt](https://sigopt.com/), [raytune](https://docs.ray.io/en/latest/tune/index.html) and [wandb](https://wandb.ai/site/sweeps).
you should install them before using them as the hyperparameter search backend
```bash
pip install optuna/sigopt/wandb/ray[tune]
```
## How to enable Hyperparameter search in example
Define the hyperparameter search space, different backends need different format.
For sigopt, see sigopt [object_parameter](https://docs.sigopt.com/ai-module-api-references/api_reference/objects/object_parameter), it's like following:
```py
>>> def sigopt_hp_space(trial):
... return [
... {"bounds": {"min": 1e-6, "max": 1e-4}, "name": "learning_rate", "type": "double"},
... {
... "categorical_values": ["16", "32", "64", "128"],
... "name": "per_device_train_batch_size",
... "type": "categorical",
... },
... ]
```
For optuna, see optuna [object_parameter](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/002_configurations.html#sphx-glr-tutorial-10-key-features-002-configurations-py), it's like following:
```py
>>> def optuna_hp_space(trial):
... return {
... "learning_rate": trial.suggest_float("learning_rate", 1e-6, 1e-4, log=True),
... "per_device_train_batch_size": trial.suggest_categorical("per_device_train_batch_size", [16, 32, 64, 128]),
... }
```
Optuna provides multi-objective HPO. You can pass `direction` in `hyperparameter_search` and define your own compute_objective to return multiple objective values. The Pareto Front (`List[BestRun]`) will be returned in hyperparameter_search, you should refer to the test case `TrainerHyperParameterMultiObjectOptunaIntegrationTest` in [test_trainer](https://github.com/huggingface/transformers/blob/main/tests/trainer/test_trainer.py). It's like following
```py
>>> best_trials = trainer.hyperparameter_search(
... direction=["minimize", "maximize"],
... backend="optuna",
... hp_space=optuna_hp_space,
... n_trials=20,
... compute_objective=compute_objective,
... )
```
For raytune, see raytune [object_parameter](https://docs.ray.io/en/latest/tune/api/search_space.html), it's like following:
```py
>>> def ray_hp_space(trial):
... return {
... "learning_rate": tune.loguniform(1e-6, 1e-4),
... "per_device_train_batch_size": tune.choice([16, 32, 64, 128]),
... }
```
For wandb, see wandb [object_parameter](https://docs.wandb.ai/guides/sweeps/configuration), it's like following:
```py
>>> def wandb_hp_space(trial):
... return {
... "method": "random",
... "metric": {"name": "objective", "goal": "minimize"},
... "parameters": {
... "learning_rate": {"distribution": "uniform", "min": 1e-6, "max": 1e-4},
... "per_device_train_batch_size": {"values": [16, 32, 64, 128]},
... },
... }
```
Define a `model_init` function and pass it to the [`Trainer`], as an example:
```py
>>> def model_init(trial):
... return AutoModelForSequenceClassification.from_pretrained(
... model_args.model_name_or_path,
... from_tf=bool(".ckpt" in model_args.model_name_or_path),
... config=config,
... cache_dir=model_args.cache_dir,
... revision=model_args.model_revision,
... token=True if model_args.use_auth_token else None,
... )
```
Create a [`Trainer`] with your `model_init` function, training arguments, training and test datasets, and evaluation function:
```py
>>> trainer = Trainer(
... model=None,
... args=training_args,
... train_dataset=small_train_dataset,
... eval_dataset=small_eval_dataset,
... compute_metrics=compute_metrics,
... processing_class=tokenizer,
... model_init=model_init,
... data_collator=data_collator,
... )
```
Call hyperparameter search, get the best trial parameters, backend could be `"optuna"`/`"sigopt"`/`"wandb"`/`"ray"`. direction can be`"minimize"` or `"maximize"`, which indicates whether to optimize greater or lower objective.
You could define your own compute_objective function, if not defined, the default compute_objective will be called, and the sum of eval metric like f1 is returned as objective value.
```py
>>> best_trial = trainer.hyperparameter_search(
... direction="maximize",
... backend="optuna",
... hp_space=optuna_hp_space,
... n_trials=20,
... compute_objective=compute_objective,
... )
```
## Hyperparameter search For DDP finetune
Currently, Hyperparameter search for DDP is enabled for optuna and sigopt. Only the rank-zero process will generate the search trial and pass the argument to other ranks.
|
transformers/docs/source/en/hpo_train.md/0
|
{
"file_path": "transformers/docs/source/en/hpo_train.md",
"repo_id": "transformers",
"token_count": 2075
}
| 6 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Agents & Tools
<Tip warning={true}>
Transformers Agents is an experimental API which is subject to change at any time. Results returned by the agents
can vary as the APIs or underlying models are prone to change.
</Tip>
To learn more about agents and tools make sure to read the [introductory guide](../transformers_agents). This page
contains the API docs for the underlying classes.
## Agents
We provide two types of agents, based on the main [`Agent`] class:
- [`CodeAgent`] acts in one shot, generating code to solve the task, then executes it at once.
- [`ReactAgent`] acts step by step, each step consisting of one thought, then one tool call and execution. It has two classes:
- [`ReactJsonAgent`] writes its tool calls in JSON.
- [`ReactCodeAgent`] writes its tool calls in Python code.
### Agent
[[autodoc]] Agent
### CodeAgent
[[autodoc]] CodeAgent
### React agents
[[autodoc]] ReactAgent
[[autodoc]] ReactJsonAgent
[[autodoc]] ReactCodeAgent
### ManagedAgent
[[autodoc]] ManagedAgent
## Tools
### load_tool
[[autodoc]] load_tool
### tool
[[autodoc]] tool
### Tool
[[autodoc]] Tool
### Toolbox
[[autodoc]] Toolbox
### PipelineTool
[[autodoc]] PipelineTool
### launch_gradio_demo
[[autodoc]] launch_gradio_demo
### stream_to_gradio
[[autodoc]] stream_to_gradio
### ToolCollection
[[autodoc]] ToolCollection
## Engines
You're free to create and use your own engines to be usable by the Agents framework.
These engines have the following specification:
1. Follow the [messages format](../chat_templating.md) for its input (`List[Dict[str, str]]`) and return a string.
2. Stop generating outputs *before* the sequences passed in the argument `stop_sequences`
### TransformersEngine
For convenience, we have added a `TransformersEngine` that implements the points above, taking a pre-initialized `Pipeline` as input.
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, TransformersEngine
>>> model_name = "HuggingFaceTB/SmolLM-135M-Instruct"
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
>>> model = AutoModelForCausalLM.from_pretrained(model_name)
>>> pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
>>> engine = TransformersEngine(pipe)
>>> engine([{"role": "user", "content": "Ok!"}], stop_sequences=["great"])
"What a "
```
[[autodoc]] TransformersEngine
### HfApiEngine
The `HfApiEngine` is an engine that wraps an [HF Inference API](https://huggingface.co/docs/api-inference/index) client for the execution of the LLM.
```python
>>> from transformers import HfApiEngine
>>> messages = [
... {"role": "user", "content": "Hello, how are you?"},
... {"role": "assistant", "content": "I'm doing great. How can I help you today?"},
... {"role": "user", "content": "No need to help, take it easy."},
... ]
>>> HfApiEngine()(messages, stop_sequences=["conversation"])
"That's very kind of you to say! It's always nice to have a relaxed "
```
[[autodoc]] HfApiEngine
## Agent Types
Agents can handle any type of object in-between tools; tools, being completely multimodal, can accept and return
text, image, audio, video, among other types. In order to increase compatibility between tools, as well as to
correctly render these returns in ipython (jupyter, colab, ipython notebooks, ...), we implement wrapper classes
around these types.
The wrapped objects should continue behaving as initially; a text object should still behave as a string, an image
object should still behave as a `PIL.Image`.
These types have three specific purposes:
- Calling `to_raw` on the type should return the underlying object
- Calling `to_string` on the type should return the object as a string: that can be the string in case of an `AgentText`
but will be the path of the serialized version of the object in other instances
- Displaying it in an ipython kernel should display the object correctly
### AgentText
[[autodoc]] transformers.agents.agent_types.AgentText
### AgentImage
[[autodoc]] transformers.agents.agent_types.AgentImage
### AgentAudio
[[autodoc]] transformers.agents.agent_types.AgentAudio
|
transformers/docs/source/en/main_classes/agent.md/0
|
{
"file_path": "transformers/docs/source/en/main_classes/agent.md",
"repo_id": "transformers",
"token_count": 1406
}
| 7 |
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Processors
Processors can mean two different things in the Transformers library:
- the objects that pre-process inputs for multi-modal models such as [Wav2Vec2](../model_doc/wav2vec2) (speech and text)
or [CLIP](../model_doc/clip) (text and vision)
- deprecated objects that were used in older versions of the library to preprocess data for GLUE or SQUAD.
## Multi-modal processors
Any multi-modal model will require an object to encode or decode the data that groups several modalities (among text,
vision and audio). This is handled by objects called processors, which group together two or more processing objects
such as tokenizers (for the text modality), image processors (for vision) and feature extractors (for audio).
Those processors inherit from the following base class that implements the saving and loading functionality:
[[autodoc]] ProcessorMixin
## Deprecated processors
All processors follow the same architecture which is that of the
[`~data.processors.utils.DataProcessor`]. The processor returns a list of
[`~data.processors.utils.InputExample`]. These
[`~data.processors.utils.InputExample`] can be converted to
[`~data.processors.utils.InputFeatures`] in order to be fed to the model.
[[autodoc]] data.processors.utils.DataProcessor
[[autodoc]] data.processors.utils.InputExample
[[autodoc]] data.processors.utils.InputFeatures
## GLUE
[General Language Understanding Evaluation (GLUE)](https://gluebenchmark.com/) is a benchmark that evaluates the
performance of models across a diverse set of existing NLU tasks. It was released together with the paper [GLUE: A
multi-task benchmark and analysis platform for natural language understanding](https://openreview.net/pdf?id=rJ4km2R5t7)
This library hosts a total of 10 processors for the following tasks: MRPC, MNLI, MNLI (mismatched), CoLA, SST2, STSB,
QQP, QNLI, RTE and WNLI.
Those processors are:
- [`~data.processors.utils.MrpcProcessor`]
- [`~data.processors.utils.MnliProcessor`]
- [`~data.processors.utils.MnliMismatchedProcessor`]
- [`~data.processors.utils.Sst2Processor`]
- [`~data.processors.utils.StsbProcessor`]
- [`~data.processors.utils.QqpProcessor`]
- [`~data.processors.utils.QnliProcessor`]
- [`~data.processors.utils.RteProcessor`]
- [`~data.processors.utils.WnliProcessor`]
Additionally, the following method can be used to load values from a data file and convert them to a list of
[`~data.processors.utils.InputExample`].
[[autodoc]] data.processors.glue.glue_convert_examples_to_features
## XNLI
[The Cross-Lingual NLI Corpus (XNLI)](https://www.nyu.edu/projects/bowman/xnli/) is a benchmark that evaluates the
quality of cross-lingual text representations. XNLI is crowd-sourced dataset based on [*MultiNLI*](http://www.nyu.edu/projects/bowman/multinli/): pairs of text are labeled with textual entailment annotations for 15
different languages (including both high-resource language such as English and low-resource languages such as Swahili).
It was released together with the paper [XNLI: Evaluating Cross-lingual Sentence Representations](https://arxiv.org/abs/1809.05053)
This library hosts the processor to load the XNLI data:
- [`~data.processors.utils.XnliProcessor`]
Please note that since the gold labels are available on the test set, evaluation is performed on the test set.
An example using these processors is given in the [run_xnli.py](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification/run_xnli.py) script.
## SQuAD
[The Stanford Question Answering Dataset (SQuAD)](https://rajpurkar.github.io/SQuAD-explorer//) is a benchmark that
evaluates the performance of models on question answering. Two versions are available, v1.1 and v2.0. The first version
(v1.1) was released together with the paper [SQuAD: 100,000+ Questions for Machine Comprehension of Text](https://arxiv.org/abs/1606.05250). The second version (v2.0) was released alongside the paper [Know What You Don't
Know: Unanswerable Questions for SQuAD](https://arxiv.org/abs/1806.03822).
This library hosts a processor for each of the two versions:
### Processors
Those processors are:
- [`~data.processors.utils.SquadV1Processor`]
- [`~data.processors.utils.SquadV2Processor`]
They both inherit from the abstract class [`~data.processors.utils.SquadProcessor`]
[[autodoc]] data.processors.squad.SquadProcessor
- all
Additionally, the following method can be used to convert SQuAD examples into
[`~data.processors.utils.SquadFeatures`] that can be used as model inputs.
[[autodoc]] data.processors.squad.squad_convert_examples_to_features
These processors as well as the aforementioned method can be used with files containing the data as well as with the
*tensorflow_datasets* package. Examples are given below.
### Example usage
Here is an example using the processors as well as the conversion method using data files:
```python
# Loading a V2 processor
processor = SquadV2Processor()
examples = processor.get_dev_examples(squad_v2_data_dir)
# Loading a V1 processor
processor = SquadV1Processor()
examples = processor.get_dev_examples(squad_v1_data_dir)
features = squad_convert_examples_to_features(
examples=examples,
tokenizer=tokenizer,
max_seq_length=max_seq_length,
doc_stride=args.doc_stride,
max_query_length=max_query_length,
is_training=not evaluate,
)
```
Using *tensorflow_datasets* is as easy as using a data file:
```python
# tensorflow_datasets only handle Squad V1.
tfds_examples = tfds.load("squad")
examples = SquadV1Processor().get_examples_from_dataset(tfds_examples, evaluate=evaluate)
features = squad_convert_examples_to_features(
examples=examples,
tokenizer=tokenizer,
max_seq_length=max_seq_length,
doc_stride=args.doc_stride,
max_query_length=max_query_length,
is_training=not evaluate,
)
```
Another example using these processors is given in the [run_squad.py](https://github.com/huggingface/transformers/tree/main/examples/legacy/question-answering/run_squad.py) script.
|
transformers/docs/source/en/main_classes/processors.md/0
|
{
"file_path": "transformers/docs/source/en/main_classes/processors.md",
"repo_id": "transformers",
"token_count": 2073
}
| 8 |
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# BARTpho
## Overview
The BARTpho model was proposed in [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
The abstract from the paper is the following:
*We present BARTpho with two versions -- BARTpho_word and BARTpho_syllable -- the first public large-scale monolingual
sequence-to-sequence models pre-trained for Vietnamese. Our BARTpho uses the "large" architecture and pre-training
scheme of the sequence-to-sequence denoising model BART, thus especially suitable for generative NLP tasks. Experiments
on a downstream task of Vietnamese text summarization show that in both automatic and human evaluations, our BARTpho
outperforms the strong baseline mBART and improves the state-of-the-art. We release BARTpho to facilitate future
research and applications of generative Vietnamese NLP tasks.*
This model was contributed by [dqnguyen](https://huggingface.co/dqnguyen). The original code can be found [here](https://github.com/VinAIResearch/BARTpho).
## Usage example
```python
>>> import torch
>>> from transformers import AutoModel, AutoTokenizer
>>> bartpho = AutoModel.from_pretrained("vinai/bartpho-syllable")
>>> tokenizer = AutoTokenizer.from_pretrained("vinai/bartpho-syllable")
>>> line = "Chúng tôi là những nghiên cứu viên."
>>> input_ids = tokenizer(line, return_tensors="pt")
>>> with torch.no_grad():
... features = bartpho(**input_ids) # Models outputs are now tuples
>>> # With TensorFlow 2.0+:
>>> from transformers import TFAutoModel
>>> bartpho = TFAutoModel.from_pretrained("vinai/bartpho-syllable")
>>> input_ids = tokenizer(line, return_tensors="tf")
>>> features = bartpho(**input_ids)
```
## Usage tips
- Following mBART, BARTpho uses the "large" architecture of BART with an additional layer-normalization layer on top of
both the encoder and decoder. Thus, usage examples in the [documentation of BART](bart), when adapting to use
with BARTpho, should be adjusted by replacing the BART-specialized classes with the mBART-specialized counterparts.
For example:
```python
>>> from transformers import MBartForConditionalGeneration
>>> bartpho = MBartForConditionalGeneration.from_pretrained("vinai/bartpho-syllable")
>>> TXT = "Chúng tôi là <mask> nghiên cứu viên."
>>> input_ids = tokenizer([TXT], return_tensors="pt")["input_ids"]
>>> logits = bartpho(input_ids).logits
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
>>> probs = logits[0, masked_index].softmax(dim=0)
>>> values, predictions = probs.topk(5)
>>> print(tokenizer.decode(predictions).split())
```
- This implementation is only for tokenization: "monolingual_vocab_file" consists of Vietnamese-specialized types
extracted from the pre-trained SentencePiece model "vocab_file" that is available from the multilingual XLM-RoBERTa.
Other languages, if employing this pre-trained multilingual SentencePiece model "vocab_file" for subword
segmentation, can reuse BartphoTokenizer with their own language-specialized "monolingual_vocab_file".
## BartphoTokenizer
[[autodoc]] BartphoTokenizer
|
transformers/docs/source/en/model_doc/bartpho.md/0
|
{
"file_path": "transformers/docs/source/en/model_doc/bartpho.md",
"repo_id": "transformers",
"token_count": 1166
}
| 9 |
<!--Copyright 2023 The Intel Labs Team Authors, The Microsoft Research Team Authors and HuggingFace Inc. team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# BridgeTower
## Overview
The BridgeTower model was proposed in [BridgeTower: Building Bridges Between Encoders in Vision-Language Representative Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan. The goal of this model is to build a
bridge between each uni-modal encoder and the cross-modal encoder to enable comprehensive and detailed interaction at each layer of the cross-modal encoder thus achieving remarkable performance on various downstream tasks with almost negligible additional performance and computational costs.
This paper has been accepted to the [AAAI'23](https://aaai.org/Conferences/AAAI-23/) conference.
The abstract from the paper is the following:
*Vision-Language (VL) models with the TWO-TOWER architecture have dominated visual-language representation learning in recent years.
Current VL models either use lightweight uni-modal encoders and learn to extract, align and fuse both modalities simultaneously in a deep cross-modal encoder, or feed the last-layer uni-modal representations from the deep pre-trained uni-modal encoders into the top cross-modal encoder.
Both approaches potentially restrict vision-language representation learning and limit model performance. In this paper, we propose BRIDGETOWER, which introduces multiple bridge layers that build a connection between the top layers of uni-modal encoders and each layer of the crossmodal encoder.
This enables effective bottom-up cross-modal alignment and fusion between visual and textual representations of different semantic levels of pre-trained uni-modal encoders in the cross-modal encoder. Pre-trained with only 4M images, BRIDGETOWER achieves state-of-the-art performance on various downstream vision-language tasks.
In particular, on the VQAv2 test-std set, BRIDGETOWER achieves an accuracy of 78.73%, outperforming the previous state-of-the-art model METER by 1.09% with the same pre-training data and almost negligible additional parameters and computational costs.
Notably, when further scaling the model, BRIDGETOWER achieves an accuracy of 81.15%, surpassing models that are pre-trained on orders-of-magnitude larger datasets.*
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/bridgetower_architecture%20.jpg"
alt="drawing" width="600"/>
<small> BridgeTower architecture. Taken from the <a href="https://arxiv.org/abs/2206.08657">original paper.</a> </small>
This model was contributed by [Anahita Bhiwandiwalla](https://huggingface.co/anahita-b), [Tiep Le](https://huggingface.co/Tile) and [Shaoyen Tseng](https://huggingface.co/shaoyent). The original code can be found [here](https://github.com/microsoft/BridgeTower).
## Usage tips and examples
BridgeTower consists of a visual encoder, a textual encoder and cross-modal encoder with multiple lightweight bridge layers.
The goal of this approach was to build a bridge between each uni-modal encoder and the cross-modal encoder to enable comprehensive and detailed interaction at each layer of the cross-modal encoder.
In principle, one can apply any visual, textual or cross-modal encoder in the proposed architecture.
The [`BridgeTowerProcessor`] wraps [`RobertaTokenizer`] and [`BridgeTowerImageProcessor`] into a single instance to both
encode the text and prepare the images respectively.
The following example shows how to run contrastive learning using [`BridgeTowerProcessor`] and [`BridgeTowerForContrastiveLearning`].
```python
>>> from transformers import BridgeTowerProcessor, BridgeTowerForContrastiveLearning
>>> import requests
>>> from PIL import Image
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> texts = ["An image of two cats chilling on a couch", "A football player scoring a goal"]
>>> processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-large-itm-mlm-itc")
>>> model = BridgeTowerForContrastiveLearning.from_pretrained("BridgeTower/bridgetower-large-itm-mlm-itc")
>>> # forward pass
>>> scores = dict()
>>> for text in texts:
... # prepare inputs
... encoding = processor(image, text, return_tensors="pt")
... outputs = model(**encoding)
... scores[text] = outputs
```
The following example shows how to run image-text retrieval using [`BridgeTowerProcessor`] and [`BridgeTowerForImageAndTextRetrieval`].
```python
>>> from transformers import BridgeTowerProcessor, BridgeTowerForImageAndTextRetrieval
>>> import requests
>>> from PIL import Image
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> texts = ["An image of two cats chilling on a couch", "A football player scoring a goal"]
>>> processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-base-itm-mlm")
>>> model = BridgeTowerForImageAndTextRetrieval.from_pretrained("BridgeTower/bridgetower-base-itm-mlm")
>>> # forward pass
>>> scores = dict()
>>> for text in texts:
... # prepare inputs
... encoding = processor(image, text, return_tensors="pt")
... outputs = model(**encoding)
... scores[text] = outputs.logits[0, 1].item()
```
The following example shows how to run masked language modeling using [`BridgeTowerProcessor`] and [`BridgeTowerForMaskedLM`].
```python
>>> from transformers import BridgeTowerProcessor, BridgeTowerForMaskedLM
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000360943.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
>>> text = "a <mask> looking out of the window"
>>> processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-base-itm-mlm")
>>> model = BridgeTowerForMaskedLM.from_pretrained("BridgeTower/bridgetower-base-itm-mlm")
>>> # prepare inputs
>>> encoding = processor(image, text, return_tensors="pt")
>>> # forward pass
>>> outputs = model(**encoding)
>>> results = processor.decode(outputs.logits.argmax(dim=-1).squeeze(0).tolist())
>>> print(results)
.a cat looking out of the window.
```
Tips:
- This implementation of BridgeTower uses [`RobertaTokenizer`] to generate text embeddings and OpenAI's CLIP/ViT model to compute visual embeddings.
- Checkpoints for pre-trained [bridgeTower-base](https://huggingface.co/BridgeTower/bridgetower-base) and [bridgetower masked language modeling and image text matching](https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm) are released.
- Please refer to [Table 5](https://arxiv.org/pdf/2206.08657.pdf) for BridgeTower's performance on Image Retrieval and other down stream tasks.
- The PyTorch version of this model is only available in torch 1.10 and higher.
## BridgeTowerConfig
[[autodoc]] BridgeTowerConfig
## BridgeTowerTextConfig
[[autodoc]] BridgeTowerTextConfig
## BridgeTowerVisionConfig
[[autodoc]] BridgeTowerVisionConfig
## BridgeTowerImageProcessor
[[autodoc]] BridgeTowerImageProcessor
- preprocess
## BridgeTowerProcessor
[[autodoc]] BridgeTowerProcessor
- __call__
## BridgeTowerModel
[[autodoc]] BridgeTowerModel
- forward
## BridgeTowerForContrastiveLearning
[[autodoc]] BridgeTowerForContrastiveLearning
- forward
## BridgeTowerForMaskedLM
[[autodoc]] BridgeTowerForMaskedLM
- forward
## BridgeTowerForImageAndTextRetrieval
[[autodoc]] BridgeTowerForImageAndTextRetrieval
- forward
|
transformers/docs/source/en/model_doc/bridgetower.md/0
|
{
"file_path": "transformers/docs/source/en/model_doc/bridgetower.md",
"repo_id": "transformers",
"token_count": 2392
}
| 10 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# EfficientNet
## Overview
The EfficientNet model was proposed in [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946)
by Mingxing Tan and Quoc V. Le. EfficientNets are a family of image classification models, which achieve state-of-the-art accuracy, yet being an order-of-magnitude smaller and faster than previous models.
The abstract from the paper is the following:
*Convolutional Neural Networks (ConvNets) are commonly developed at a fixed resource budget, and then scaled up for better accuracy if more resources are available. In this paper, we systematically study model scaling and identify that carefully balancing network depth, width, and resolution can lead to better performance. Based on this observation, we propose a new scaling method that uniformly scales all dimensions of depth/width/resolution using a simple yet highly effective compound coefficient. We demonstrate the effectiveness of this method on scaling up MobileNets and ResNet.
To go even further, we use neural architecture search to design a new baseline network and scale it up to obtain a family of models, called EfficientNets, which achieve much better accuracy and efficiency than previous ConvNets. In particular, our EfficientNet-B7 achieves state-of-the-art 84.3% top-1 accuracy on ImageNet, while being 8.4x smaller and 6.1x faster on inference than the best existing ConvNet. Our EfficientNets also transfer well and achieve state-of-the-art accuracy on CIFAR-100 (91.7%), Flowers (98.8%), and 3 other transfer learning datasets, with an order of magnitude fewer parameters.*
This model was contributed by [adirik](https://huggingface.co/adirik).
The original code can be found [here](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet).
## EfficientNetConfig
[[autodoc]] EfficientNetConfig
## EfficientNetImageProcessor
[[autodoc]] EfficientNetImageProcessor
- preprocess
## EfficientNetModel
[[autodoc]] EfficientNetModel
- forward
## EfficientNetForImageClassification
[[autodoc]] EfficientNetForImageClassification
- forward
|
transformers/docs/source/en/model_doc/efficientnet.md/0
|
{
"file_path": "transformers/docs/source/en/model_doc/efficientnet.md",
"repo_id": "transformers",
"token_count": 725
}
| 11 |
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# FNet
## Overview
The FNet model was proposed in [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by
James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon. The model replaces the self-attention layer in a BERT
model with a fourier transform which returns only the real parts of the transform. The model is significantly faster
than the BERT model because it has fewer parameters and is more memory efficient. The model achieves about 92-97%
accuracy of BERT counterparts on GLUE benchmark, and trains much faster than the BERT model. The abstract from the
paper is the following:
*We show that Transformer encoder architectures can be sped up, with limited accuracy costs, by replacing the
self-attention sublayers with simple linear transformations that "mix" input tokens. These linear mixers, along with
standard nonlinearities in feed-forward layers, prove competent at modeling semantic relationships in several text
classification tasks. Most surprisingly, we find that replacing the self-attention sublayer in a Transformer encoder
with a standard, unparameterized Fourier Transform achieves 92-97% of the accuracy of BERT counterparts on the GLUE
benchmark, but trains 80% faster on GPUs and 70% faster on TPUs at standard 512 input lengths. At longer input lengths,
our FNet model is significantly faster: when compared to the "efficient" Transformers on the Long Range Arena
benchmark, FNet matches the accuracy of the most accurate models, while outpacing the fastest models across all
sequence lengths on GPUs (and across relatively shorter lengths on TPUs). Finally, FNet has a light memory footprint
and is particularly efficient at smaller model sizes; for a fixed speed and accuracy budget, small FNet models
outperform Transformer counterparts.*
This model was contributed by [gchhablani](https://huggingface.co/gchhablani). The original code can be found [here](https://github.com/google-research/google-research/tree/master/f_net).
## Usage tips
The model was trained without an attention mask as it is based on Fourier Transform. The model was trained with
maximum sequence length 512 which includes pad tokens. Hence, it is highly recommended to use the same maximum
sequence length for fine-tuning and inference.
## Resources
- [Text classification task guide](../tasks/sequence_classification)
- [Token classification task guide](../tasks/token_classification)
- [Question answering task guide](../tasks/question_answering)
- [Masked language modeling task guide](../tasks/masked_language_modeling)
- [Multiple choice task guide](../tasks/multiple_choice)
## FNetConfig
[[autodoc]] FNetConfig
## FNetTokenizer
[[autodoc]] FNetTokenizer
- build_inputs_with_special_tokens
- get_special_tokens_mask
- create_token_type_ids_from_sequences
- save_vocabulary
## FNetTokenizerFast
[[autodoc]] FNetTokenizerFast
## FNetModel
[[autodoc]] FNetModel
- forward
## FNetForPreTraining
[[autodoc]] FNetForPreTraining
- forward
## FNetForMaskedLM
[[autodoc]] FNetForMaskedLM
- forward
## FNetForNextSentencePrediction
[[autodoc]] FNetForNextSentencePrediction
- forward
## FNetForSequenceClassification
[[autodoc]] FNetForSequenceClassification
- forward
## FNetForMultipleChoice
[[autodoc]] FNetForMultipleChoice
- forward
## FNetForTokenClassification
[[autodoc]] FNetForTokenClassification
- forward
## FNetForQuestionAnswering
[[autodoc]] FNetForQuestionAnswering
- forward
|
transformers/docs/source/en/model_doc/fnet.md/0
|
{
"file_path": "transformers/docs/source/en/model_doc/fnet.md",
"repo_id": "transformers",
"token_count": 1150
}
| 12 |
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# GPT-J
## Overview
The GPT-J model was released in the [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax) repository by Ben Wang and Aran Komatsuzaki. It is a GPT-2-like
causal language model trained on [the Pile](https://pile.eleuther.ai/) dataset.
This model was contributed by [Stella Biderman](https://huggingface.co/stellaathena).
## Usage tips
- To load [GPT-J](https://huggingface.co/EleutherAI/gpt-j-6B) in float32 one would need at least 2x model size
RAM: 1x for initial weights and another 1x to load the checkpoint. So for GPT-J it would take at least 48GB
RAM to just load the model. To reduce the RAM usage there are a few options. The `torch_dtype` argument can be
used to initialize the model in half-precision on a CUDA device only. There is also a fp16 branch which stores the fp16 weights,
which could be used to further minimize the RAM usage:
```python
>>> from transformers import GPTJForCausalLM
>>> import torch
>>> device = "cuda"
>>> model = GPTJForCausalLM.from_pretrained(
... "EleutherAI/gpt-j-6B",
... revision="float16",
... torch_dtype=torch.float16,
... ).to(device)
```
- The model should fit on 16GB GPU for inference. For training/fine-tuning it would take much more GPU RAM. Adam
optimizer for example makes four copies of the model: model, gradients, average and squared average of the gradients.
So it would need at least 4x model size GPU memory, even with mixed precision as gradient updates are in fp32. This
is not including the activations and data batches, which would again require some more GPU RAM. So one should explore
solutions such as DeepSpeed, to train/fine-tune the model. Another option is to use the original codebase to
train/fine-tune the model on TPU and then convert the model to Transformers format for inference. Instructions for
that could be found [here](https://github.com/kingoflolz/mesh-transformer-jax/blob/master/howto_finetune.md)
- Although the embedding matrix has a size of 50400, only 50257 entries are used by the GPT-2 tokenizer. These extra
tokens are added for the sake of efficiency on TPUs. To avoid the mismatch between embedding matrix size and vocab
size, the tokenizer for [GPT-J](https://huggingface.co/EleutherAI/gpt-j-6B) contains 143 extra tokens
`<|extratoken_1|>... <|extratoken_143|>`, so the `vocab_size` of tokenizer also becomes 50400.
## Usage examples
The [`~generation.GenerationMixin.generate`] method can be used to generate text using GPT-J
model.
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-j-6B")
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
>>> prompt = (
... "In a shocking finding, scientists discovered a herd of unicorns living in a remote, "
... "previously unexplored valley, in the Andes Mountains. Even more surprising to the "
... "researchers was the fact that the unicorns spoke perfect English."
... )
>>> input_ids = tokenizer(prompt, return_tensors="pt").input_ids
>>> gen_tokens = model.generate(
... input_ids,
... do_sample=True,
... temperature=0.9,
... max_length=100,
... )
>>> gen_text = tokenizer.batch_decode(gen_tokens)[0]
```
...or in float16 precision:
```python
>>> from transformers import GPTJForCausalLM, AutoTokenizer
>>> import torch
>>> device = "cuda"
>>> model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B", torch_dtype=torch.float16).to(device)
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
>>> prompt = (
... "In a shocking finding, scientists discovered a herd of unicorns living in a remote, "
... "previously unexplored valley, in the Andes Mountains. Even more surprising to the "
... "researchers was the fact that the unicorns spoke perfect English."
... )
>>> input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
>>> gen_tokens = model.generate(
... input_ids,
... do_sample=True,
... temperature=0.9,
... max_length=100,
... )
>>> gen_text = tokenizer.batch_decode(gen_tokens)[0]
```
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with GPT-J. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
<PipelineTag pipeline="text-generation"/>
- Description of [GPT-J](https://huggingface.co/EleutherAI/gpt-j-6B).
- A blog on how to [Deploy GPT-J 6B for inference using Hugging Face Transformers and Amazon SageMaker](https://huggingface.co/blog/gptj-sagemaker).
- A blog on how to [Accelerate GPT-J inference with DeepSpeed-Inference on GPUs](https://www.philschmid.de/gptj-deepspeed-inference).
- A blog post introducing [GPT-J-6B: 6B JAX-Based Transformer](https://arankomatsuzaki.wordpress.com/2021/06/04/gpt-j/). 🌎
- A notebook for [GPT-J-6B Inference Demo](https://colab.research.google.com/github/kingoflolz/mesh-transformer-jax/blob/master/colab_demo.ipynb). 🌎
- Another notebook demonstrating [Inference with GPT-J-6B](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/GPT-J-6B/Inference_with_GPT_J_6B.ipynb).
- [Causal language modeling](https://huggingface.co/course/en/chapter7/6?fw=pt#training-a-causal-language-model-from-scratch) chapter of the 🤗 Hugging Face Course.
- [`GPTJForCausalLM`] is supported by this [causal language modeling example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#gpt-2gpt-and-causal-language-modeling), [text generation example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-generation), and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb).
- [`TFGPTJForCausalLM`] is supported by this [causal language modeling example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/language-modeling#run_clmpy) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb).
- [`FlaxGPTJForCausalLM`] is supported by this [causal language modeling example script](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling#causal-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/causal_language_modeling_flax.ipynb).
**Documentation resources**
- [Text classification task guide](../tasks/sequence_classification)
- [Question answering task guide](../tasks/question_answering)
- [Causal language modeling task guide](../tasks/language_modeling)
## GPTJConfig
[[autodoc]] GPTJConfig
- all
<frameworkcontent>
<pt>
## GPTJModel
[[autodoc]] GPTJModel
- forward
## GPTJForCausalLM
[[autodoc]] GPTJForCausalLM
- forward
## GPTJForSequenceClassification
[[autodoc]] GPTJForSequenceClassification
- forward
## GPTJForQuestionAnswering
[[autodoc]] GPTJForQuestionAnswering
- forward
</pt>
<tf>
## TFGPTJModel
[[autodoc]] TFGPTJModel
- call
## TFGPTJForCausalLM
[[autodoc]] TFGPTJForCausalLM
- call
## TFGPTJForSequenceClassification
[[autodoc]] TFGPTJForSequenceClassification
- call
## TFGPTJForQuestionAnswering
[[autodoc]] TFGPTJForQuestionAnswering
- call
</tf>
<jax>
## FlaxGPTJModel
[[autodoc]] FlaxGPTJModel
- __call__
## FlaxGPTJForCausalLM
[[autodoc]] FlaxGPTJForCausalLM
- __call__
</jax>
</frameworkcontent>
|
transformers/docs/source/en/model_doc/gptj.md/0
|
{
"file_path": "transformers/docs/source/en/model_doc/gptj.md",
"repo_id": "transformers",
"token_count": 2807
}
| 13 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# LLaMA
## Overview
The LLaMA model was proposed in [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample. It is a collection of foundation language models ranging from 7B to 65B parameters.
The abstract from the paper is the following:
*We introduce LLaMA, a collection of foundation language models ranging from 7B to 65B parameters. We train our models on trillions of tokens, and show that it is possible to train state-of-the-art models using publicly available datasets exclusively, without resorting to proprietary and inaccessible datasets. In particular, LLaMA-13B outperforms GPT-3 (175B) on most benchmarks, and LLaMA-65B is competitive with the best models, Chinchilla-70B and PaLM-540B. We release all our models to the research community. *
This model was contributed by [zphang](https://huggingface.co/zphang) with contributions from [BlackSamorez](https://huggingface.co/BlackSamorez). The code of the implementation in Hugging Face is based on GPT-NeoX [here](https://github.com/EleutherAI/gpt-neox). The original code of the authors can be found [here](https://github.com/facebookresearch/llama).
## Usage tips
- Weights for the LLaMA models can be obtained from by filling out [this form](https://docs.google.com/forms/d/e/1FAIpQLSfqNECQnMkycAp2jP4Z9TFX0cGR4uf7b_fBxjY_OjhJILlKGA/viewform?usp=send_form)
- After downloading the weights, they will need to be converted to the Hugging Face Transformers format using the [conversion script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py). The script can be called with the following (example) command:
```bash
python src/transformers/models/llama/convert_llama_weights_to_hf.py \
--input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path
```
- After conversion, the model and tokenizer can be loaded via:
```python
from transformers import LlamaForCausalLM, LlamaTokenizer
tokenizer = LlamaTokenizer.from_pretrained("/output/path")
model = LlamaForCausalLM.from_pretrained("/output/path")
```
Note that executing the script requires enough CPU RAM to host the whole model in float16 precision (even if the biggest versions
come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM). For the 65B model, it's thus 130GB of RAM needed.
- The LLaMA tokenizer is a BPE model based on [sentencepiece](https://github.com/google/sentencepiece). One quirk of sentencepiece is that when decoding a sequence, if the first token is the start of the word (e.g. "Banana"), the tokenizer does not prepend the prefix space to the string.
This model was contributed by [zphang](https://huggingface.co/zphang) with contributions from [BlackSamorez](https://huggingface.co/BlackSamorez). The code of the implementation in Hugging Face is based on GPT-NeoX [here](https://github.com/EleutherAI/gpt-neox). The original code of the authors can be found [here](https://github.com/facebookresearch/llama). The Flax version of the implementation was contributed by [afmck](https://huggingface.co/afmck) with the code in the implementation based on Hugging Face's Flax GPT-Neo.
Based on the original LLaMA model, Meta AI has released some follow-up works:
- **Llama2**: Llama2 is an improved version of Llama with some architectural tweaks (Grouped Query Attention), and is pre-trained on 2Trillion tokens. Refer to the documentation of Llama2 which can be found [here](llama2).
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with LLaMA. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
<PipelineTag pipeline="text-classification"/>
- A [notebook](https://colab.research.google.com/github/bigscience-workshop/petals/blob/main/examples/prompt-tuning-sst2.ipynb#scrollTo=f04ba4d2) on how to use prompt tuning to adapt the LLaMA model for text classification task. 🌎
<PipelineTag pipeline="question-answering"/>
- [StackLLaMA: A hands-on guide to train LLaMA with RLHF](https://huggingface.co/blog/stackllama#stackllama-a-hands-on-guide-to-train-llama-with-rlhf), a blog post about how to train LLaMA to answer questions on [Stack Exchange](https://stackexchange.com/) with RLHF.
⚗️ Optimization
- A [notebook](https://colab.research.google.com/drive/1SQUXq1AMZPSLD4mk3A3swUIc6Y2dclme?usp=sharing) on how to fine-tune LLaMA model using xturing library on GPU which has limited memory. 🌎
⚡️ Inference
- A [notebook](https://colab.research.google.com/github/DominguesM/alpaca-lora-ptbr-7b/blob/main/notebooks/02%20-%20Evaluate.ipynb) on how to run the LLaMA Model using PeftModel from the 🤗 PEFT library. 🌎
- A [notebook](https://colab.research.google.com/drive/1l2GiSSPbajVyp2Nk3CFT4t3uH6-5TiBe?usp=sharing) on how to load a PEFT adapter LLaMA model with LangChain. 🌎
🚀 Deploy
- A [notebook](https://colab.research.google.com/github/lxe/simple-llama-finetuner/blob/master/Simple_LLaMA_FineTuner.ipynb#scrollTo=3PM_DilAZD8T) on how to fine-tune LLaMA model using LoRA method via the 🤗 PEFT library with intuitive UI. 🌎
- A [notebook](https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart-foundation-models/text-generation-open-llama.ipynb) on how to deploy Open-LLaMA model for text generation on Amazon SageMaker. 🌎
## LlamaConfig
[[autodoc]] LlamaConfig
## LlamaTokenizer
[[autodoc]] LlamaTokenizer
- build_inputs_with_special_tokens
- get_special_tokens_mask
- create_token_type_ids_from_sequences
- save_vocabulary
## LlamaTokenizerFast
[[autodoc]] LlamaTokenizerFast
- build_inputs_with_special_tokens
- get_special_tokens_mask
- create_token_type_ids_from_sequences
- update_post_processor
- save_vocabulary
## LlamaModel
[[autodoc]] LlamaModel
- forward
## LlamaForCausalLM
[[autodoc]] LlamaForCausalLM
- forward
## LlamaForSequenceClassification
[[autodoc]] LlamaForSequenceClassification
- forward
## LlamaForQuestionAnswering
[[autodoc]] LlamaForQuestionAnswering
- forward
## LlamaForTokenClassification
[[autodoc]] LlamaForTokenClassification
- forward
## FlaxLlamaModel
[[autodoc]] FlaxLlamaModel
- __call__
## FlaxLlamaForCausalLM
[[autodoc]] FlaxLlamaForCausalLM
- __call__
|
transformers/docs/source/en/model_doc/llama.md/0
|
{
"file_path": "transformers/docs/source/en/model_doc/llama.md",
"repo_id": "transformers",
"token_count": 2384
}
| 14 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# MarkupLM
## Overview
The MarkupLM model was proposed in [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document
Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei. MarkupLM is BERT, but
applied to HTML pages instead of raw text documents. The model incorporates additional embedding layers to improve
performance, similar to [LayoutLM](layoutlm).
The model can be used for tasks like question answering on web pages or information extraction from web pages. It obtains
state-of-the-art results on 2 important benchmarks:
- [WebSRC](https://x-lance.github.io/WebSRC/), a dataset for Web-Based Structural Reading Comprehension (a bit like SQuAD but for web pages)
- [SWDE](https://www.researchgate.net/publication/221299838_From_one_tree_to_a_forest_a_unified_solution_for_structured_web_data_extraction), a dataset
for information extraction from web pages (basically named-entity recognition on web pages)
The abstract from the paper is the following:
*Multimodal pre-training with text, layout, and image has made significant progress for Visually-rich Document
Understanding (VrDU), especially the fixed-layout documents such as scanned document images. While, there are still a
large number of digital documents where the layout information is not fixed and needs to be interactively and
dynamically rendered for visualization, making existing layout-based pre-training approaches not easy to apply. In this
paper, we propose MarkupLM for document understanding tasks with markup languages as the backbone such as
HTML/XML-based documents, where text and markup information is jointly pre-trained. Experiment results show that the
pre-trained MarkupLM significantly outperforms the existing strong baseline models on several document understanding
tasks. The pre-trained model and code will be publicly available.*
This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found [here](https://github.com/microsoft/unilm/tree/master/markuplm).
## Usage tips
- In addition to `input_ids`, [`~MarkupLMModel.forward`] expects 2 additional inputs, namely `xpath_tags_seq` and `xpath_subs_seq`.
These are the XPATH tags and subscripts respectively for each token in the input sequence.
- One can use [`MarkupLMProcessor`] to prepare all data for the model. Refer to the [usage guide](#usage-markuplmprocessor) for more info.
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/markuplm_architecture.jpg"
alt="drawing" width="600"/>
<small> MarkupLM architecture. Taken from the <a href="https://arxiv.org/abs/2110.08518">original paper.</a> </small>
## Usage: MarkupLMProcessor
The easiest way to prepare data for the model is to use [`MarkupLMProcessor`], which internally combines a feature extractor
([`MarkupLMFeatureExtractor`]) and a tokenizer ([`MarkupLMTokenizer`] or [`MarkupLMTokenizerFast`]). The feature extractor is
used to extract all nodes and xpaths from the HTML strings, which are then provided to the tokenizer, which turns them into the
token-level inputs of the model (`input_ids` etc.). Note that you can still use the feature extractor and tokenizer separately,
if you only want to handle one of the two tasks.
```python
from transformers import MarkupLMFeatureExtractor, MarkupLMTokenizerFast, MarkupLMProcessor
feature_extractor = MarkupLMFeatureExtractor()
tokenizer = MarkupLMTokenizerFast.from_pretrained("microsoft/markuplm-base")
processor = MarkupLMProcessor(feature_extractor, tokenizer)
```
In short, one can provide HTML strings (and possibly additional data) to [`MarkupLMProcessor`],
and it will create the inputs expected by the model. Internally, the processor first uses
[`MarkupLMFeatureExtractor`] to get a list of nodes and corresponding xpaths. The nodes and
xpaths are then provided to [`MarkupLMTokenizer`] or [`MarkupLMTokenizerFast`], which converts them
to token-level `input_ids`, `attention_mask`, `token_type_ids`, `xpath_subs_seq`, `xpath_tags_seq`.
Optionally, one can provide node labels to the processor, which are turned into token-level `labels`.
[`MarkupLMFeatureExtractor`] uses [Beautiful Soup](https://www.crummy.com/software/BeautifulSoup/bs4/doc/), a Python library for
pulling data out of HTML and XML files, under the hood. Note that you can still use your own parsing solution of
choice, and provide the nodes and xpaths yourself to [`MarkupLMTokenizer`] or [`MarkupLMTokenizerFast`].
In total, there are 5 use cases that are supported by the processor. Below, we list them all. Note that each of these
use cases work for both batched and non-batched inputs (we illustrate them for non-batched inputs).
**Use case 1: web page classification (training, inference) + token classification (inference), parse_html = True**
This is the simplest case, in which the processor will use the feature extractor to get all nodes and xpaths from the HTML.
```python
>>> from transformers import MarkupLMProcessor
>>> processor = MarkupLMProcessor.from_pretrained("microsoft/markuplm-base")
>>> html_string = """
... <!DOCTYPE html>
... <html>
... <head>
... <title>Hello world</title>
... </head>
... <body>
... <h1>Welcome</h1>
... <p>Here is my website.</p>
... </body>
... </html>"""
>>> # note that you can also add provide all tokenizer parameters here such as padding, truncation
>>> encoding = processor(html_string, return_tensors="pt")
>>> print(encoding.keys())
dict_keys(['input_ids', 'token_type_ids', 'attention_mask', 'xpath_tags_seq', 'xpath_subs_seq'])
```
**Use case 2: web page classification (training, inference) + token classification (inference), parse_html=False**
In case one already has obtained all nodes and xpaths, one doesn't need the feature extractor. In that case, one should
provide the nodes and corresponding xpaths themselves to the processor, and make sure to set `parse_html` to `False`.
```python
>>> from transformers import MarkupLMProcessor
>>> processor = MarkupLMProcessor.from_pretrained("microsoft/markuplm-base")
>>> processor.parse_html = False
>>> nodes = ["hello", "world", "how", "are"]
>>> xpaths = ["/html/body/div/li[1]/div/span", "/html/body/div/li[1]/div/span", "html/body", "html/body/div"]
>>> encoding = processor(nodes=nodes, xpaths=xpaths, return_tensors="pt")
>>> print(encoding.keys())
dict_keys(['input_ids', 'token_type_ids', 'attention_mask', 'xpath_tags_seq', 'xpath_subs_seq'])
```
**Use case 3: token classification (training), parse_html=False**
For token classification tasks (such as [SWDE](https://paperswithcode.com/dataset/swde)), one can also provide the
corresponding node labels in order to train a model. The processor will then convert these into token-level `labels`.
By default, it will only label the first wordpiece of a word, and label the remaining wordpieces with -100, which is the
`ignore_index` of PyTorch's CrossEntropyLoss. In case you want all wordpieces of a word to be labeled, you can
initialize the tokenizer with `only_label_first_subword` set to `False`.
```python
>>> from transformers import MarkupLMProcessor
>>> processor = MarkupLMProcessor.from_pretrained("microsoft/markuplm-base")
>>> processor.parse_html = False
>>> nodes = ["hello", "world", "how", "are"]
>>> xpaths = ["/html/body/div/li[1]/div/span", "/html/body/div/li[1]/div/span", "html/body", "html/body/div"]
>>> node_labels = [1, 2, 2, 1]
>>> encoding = processor(nodes=nodes, xpaths=xpaths, node_labels=node_labels, return_tensors="pt")
>>> print(encoding.keys())
dict_keys(['input_ids', 'token_type_ids', 'attention_mask', 'xpath_tags_seq', 'xpath_subs_seq', 'labels'])
```
**Use case 4: web page question answering (inference), parse_html=True**
For question answering tasks on web pages, you can provide a question to the processor. By default, the
processor will use the feature extractor to get all nodes and xpaths, and create [CLS] question tokens [SEP] word tokens [SEP].
```python
>>> from transformers import MarkupLMProcessor
>>> processor = MarkupLMProcessor.from_pretrained("microsoft/markuplm-base")
>>> html_string = """
... <!DOCTYPE html>
... <html>
... <head>
... <title>Hello world</title>
... </head>
... <body>
... <h1>Welcome</h1>
... <p>My name is Niels.</p>
... </body>
... </html>"""
>>> question = "What's his name?"
>>> encoding = processor(html_string, questions=question, return_tensors="pt")
>>> print(encoding.keys())
dict_keys(['input_ids', 'token_type_ids', 'attention_mask', 'xpath_tags_seq', 'xpath_subs_seq'])
```
**Use case 5: web page question answering (inference), parse_html=False**
For question answering tasks (such as WebSRC), you can provide a question to the processor. If you have extracted
all nodes and xpaths yourself, you can provide them directly to the processor. Make sure to set `parse_html` to `False`.
```python
>>> from transformers import MarkupLMProcessor
>>> processor = MarkupLMProcessor.from_pretrained("microsoft/markuplm-base")
>>> processor.parse_html = False
>>> nodes = ["hello", "world", "how", "are"]
>>> xpaths = ["/html/body/div/li[1]/div/span", "/html/body/div/li[1]/div/span", "html/body", "html/body/div"]
>>> question = "What's his name?"
>>> encoding = processor(nodes=nodes, xpaths=xpaths, questions=question, return_tensors="pt")
>>> print(encoding.keys())
dict_keys(['input_ids', 'token_type_ids', 'attention_mask', 'xpath_tags_seq', 'xpath_subs_seq'])
```
## Resources
- [Demo notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/MarkupLM)
- [Text classification task guide](../tasks/sequence_classification)
- [Token classification task guide](../tasks/token_classification)
- [Question answering task guide](../tasks/question_answering)
## MarkupLMConfig
[[autodoc]] MarkupLMConfig
- all
## MarkupLMFeatureExtractor
[[autodoc]] MarkupLMFeatureExtractor
- __call__
## MarkupLMTokenizer
[[autodoc]] MarkupLMTokenizer
- build_inputs_with_special_tokens
- get_special_tokens_mask
- create_token_type_ids_from_sequences
- save_vocabulary
## MarkupLMTokenizerFast
[[autodoc]] MarkupLMTokenizerFast
- all
## MarkupLMProcessor
[[autodoc]] MarkupLMProcessor
- __call__
## MarkupLMModel
[[autodoc]] MarkupLMModel
- forward
## MarkupLMForSequenceClassification
[[autodoc]] MarkupLMForSequenceClassification
- forward
## MarkupLMForTokenClassification
[[autodoc]] MarkupLMForTokenClassification
- forward
## MarkupLMForQuestionAnswering
[[autodoc]] MarkupLMForQuestionAnswering
- forward
|
transformers/docs/source/en/model_doc/markuplm.md/0
|
{
"file_path": "transformers/docs/source/en/model_doc/markuplm.md",
"repo_id": "transformers",
"token_count": 3443
}
| 15 |
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# MobileBERT
## Overview
The MobileBERT model was proposed in [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny
Zhou. It's a bidirectional transformer based on the BERT model, which is compressed and accelerated using several
approaches.
The abstract from the paper is the following:
*Natural Language Processing (NLP) has recently achieved great success by using huge pre-trained models with hundreds
of millions of parameters. However, these models suffer from heavy model sizes and high latency such that they cannot
be deployed to resource-limited mobile devices. In this paper, we propose MobileBERT for compressing and accelerating
the popular BERT model. Like the original BERT, MobileBERT is task-agnostic, that is, it can be generically applied to
various downstream NLP tasks via simple fine-tuning. Basically, MobileBERT is a thin version of BERT_LARGE, while
equipped with bottleneck structures and a carefully designed balance between self-attentions and feed-forward networks.
To train MobileBERT, we first train a specially designed teacher model, an inverted-bottleneck incorporated BERT_LARGE
model. Then, we conduct knowledge transfer from this teacher to MobileBERT. Empirical studies show that MobileBERT is
4.3x smaller and 5.5x faster than BERT_BASE while achieving competitive results on well-known benchmarks. On the
natural language inference tasks of GLUE, MobileBERT achieves a GLUEscore o 77.7 (0.6 lower than BERT_BASE), and 62 ms
latency on a Pixel 4 phone. On the SQuAD v1.1/v2.0 question answering task, MobileBERT achieves a dev F1 score of
90.0/79.2 (1.5/2.1 higher than BERT_BASE).*
This model was contributed by [vshampor](https://huggingface.co/vshampor). The original code can be found [here](https://github.com/google-research/google-research/tree/master/mobilebert).
## Usage tips
- MobileBERT is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather
than the left.
- MobileBERT is similar to BERT and therefore relies on the masked language modeling (MLM) objective. It is therefore
efficient at predicting masked tokens and at NLU in general, but is not optimal for text generation. Models trained
with a causal language modeling (CLM) objective are better in that regard.
## Resources
- [Text classification task guide](../tasks/sequence_classification)
- [Token classification task guide](../tasks/token_classification)
- [Question answering task guide](../tasks/question_answering)
- [Masked language modeling task guide](../tasks/masked_language_modeling)
- [Multiple choice task guide](../tasks/multiple_choice)
## MobileBertConfig
[[autodoc]] MobileBertConfig
## MobileBertTokenizer
[[autodoc]] MobileBertTokenizer
## MobileBertTokenizerFast
[[autodoc]] MobileBertTokenizerFast
## MobileBert specific outputs
[[autodoc]] models.mobilebert.modeling_mobilebert.MobileBertForPreTrainingOutput
[[autodoc]] models.mobilebert.modeling_tf_mobilebert.TFMobileBertForPreTrainingOutput
<frameworkcontent>
<pt>
## MobileBertModel
[[autodoc]] MobileBertModel
- forward
## MobileBertForPreTraining
[[autodoc]] MobileBertForPreTraining
- forward
## MobileBertForMaskedLM
[[autodoc]] MobileBertForMaskedLM
- forward
## MobileBertForNextSentencePrediction
[[autodoc]] MobileBertForNextSentencePrediction
- forward
## MobileBertForSequenceClassification
[[autodoc]] MobileBertForSequenceClassification
- forward
## MobileBertForMultipleChoice
[[autodoc]] MobileBertForMultipleChoice
- forward
## MobileBertForTokenClassification
[[autodoc]] MobileBertForTokenClassification
- forward
## MobileBertForQuestionAnswering
[[autodoc]] MobileBertForQuestionAnswering
- forward
</pt>
<tf>
## TFMobileBertModel
[[autodoc]] TFMobileBertModel
- call
## TFMobileBertForPreTraining
[[autodoc]] TFMobileBertForPreTraining
- call
## TFMobileBertForMaskedLM
[[autodoc]] TFMobileBertForMaskedLM
- call
## TFMobileBertForNextSentencePrediction
[[autodoc]] TFMobileBertForNextSentencePrediction
- call
## TFMobileBertForSequenceClassification
[[autodoc]] TFMobileBertForSequenceClassification
- call
## TFMobileBertForMultipleChoice
[[autodoc]] TFMobileBertForMultipleChoice
- call
## TFMobileBertForTokenClassification
[[autodoc]] TFMobileBertForTokenClassification
- call
## TFMobileBertForQuestionAnswering
[[autodoc]] TFMobileBertForQuestionAnswering
- call
</tf>
</frameworkcontent>
|
transformers/docs/source/en/model_doc/mobilebert.md/0
|
{
"file_path": "transformers/docs/source/en/model_doc/mobilebert.md",
"repo_id": "transformers",
"token_count": 1548
}
| 16 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Neighborhood Attention Transformer
<Tip warning={true}>
This model is in maintenance mode only, we don't accept any new PRs changing its code.
If you run into any issues running this model, please reinstall the last version that supported this model: v4.40.2.
You can do so by running the following command: `pip install -U transformers==4.40.2`.
</Tip>
## Overview
NAT was proposed in [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143)
by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
It is a hierarchical vision transformer based on Neighborhood Attention, a sliding-window self attention pattern.
The abstract from the paper is the following:
*We present Neighborhood Attention (NA), the first efficient and scalable sliding-window attention mechanism for vision.
NA is a pixel-wise operation, localizing self attention (SA) to the nearest neighboring pixels, and therefore enjoys a
linear time and space complexity compared to the quadratic complexity of SA. The sliding-window pattern allows NA's
receptive field to grow without needing extra pixel shifts, and preserves translational equivariance, unlike
Swin Transformer's Window Self Attention (WSA). We develop NATTEN (Neighborhood Attention Extension), a Python package
with efficient C++ and CUDA kernels, which allows NA to run up to 40% faster than Swin's WSA while using up to 25% less
memory. We further present Neighborhood Attention Transformer (NAT), a new hierarchical transformer design based on NA
that boosts image classification and downstream vision performance. Experimental results on NAT are competitive;
NAT-Tiny reaches 83.2% top-1 accuracy on ImageNet, 51.4% mAP on MS-COCO and 48.4% mIoU on ADE20K, which is 1.9%
ImageNet accuracy, 1.0% COCO mAP, and 2.6% ADE20K mIoU improvement over a Swin model with similar size. *
<img
src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/neighborhood-attention-pattern.jpg"
alt="drawing" width="600"/>
<small> Neighborhood Attention compared to other attention patterns.
Taken from the <a href="https://arxiv.org/abs/2204.07143">original paper</a>.</small>
This model was contributed by [Ali Hassani](https://huggingface.co/alihassanijr).
The original code can be found [here](https://github.com/SHI-Labs/Neighborhood-Attention-Transformer).
## Usage tips
- One can use the [`AutoImageProcessor`] API to prepare images for the model.
- NAT can be used as a *backbone*. When `output_hidden_states = True`,
it will output both `hidden_states` and `reshaped_hidden_states`.
The `reshaped_hidden_states` have a shape of `(batch, num_channels, height, width)` rather than
`(batch_size, height, width, num_channels)`.
Notes:
- NAT depends on [NATTEN](https://github.com/SHI-Labs/NATTEN/)'s implementation of Neighborhood Attention.
You can install it with pre-built wheels for Linux by referring to [shi-labs.com/natten](https://shi-labs.com/natten),
or build on your system by running `pip install natten`.
Note that the latter will likely take time to compile. NATTEN does not support Windows devices yet.
- Patch size of 4 is only supported at the moment.
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with NAT.
<PipelineTag pipeline="image-classification"/>
- [`NatForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb).
- See also: [Image classification task guide](../tasks/image_classification)
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
## NatConfig
[[autodoc]] NatConfig
## NatModel
[[autodoc]] NatModel
- forward
## NatForImageClassification
[[autodoc]] NatForImageClassification
- forward
|
transformers/docs/source/en/model_doc/nat.md/0
|
{
"file_path": "transformers/docs/source/en/model_doc/nat.md",
"repo_id": "transformers",
"token_count": 1320
}
| 17 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# OWL-ViT
## Overview
The OWL-ViT (short for Vision Transformer for Open-World Localization) was proposed in [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby. OWL-ViT is an open-vocabulary object detection network trained on a variety of (image, text) pairs. It can be used to query an image with one or multiple text queries to search for and detect target objects described in text.
The abstract from the paper is the following:
*Combining simple architectures with large-scale pre-training has led to massive improvements in image classification. For object detection, pre-training and scaling approaches are less well established, especially in the long-tailed and open-vocabulary setting, where training data is relatively scarce. In this paper, we propose a strong recipe for transferring image-text models to open-vocabulary object detection. We use a standard Vision Transformer architecture with minimal modifications, contrastive image-text pre-training, and end-to-end detection fine-tuning. Our analysis of the scaling properties of this setup shows that increasing image-level pre-training and model size yield consistent improvements on the downstream detection task. We provide the adaptation strategies and regularizations needed to attain very strong performance on zero-shot text-conditioned and one-shot image-conditioned object detection. Code and models are available on GitHub.*
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/owlvit_architecture.jpg"
alt="drawing" width="600"/>
<small> OWL-ViT architecture. Taken from the <a href="https://arxiv.org/abs/2205.06230">original paper</a>. </small>
This model was contributed by [adirik](https://huggingface.co/adirik). The original code can be found [here](https://github.com/google-research/scenic/tree/main/scenic/projects/owl_vit).
## Usage tips
OWL-ViT is a zero-shot text-conditioned object detection model. OWL-ViT uses [CLIP](clip) as its multi-modal backbone, with a ViT-like Transformer to get visual features and a causal language model to get the text features. To use CLIP for detection, OWL-ViT removes the final token pooling layer of the vision model and attaches a lightweight classification and box head to each transformer output token. Open-vocabulary classification is enabled by replacing the fixed classification layer weights with the class-name embeddings obtained from the text model. The authors first train CLIP from scratch and fine-tune it end-to-end with the classification and box heads on standard detection datasets using a bipartite matching loss. One or multiple text queries per image can be used to perform zero-shot text-conditioned object detection.
[`OwlViTImageProcessor`] can be used to resize (or rescale) and normalize images for the model and [`CLIPTokenizer`] is used to encode the text. [`OwlViTProcessor`] wraps [`OwlViTImageProcessor`] and [`CLIPTokenizer`] into a single instance to both encode the text and prepare the images. The following example shows how to perform object detection using [`OwlViTProcessor`] and [`OwlViTForObjectDetection`].
```python
>>> import requests
>>> from PIL import Image
>>> import torch
>>> from transformers import OwlViTProcessor, OwlViTForObjectDetection
>>> processor = OwlViTProcessor.from_pretrained("google/owlvit-base-patch32")
>>> model = OwlViTForObjectDetection.from_pretrained("google/owlvit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> text_labels = [["a photo of a cat", "a photo of a dog"]]
>>> inputs = processor(text=text_labels, images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> # Target image sizes (height, width) to rescale box predictions [batch_size, 2]
>>> target_sizes = torch.tensor([(image.height, image.width)])
>>> # Convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax)
>>> results = processor.post_process_grounded_object_detection(
... outputs=outputs, target_sizes=target_sizes, threshold=0.1, text_labels=text_labels
... )
>>> # Retrieve predictions for the first image for the corresponding text queries
>>> result = results[0]
>>> boxes, scores, text_labels = result["boxes"], result["scores"], result["text_labels"]
>>> for box, score, text_label in zip(boxes, scores, text_labels):
... box = [round(i, 2) for i in box.tolist()]
... print(f"Detected {text_label} with confidence {round(score.item(), 3)} at location {box}")
Detected a photo of a cat with confidence 0.707 at location [324.97, 20.44, 640.58, 373.29]
Detected a photo of a cat with confidence 0.717 at location [1.46, 55.26, 315.55, 472.17]
```
## Resources
A demo notebook on using OWL-ViT for zero- and one-shot (image-guided) object detection can be found [here](https://github.com/huggingface/notebooks/blob/main/examples/zeroshot_object_detection_with_owlvit.ipynb).
## OwlViTConfig
[[autodoc]] OwlViTConfig
- from_text_vision_configs
## OwlViTTextConfig
[[autodoc]] OwlViTTextConfig
## OwlViTVisionConfig
[[autodoc]] OwlViTVisionConfig
## OwlViTImageProcessor
[[autodoc]] OwlViTImageProcessor
- preprocess
- post_process_object_detection
- post_process_image_guided_detection
## OwlViTProcessor
[[autodoc]] OwlViTProcessor
- __call__
- post_process_grounded_object_detection
- post_process_image_guided_detection
## OwlViTModel
[[autodoc]] OwlViTModel
- forward
- get_text_features
- get_image_features
## OwlViTTextModel
[[autodoc]] OwlViTTextModel
- forward
## OwlViTVisionModel
[[autodoc]] OwlViTVisionModel
- forward
## OwlViTForObjectDetection
[[autodoc]] OwlViTForObjectDetection
- forward
- image_guided_detection
|
transformers/docs/source/en/model_doc/owlvit.md/0
|
{
"file_path": "transformers/docs/source/en/model_doc/owlvit.md",
"repo_id": "transformers",
"token_count": 1993
}
| 18 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Pop2Piano
<div class="flex flex-wrap space-x-1">
<a href="https://huggingface.co/spaces/sweetcocoa/pop2piano">
<img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue">
</a>
</div>
## Overview
The Pop2Piano model was proposed in [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi and Kyogu Lee.
Piano covers of pop music are widely enjoyed, but generating them from music is not a trivial task. It requires great
expertise with playing piano as well as knowing different characteristics and melodies of a song. With Pop2Piano you
can directly generate a cover from a song's audio waveform. It is the first model to directly generate a piano cover
from pop audio without melody and chord extraction modules.
Pop2Piano is an encoder-decoder Transformer model based on [T5](https://arxiv.org/pdf/1910.10683.pdf). The input audio
is transformed to its waveform and passed to the encoder, which transforms it to a latent representation. The decoder
uses these latent representations to generate token ids in an autoregressive way. Each token id corresponds to one of four
different token types: time, velocity, note and 'special'. The token ids are then decoded to their equivalent MIDI file.
The abstract from the paper is the following:
*Piano covers of pop music are enjoyed by many people. However, the
task of automatically generating piano covers of pop music is still
understudied. This is partly due to the lack of synchronized
{Pop, Piano Cover} data pairs, which made it challenging to apply
the latest data-intensive deep learning-based methods. To leverage
the power of the data-driven approach, we make a large amount of
paired and synchronized {Pop, Piano Cover} data using an automated
pipeline. In this paper, we present Pop2Piano, a Transformer network
that generates piano covers given waveforms of pop music. To the best
of our knowledge, this is the first model to generate a piano cover
directly from pop audio without using melody and chord extraction
modules. We show that Pop2Piano, trained with our dataset, is capable
of producing plausible piano covers.*
This model was contributed by [Susnato Dhar](https://huggingface.co/susnato).
The original code can be found [here](https://github.com/sweetcocoa/pop2piano).
## Usage tips
* To use Pop2Piano, you will need to install the 🤗 Transformers library, as well as the following third party modules:
```bash
pip install pretty-midi==0.2.9 essentia==2.1b6.dev1034 librosa scipy
```
Please note that you may need to restart your runtime after installation.
* Pop2Piano is an Encoder-Decoder based model like T5.
* Pop2Piano can be used to generate midi-audio files for a given audio sequence.
* Choosing different composers in `Pop2PianoForConditionalGeneration.generate()` can lead to variety of different results.
* Setting the sampling rate to 44.1 kHz when loading the audio file can give good performance.
* Though Pop2Piano was mainly trained on Korean Pop music, it also does pretty well on other Western Pop or Hip Hop songs.
## Examples
- Example using HuggingFace Dataset:
```python
>>> from datasets import load_dataset
>>> from transformers import Pop2PianoForConditionalGeneration, Pop2PianoProcessor
>>> model = Pop2PianoForConditionalGeneration.from_pretrained("sweetcocoa/pop2piano")
>>> processor = Pop2PianoProcessor.from_pretrained("sweetcocoa/pop2piano")
>>> ds = load_dataset("sweetcocoa/pop2piano_ci", split="test")
>>> inputs = processor(
... audio=ds["audio"][0]["array"], sampling_rate=ds["audio"][0]["sampling_rate"], return_tensors="pt"
... )
>>> model_output = model.generate(input_features=inputs["input_features"], composer="composer1")
>>> tokenizer_output = processor.batch_decode(
... token_ids=model_output, feature_extractor_output=inputs
... )["pretty_midi_objects"][0]
>>> tokenizer_output.write("./Outputs/midi_output.mid")
```
- Example using your own audio file:
```python
>>> import librosa
>>> from transformers import Pop2PianoForConditionalGeneration, Pop2PianoProcessor
>>> audio, sr = librosa.load("<your_audio_file_here>", sr=44100) # feel free to change the sr to a suitable value.
>>> model = Pop2PianoForConditionalGeneration.from_pretrained("sweetcocoa/pop2piano")
>>> processor = Pop2PianoProcessor.from_pretrained("sweetcocoa/pop2piano")
>>> inputs = processor(audio=audio, sampling_rate=sr, return_tensors="pt")
>>> model_output = model.generate(input_features=inputs["input_features"], composer="composer1")
>>> tokenizer_output = processor.batch_decode(
... token_ids=model_output, feature_extractor_output=inputs
... )["pretty_midi_objects"][0]
>>> tokenizer_output.write("./Outputs/midi_output.mid")
```
- Example of processing multiple audio files in batch:
```python
>>> import librosa
>>> from transformers import Pop2PianoForConditionalGeneration, Pop2PianoProcessor
>>> # feel free to change the sr to a suitable value.
>>> audio1, sr1 = librosa.load("<your_first_audio_file_here>", sr=44100)
>>> audio2, sr2 = librosa.load("<your_second_audio_file_here>", sr=44100)
>>> model = Pop2PianoForConditionalGeneration.from_pretrained("sweetcocoa/pop2piano")
>>> processor = Pop2PianoProcessor.from_pretrained("sweetcocoa/pop2piano")
>>> inputs = processor(audio=[audio1, audio2], sampling_rate=[sr1, sr2], return_attention_mask=True, return_tensors="pt")
>>> # Since we now generating in batch(2 audios) we must pass the attention_mask
>>> model_output = model.generate(
... input_features=inputs["input_features"],
... attention_mask=inputs["attention_mask"],
... composer="composer1",
... )
>>> tokenizer_output = processor.batch_decode(
... token_ids=model_output, feature_extractor_output=inputs
... )["pretty_midi_objects"]
>>> # Since we now have 2 generated MIDI files
>>> tokenizer_output[0].write("./Outputs/midi_output1.mid")
>>> tokenizer_output[1].write("./Outputs/midi_output2.mid")
```
- Example of processing multiple audio files in batch (Using `Pop2PianoFeatureExtractor` and `Pop2PianoTokenizer`):
```python
>>> import librosa
>>> from transformers import Pop2PianoForConditionalGeneration, Pop2PianoFeatureExtractor, Pop2PianoTokenizer
>>> # feel free to change the sr to a suitable value.
>>> audio1, sr1 = librosa.load("<your_first_audio_file_here>", sr=44100)
>>> audio2, sr2 = librosa.load("<your_second_audio_file_here>", sr=44100)
>>> model = Pop2PianoForConditionalGeneration.from_pretrained("sweetcocoa/pop2piano")
>>> feature_extractor = Pop2PianoFeatureExtractor.from_pretrained("sweetcocoa/pop2piano")
>>> tokenizer = Pop2PianoTokenizer.from_pretrained("sweetcocoa/pop2piano")
>>> inputs = feature_extractor(
... audio=[audio1, audio2],
... sampling_rate=[sr1, sr2],
... return_attention_mask=True,
... return_tensors="pt",
... )
>>> # Since we now generating in batch(2 audios) we must pass the attention_mask
>>> model_output = model.generate(
... input_features=inputs["input_features"],
... attention_mask=inputs["attention_mask"],
... composer="composer1",
... )
>>> tokenizer_output = tokenizer.batch_decode(
... token_ids=model_output, feature_extractor_output=inputs
... )["pretty_midi_objects"]
>>> # Since we now have 2 generated MIDI files
>>> tokenizer_output[0].write("./Outputs/midi_output1.mid")
>>> tokenizer_output[1].write("./Outputs/midi_output2.mid")
```
## Pop2PianoConfig
[[autodoc]] Pop2PianoConfig
## Pop2PianoFeatureExtractor
[[autodoc]] Pop2PianoFeatureExtractor
- __call__
## Pop2PianoForConditionalGeneration
[[autodoc]] Pop2PianoForConditionalGeneration
- forward
- generate
## Pop2PianoTokenizer
[[autodoc]] Pop2PianoTokenizer
- __call__
## Pop2PianoProcessor
[[autodoc]] Pop2PianoProcessor
- __call__
|
transformers/docs/source/en/model_doc/pop2piano.md/0
|
{
"file_path": "transformers/docs/source/en/model_doc/pop2piano.md",
"repo_id": "transformers",
"token_count": 2624
}
| 19 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# ResNet
## Overview
The ResNet model was proposed in [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. Our implementation follows the small changes made by [Nvidia](https://catalog.ngc.nvidia.com/orgs/nvidia/resources/resnet_50_v1_5_for_pytorch), we apply the `stride=2` for downsampling in bottleneck's `3x3` conv and not in the first `1x1`. This is generally known as "ResNet v1.5".
ResNet introduced residual connections, they allow to train networks with an unseen number of layers (up to 1000). ResNet won the 2015 ILSVRC & COCO competition, one important milestone in deep computer vision.
The abstract from the paper is the following:
*Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers.
The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.*
The figure below illustrates the architecture of ResNet. Taken from the [original paper](https://arxiv.org/abs/1512.03385).
<img width="600" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/resnet_architecture.png"/>
This model was contributed by [Francesco](https://huggingface.co/Francesco). The TensorFlow version of this model was added by [amyeroberts](https://huggingface.co/amyeroberts). The original code can be found [here](https://github.com/KaimingHe/deep-residual-networks).
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with ResNet.
<PipelineTag pipeline="image-classification"/>
- [`ResNetForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb).
- See also: [Image classification task guide](../tasks/image_classification)
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
## ResNetConfig
[[autodoc]] ResNetConfig
<frameworkcontent>
<pt>
## ResNetModel
[[autodoc]] ResNetModel
- forward
## ResNetForImageClassification
[[autodoc]] ResNetForImageClassification
- forward
</pt>
<tf>
## TFResNetModel
[[autodoc]] TFResNetModel
- call
## TFResNetForImageClassification
[[autodoc]] TFResNetForImageClassification
- call
</tf>
<jax>
## FlaxResNetModel
[[autodoc]] FlaxResNetModel
- __call__
## FlaxResNetForImageClassification
[[autodoc]] FlaxResNetForImageClassification
- __call__
</jax>
</frameworkcontent>
|
transformers/docs/source/en/model_doc/resnet.md/0
|
{
"file_path": "transformers/docs/source/en/model_doc/resnet.md",
"repo_id": "transformers",
"token_count": 1253
}
| 20 |
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Speech Encoder Decoder Models
The [`SpeechEncoderDecoderModel`] can be used to initialize a speech-to-text model
with any pretrained speech autoencoding model as the encoder (*e.g.* [Wav2Vec2](wav2vec2), [Hubert](hubert)) and any pretrained autoregressive model as the decoder.
The effectiveness of initializing speech-sequence-to-text-sequence models with pretrained checkpoints for speech
recognition and speech translation has *e.g.* been shown in [Large-Scale Self- and Semi-Supervised Learning for Speech
Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli,
Alexis Conneau.
An example of how to use a [`SpeechEncoderDecoderModel`] for inference can be seen in [Speech2Text2](speech_to_text_2).
## Randomly initializing `SpeechEncoderDecoderModel` from model configurations.
[`SpeechEncoderDecoderModel`] can be randomly initialized from an encoder and a decoder config. In the following example, we show how to do this using the default [`Wav2Vec2Model`] configuration for the encoder
and the default [`BertForCausalLM`] configuration for the decoder.
```python
>>> from transformers import BertConfig, Wav2Vec2Config, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel
>>> config_encoder = Wav2Vec2Config()
>>> config_decoder = BertConfig()
>>> config = SpeechEncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder)
>>> model = SpeechEncoderDecoderModel(config=config)
```
## Initialising `SpeechEncoderDecoderModel` from a pretrained encoder and a pretrained decoder.
[`SpeechEncoderDecoderModel`] can be initialized from a pretrained encoder checkpoint and a pretrained decoder checkpoint. Note that any pretrained Transformer-based speech model, *e.g.* [Wav2Vec2](wav2vec2), [Hubert](hubert) can serve as the encoder and both pretrained auto-encoding models, *e.g.* BERT, pretrained causal language models, *e.g.* GPT2, as well as the pretrained decoder part of sequence-to-sequence models, *e.g.* decoder of BART, can be used as the decoder.
Depending on which architecture you choose as the decoder, the cross-attention layers might be randomly initialized.
Initializing [`SpeechEncoderDecoderModel`] from a pretrained encoder and decoder checkpoint requires the model to be fine-tuned on a downstream task, as has been shown in [the *Warm-starting-encoder-decoder blog post*](https://huggingface.co/blog/warm-starting-encoder-decoder).
To do so, the `SpeechEncoderDecoderModel` class provides a [`SpeechEncoderDecoderModel.from_encoder_decoder_pretrained`] method.
```python
>>> from transformers import SpeechEncoderDecoderModel
>>> model = SpeechEncoderDecoderModel.from_encoder_decoder_pretrained(
... "facebook/hubert-large-ll60k", "google-bert/bert-base-uncased"
... )
```
## Loading an existing `SpeechEncoderDecoderModel` checkpoint and perform inference.
To load fine-tuned checkpoints of the `SpeechEncoderDecoderModel` class, [`SpeechEncoderDecoderModel`] provides the `from_pretrained(...)` method just like any other model architecture in Transformers.
To perform inference, one uses the [`generate`] method, which allows to autoregressively generate text. This method supports various forms of decoding, such as greedy, beam search and multinomial sampling.
```python
>>> from transformers import Wav2Vec2Processor, SpeechEncoderDecoderModel
>>> from datasets import load_dataset
>>> import torch
>>> # load a fine-tuned speech translation model and corresponding processor
>>> model = SpeechEncoderDecoderModel.from_pretrained("facebook/wav2vec2-xls-r-300m-en-to-15")
>>> processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-xls-r-300m-en-to-15")
>>> # let's perform inference on a piece of English speech (which we'll translate to German)
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> input_values = processor(ds[0]["audio"]["array"], return_tensors="pt").input_values
>>> # autoregressively generate transcription (uses greedy decoding by default)
>>> generated_ids = model.generate(input_values)
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
>>> print(generated_text)
Mr. Quilter ist der Apostel der Mittelschicht und wir freuen uns, sein Evangelium willkommen heißen zu können.
```
## Training
Once the model is created, it can be fine-tuned similar to BART, T5 or any other encoder-decoder model on a dataset of (speech, text) pairs.
As you can see, only 2 inputs are required for the model in order to compute a loss: `input_values` (which are the
speech inputs) and `labels` (which are the `input_ids` of the encoded target sequence).
```python
>>> from transformers import AutoTokenizer, AutoFeatureExtractor, SpeechEncoderDecoderModel
>>> from datasets import load_dataset
>>> encoder_id = "facebook/wav2vec2-base-960h" # acoustic model encoder
>>> decoder_id = "google-bert/bert-base-uncased" # text decoder
>>> feature_extractor = AutoFeatureExtractor.from_pretrained(encoder_id)
>>> tokenizer = AutoTokenizer.from_pretrained(decoder_id)
>>> # Combine pre-trained encoder and pre-trained decoder to form a Seq2Seq model
>>> model = SpeechEncoderDecoderModel.from_encoder_decoder_pretrained(encoder_id, decoder_id)
>>> model.config.decoder_start_token_id = tokenizer.cls_token_id
>>> model.config.pad_token_id = tokenizer.pad_token_id
>>> # load an audio input and pre-process (normalise mean/std to 0/1)
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> input_values = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt").input_values
>>> # load its corresponding transcription and tokenize to generate labels
>>> labels = tokenizer(ds[0]["text"], return_tensors="pt").input_ids
>>> # the forward function automatically creates the correct decoder_input_ids
>>> loss = model(input_values=input_values, labels=labels).loss
>>> loss.backward()
```
## SpeechEncoderDecoderConfig
[[autodoc]] SpeechEncoderDecoderConfig
## SpeechEncoderDecoderModel
[[autodoc]] SpeechEncoderDecoderModel
- forward
- from_encoder_decoder_pretrained
## FlaxSpeechEncoderDecoderModel
[[autodoc]] FlaxSpeechEncoderDecoderModel
- __call__
- from_encoder_decoder_pretrained
|
transformers/docs/source/en/model_doc/speech-encoder-decoder.md/0
|
{
"file_path": "transformers/docs/source/en/model_doc/speech-encoder-decoder.md",
"repo_id": "transformers",
"token_count": 2092
}
| 21 |
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# T5v1.1
## Overview
T5v1.1 was released in the [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511)
repository by Colin Raffel et al. It's an improved version of the original T5 model.
This model was contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten). The original code can be
found [here](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511).
## Usage tips
One can directly plug in the weights of T5v1.1 into a T5 model, like so:
```python
>>> from transformers import T5ForConditionalGeneration
>>> model = T5ForConditionalGeneration.from_pretrained("google/t5-v1_1-base")
```
T5 Version 1.1 includes the following improvements compared to the original T5 model:
- GEGLU activation in the feed-forward hidden layer, rather than ReLU. See [this paper](https://arxiv.org/abs/2002.05202).
- Dropout was turned off in pre-training (quality win). Dropout should be re-enabled during fine-tuning.
- Pre-trained on C4 only without mixing in the downstream tasks.
- No parameter sharing between the embedding and classifier layer.
- "xl" and "xxl" replace "3B" and "11B". The model shapes are a bit different - larger `d_model` and smaller
`num_heads` and `d_ff`.
Note: T5 Version 1.1 was only pre-trained on [C4](https://huggingface.co/datasets/c4) excluding any supervised
training. Therefore, this model has to be fine-tuned before it is usable on a downstream task, unlike the original T5
model. Since t5v1.1 was pre-trained unsupervisedly, there's no real advantage to using a task prefix during single-task
fine-tuning. If you are doing multi-task fine-tuning, you should use a prefix.
Google has released the following variants:
- [google/t5-v1_1-small](https://huggingface.co/google/t5-v1_1-small)
- [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base)
- [google/t5-v1_1-large](https://huggingface.co/google/t5-v1_1-large)
- [google/t5-v1_1-xl](https://huggingface.co/google/t5-v1_1-xl)
- [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl).
<Tip>
Refer to [T5's documentation page](t5) for all API reference, tips, code examples and notebooks.
</Tip>
|
transformers/docs/source/en/model_doc/t5v1.1.md/0
|
{
"file_path": "transformers/docs/source/en/model_doc/t5v1.1.md",
"repo_id": "transformers",
"token_count": 967
}
| 22 |
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# UniSpeech-SAT
## Overview
The UniSpeech-SAT model was proposed in [UniSpeech-SAT: Universal Speech Representation Learning with Speaker Aware
Pre-Training](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen,
Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu .
The abstract from the paper is the following:
*Self-supervised learning (SSL) is a long-standing goal for speech processing, since it utilizes large-scale unlabeled
data and avoids extensive human labeling. Recent years witness great successes in applying self-supervised learning in
speech recognition, while limited exploration was attempted in applying SSL for modeling speaker characteristics. In
this paper, we aim to improve the existing SSL framework for speaker representation learning. Two methods are
introduced for enhancing the unsupervised speaker information extraction. First, we apply the multi-task learning to
the current SSL framework, where we integrate the utterance-wise contrastive loss with the SSL objective function.
Second, for better speaker discrimination, we propose an utterance mixing strategy for data augmentation, where
additional overlapped utterances are created unsupervisedly and incorporate during training. We integrate the proposed
methods into the HuBERT framework. Experiment results on SUPERB benchmark show that the proposed system achieves
state-of-the-art performance in universal representation learning, especially for speaker identification oriented
tasks. An ablation study is performed verifying the efficacy of each proposed method. Finally, we scale up training
dataset to 94 thousand hours public audio data and achieve further performance improvement in all SUPERB tasks.*
This model was contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten). The Authors' code can be
found [here](https://github.com/microsoft/UniSpeech/tree/main/UniSpeech-SAT).
## Usage tips
- UniSpeechSat is a speech model that accepts a float array corresponding to the raw waveform of the speech signal.
Please use [`Wav2Vec2Processor`] for the feature extraction.
- UniSpeechSat model can be fine-tuned using connectionist temporal classification (CTC) so the model output has to be
decoded using [`Wav2Vec2CTCTokenizer`].
- UniSpeechSat performs especially well on speaker verification, speaker identification, and speaker diarization tasks.
## Resources
- [Audio classification task guide](../tasks/audio_classification)
- [Automatic speech recognition task guide](../tasks/asr)
## UniSpeechSatConfig
[[autodoc]] UniSpeechSatConfig
## UniSpeechSat specific outputs
[[autodoc]] models.unispeech_sat.modeling_unispeech_sat.UniSpeechSatForPreTrainingOutput
## UniSpeechSatModel
[[autodoc]] UniSpeechSatModel
- forward
## UniSpeechSatForCTC
[[autodoc]] UniSpeechSatForCTC
- forward
## UniSpeechSatForSequenceClassification
[[autodoc]] UniSpeechSatForSequenceClassification
- forward
## UniSpeechSatForAudioFrameClassification
[[autodoc]] UniSpeechSatForAudioFrameClassification
- forward
## UniSpeechSatForXVector
[[autodoc]] UniSpeechSatForXVector
- forward
## UniSpeechSatForPreTraining
[[autodoc]] UniSpeechSatForPreTraining
- forward
|
transformers/docs/source/en/model_doc/unispeech-sat.md/0
|
{
"file_path": "transformers/docs/source/en/model_doc/unispeech-sat.md",
"repo_id": "transformers",
"token_count": 1045
}
| 23 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# ViTDet
## Overview
The ViTDet model was proposed in [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) by Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.
VitDet leverages the plain [Vision Transformer](vit) for the task of object detection.
The abstract from the paper is the following:
*We explore the plain, non-hierarchical Vision Transformer (ViT) as a backbone network for object detection. This design enables the original ViT architecture to be fine-tuned for object detection without needing to redesign a hierarchical backbone for pre-training. With minimal adaptations for fine-tuning, our plain-backbone detector can achieve competitive results. Surprisingly, we observe: (i) it is sufficient to build a simple feature pyramid from a single-scale feature map (without the common FPN design) and (ii) it is sufficient to use window attention (without shifting) aided with very few cross-window propagation blocks. With plain ViT backbones pre-trained as Masked Autoencoders (MAE), our detector, named ViTDet, can compete with the previous leading methods that were all based on hierarchical backbones, reaching up to 61.3 AP_box on the COCO dataset using only ImageNet-1K pre-training. We hope our study will draw attention to research on plain-backbone detectors.*
This model was contributed by [nielsr](https://huggingface.co/nielsr).
The original code can be found [here](https://github.com/facebookresearch/detectron2/tree/main/projects/ViTDet).
Tips:
- At the moment, only the backbone is available.
## VitDetConfig
[[autodoc]] VitDetConfig
## VitDetModel
[[autodoc]] VitDetModel
- forward
|
transformers/docs/source/en/model_doc/vitdet.md/0
|
{
"file_path": "transformers/docs/source/en/model_doc/vitdet.md",
"repo_id": "transformers",
"token_count": 579
}
| 24 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# XLM-V
## Overview
XLM-V is multilingual language model with a one million token vocabulary trained on 2.5TB of data from Common Crawl (same as XLM-R).
It was introduced in the [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472)
paper by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer and Madian Khabsa.
From the abstract of the XLM-V paper:
*Large multilingual language models typically rely on a single vocabulary shared across 100+ languages.
As these models have increased in parameter count and depth, vocabulary size has remained largely unchanged.
This vocabulary bottleneck limits the representational capabilities of multilingual models like XLM-R.
In this paper, we introduce a new approach for scaling to very large multilingual vocabularies by
de-emphasizing token sharing between languages with little lexical overlap and assigning vocabulary capacity
to achieve sufficient coverage for each individual language. Tokenizations using our vocabulary are typically
more semantically meaningful and shorter compared to XLM-R. Leveraging this improved vocabulary, we train XLM-V,
a multilingual language model with a one million token vocabulary. XLM-V outperforms XLM-R on every task we
tested on ranging from natural language inference (XNLI), question answering (MLQA, XQuAD, TyDiQA), and
named entity recognition (WikiAnn) to low-resource tasks (Americas NLI, MasakhaNER).*
This model was contributed by [stefan-it](https://huggingface.co/stefan-it), including detailed experiments with XLM-V on downstream tasks.
The experiments repository can be found [here](https://github.com/stefan-it/xlm-v-experiments).
## Usage tips
- XLM-V is compatible with the XLM-RoBERTa model architecture, only model weights from [`fairseq`](https://github.com/facebookresearch/fairseq)
library had to be converted.
- The `XLMTokenizer` implementation is used to load the vocab and performs tokenization.
A XLM-V (base size) model is available under the [`facebook/xlm-v-base`](https://huggingface.co/facebook/xlm-v-base) identifier.
<Tip>
XLM-V architecture is the same as XLM-RoBERTa, refer to [XLM-RoBERTa documentation](xlm-roberta) for API reference, and examples.
</Tip>
|
transformers/docs/source/en/model_doc/xlm-v.md/0
|
{
"file_path": "transformers/docs/source/en/model_doc/xlm-v.md",
"repo_id": "transformers",
"token_count": 809
}
| 25 |
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Philosophy
🤗 Transformers is an opinionated library built for:
- machine learning researchers and educators seeking to use, study or extend large-scale Transformers models.
- hands-on practitioners who want to fine-tune those models or serve them in production, or both.
- engineers who just want to download a pretrained model and use it to solve a given machine learning task.
The library was designed with two strong goals in mind:
1. Be as easy and fast to use as possible:
- We strongly limited the number of user-facing abstractions to learn, in fact, there are almost no abstractions,
just three standard classes required to use each model: [configuration](main_classes/configuration),
[models](main_classes/model), and a preprocessing class ([tokenizer](main_classes/tokenizer) for NLP, [image processor](main_classes/image_processor) for vision, [feature extractor](main_classes/feature_extractor) for audio, and [processor](main_classes/processors) for multimodal inputs).
- All of these classes can be initialized in a simple and unified way from pretrained instances by using a common
`from_pretrained()` method which downloads (if needed), caches and
loads the related class instance and associated data (configurations' hyperparameters, tokenizers' vocabulary,
and models' weights) from a pretrained checkpoint provided on [Hugging Face Hub](https://huggingface.co/models) or your own saved checkpoint.
- On top of those three base classes, the library provides two APIs: [`pipeline`] for quickly
using a model for inference on a given task and [`Trainer`] to quickly train or fine-tune a PyTorch model (all TensorFlow models are compatible with `Keras.fit`).
- As a consequence, this library is NOT a modular toolbox of building blocks for neural nets. If you want to
extend or build upon the library, just use regular Python, PyTorch, TensorFlow, Keras modules and inherit from the base
classes of the library to reuse functionalities like model loading and saving. If you'd like to learn more about our coding philosophy for models, check out our [Repeat Yourself](https://huggingface.co/blog/transformers-design-philosophy) blog post.
2. Provide state-of-the-art models with performances as close as possible to the original models:
- We provide at least one example for each architecture which reproduces a result provided by the official authors
of said architecture.
- The code is usually as close to the original code base as possible which means some PyTorch code may be not as
*pytorchic* as it could be as a result of being converted TensorFlow code and vice versa.
A few other goals:
- Expose the models' internals as consistently as possible:
- We give access, using a single API, to the full hidden-states and attention weights.
- The preprocessing classes and base model APIs are standardized to easily switch between models.
- Incorporate a subjective selection of promising tools for fine-tuning and investigating these models:
- A simple and consistent way to add new tokens to the vocabulary and embeddings for fine-tuning.
- Simple ways to mask and prune Transformer heads.
- Easily switch between PyTorch, TensorFlow 2.0 and Flax, allowing training with one framework and inference with another.
## Main concepts
The library is built around three types of classes for each model:
- **Model classes** can be PyTorch models ([torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module)), Keras models ([tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model)) or JAX/Flax models ([flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html)) that work with the pretrained weights provided in the library.
- **Configuration classes** store the hyperparameters required to build a model (such as the number of layers and hidden size). You don't always need to instantiate these yourself. In particular, if you are using a pretrained model without any modification, creating the model will automatically take care of instantiating the configuration (which is part of the model).
- **Preprocessing classes** convert the raw data into a format accepted by the model. A [tokenizer](main_classes/tokenizer) stores the vocabulary for each model and provide methods for encoding and decoding strings in a list of token embedding indices to be fed to a model. [Image processors](main_classes/image_processor) preprocess vision inputs, [feature extractors](main_classes/feature_extractor) preprocess audio inputs, and a [processor](main_classes/processors) handles multimodal inputs.
All these classes can be instantiated from pretrained instances, saved locally, and shared on the Hub with three methods:
- `from_pretrained()` lets you instantiate a model, configuration, and preprocessing class from a pretrained version either
provided by the library itself (the supported models can be found on the [Model Hub](https://huggingface.co/models)) or
stored locally (or on a server) by the user.
- `save_pretrained()` lets you save a model, configuration, and preprocessing class locally so that it can be reloaded using
`from_pretrained()`.
- `push_to_hub()` lets you share a model, configuration, and a preprocessing class to the Hub, so it is easily accessible to everyone.
|
transformers/docs/source/en/philosophy.md/0
|
{
"file_path": "transformers/docs/source/en/philosophy.md",
"repo_id": "transformers",
"token_count": 1518
}
| 26 |
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Optimum
The [Optimum](https://huggingface.co/docs/optimum/index) library supports quantization for Intel, Furiosa, ONNX Runtime, GPTQ, and lower-level PyTorch quantization functions. Consider using Optimum for quantization if you're using specific and optimized hardware like Intel CPUs, Furiosa NPUs or a model accelerator like ONNX Runtime.
|
transformers/docs/source/en/quantization/optimum.md/0
|
{
"file_path": "transformers/docs/source/en/quantization/optimum.md",
"repo_id": "transformers",
"token_count": 277
}
| 27 |
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Image Feature Extraction
[[open-in-colab]]
Image feature extraction is the task of extracting semantically meaningful features given an image. This has many use cases, including image similarity and image retrieval. Moreover, most computer vision models can be used for image feature extraction, where one can remove the task-specific head (image classification, object detection etc) and get the features. These features are very useful on a higher level: edge detection, corner detection and so on. They may also contain information about the real world (e.g. what a cat looks like) depending on how deep the model is. Therefore, these outputs can be used to train new classifiers on a specific dataset.
In this guide, you will:
- Learn to build a simple image similarity system on top of the `image-feature-extraction` pipeline.
- Accomplish the same task with bare model inference.
## Image Similarity using `image-feature-extraction` Pipeline
We have two images of cats sitting on top of fish nets, one of them is generated.
```python
from PIL import Image
import requests
img_urls = ["https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/cats.png", "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/cats.jpeg"]
image_real = Image.open(requests.get(img_urls[0], stream=True).raw).convert("RGB")
image_gen = Image.open(requests.get(img_urls[1], stream=True).raw).convert("RGB")
```
Let's see the pipeline in action. First, initialize the pipeline. If you don't pass any model to it, the pipeline will be automatically initialized with [google/vit-base-patch16-224](google/vit-base-patch16-224). If you'd like to calculate similarity, set `pool` to True.
```python
import torch
from transformers import pipeline
from accelerate.test_utils.testing import get_backend
# automatically detects the underlying device type (CUDA, CPU, XPU, MPS, etc.)
DEVICE, _, _ = get_backend()
pipe = pipeline(task="image-feature-extraction", model_name="google/vit-base-patch16-384", device=DEVICE, pool=True)
```
To infer with `pipe` pass both images to it.
```python
outputs = pipe([image_real, image_gen])
```
The output contains pooled embeddings of those two images.
```python
# get the length of a single output
print(len(outputs[0][0]))
# show outputs
print(outputs)
# 768
# [[[-0.03909236937761307, 0.43381670117378235, -0.06913255900144577,
```
To get the similarity score, we need to pass them to a similarity function.
```python
from torch.nn.functional import cosine_similarity
similarity_score = cosine_similarity(torch.Tensor(outputs[0]),
torch.Tensor(outputs[1]), dim=1)
print(similarity_score)
# tensor([0.6043])
```
If you want to get the last hidden states before pooling, avoid passing any value for the `pool` parameter, as it is set to `False` by default. These hidden states are useful for training new classifiers or models based on the features from the model.
```python
pipe = pipeline(task="image-feature-extraction", model_name="google/vit-base-patch16-224", device=DEVICE)
outputs = pipe(image_real)
```
Since the outputs are unpooled, we get the last hidden states where the first dimension is the batch size, and the last two are the embedding shape.
```python
import numpy as np
print(np.array(outputs).shape)
# (1, 197, 768)
```
## Getting Features and Similarities using `AutoModel`
We can also use `AutoModel` class of transformers to get the features. `AutoModel` loads any transformers model with no task-specific head, and we can use this to get the features.
```python
from transformers import AutoImageProcessor, AutoModel
processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
model = AutoModel.from_pretrained("google/vit-base-patch16-224").to(DEVICE)
```
Let's write a simple function for inference. We will pass the inputs to the `processor` first and pass its outputs to the `model`.
```python
def infer(image):
inputs = processor(image, return_tensors="pt").to(DEVICE)
outputs = model(**inputs)
return outputs.pooler_output
```
We can pass the images directly to this function and get the embeddings.
```python
embed_real = infer(image_real)
embed_gen = infer(image_gen)
```
We can get the similarity again over the embeddings.
```python
from torch.nn.functional import cosine_similarity
similarity_score = cosine_similarity(embed_real, embed_gen, dim=1)
print(similarity_score)
# tensor([0.6061], device='cuda:0', grad_fn=<SumBackward1>)
```
|
transformers/docs/source/en/tasks/image_feature_extraction.md/0
|
{
"file_path": "transformers/docs/source/en/tasks/image_feature_extraction.md",
"repo_id": "transformers",
"token_count": 1562
}
| 28 |
End of preview. Expand
in Data Studio
README.md exists but content is empty.
- Downloads last month
- 4