text
stringlengths
29
317k
id
stringlengths
22
166
metadata
dict
__index_level_0__
int64
0
231
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import tempfile import unittest import torch from transformers import AutoProcessor, LlamaTokenizerFast, LlavaNextProcessor from transformers.testing_utils import ( require_vision, ) from transformers.utils import is_vision_available from ...test_processing_common import ProcessorTesterMixin if is_vision_available(): from transformers import LlavaNextImageProcessor @require_vision class LlavaNextProcessorTest(ProcessorTesterMixin, unittest.TestCase): processor_class = LlavaNextProcessor def setUp(self): self.tmpdirname = tempfile.mkdtemp() image_processor = LlavaNextImageProcessor() tokenizer = LlamaTokenizerFast.from_pretrained("huggyllama/llama-7b") processor_kwargs = self.prepare_processor_dict() processor = LlavaNextProcessor(image_processor, tokenizer, **processor_kwargs) processor.save_pretrained(self.tmpdirname) def get_tokenizer(self, **kwargs): return LlavaNextProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer def get_image_processor(self, **kwargs): return LlavaNextProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor def prepare_processor_dict(self): return {"chat_template": "dummy_template", "patch_size": 3, "vision_feature_select_strategy": "default"} @unittest.skip( "Skip because the model has no processor kwargs except for chat template and" "chat template is saved as a separate file. Stop skipping this test when the processor" "has new kwargs saved in config file." ) def test_processor_to_json_string(self): pass # Copied from tests.models.llava.test_processor_llava.LlavaProcessorTest.test_chat_template_is_saved def test_chat_template_is_saved(self): processor_loaded = self.processor_class.from_pretrained(self.tmpdirname) processor_dict_loaded = json.loads(processor_loaded.to_json_string()) # chat templates aren't serialized to json in processors self.assertFalse("chat_template" in processor_dict_loaded.keys()) # they have to be saved as separate file and loaded back from that file # so we check if the same template is loaded processor_dict = self.prepare_processor_dict() self.assertTrue(processor_loaded.chat_template == processor_dict.get("chat_template", None)) def test_chat_template(self): processor = AutoProcessor.from_pretrained("llava-hf/llava-v1.6-vicuna-7b-hf") expected_prompt = "USER: <image>\nWhat is shown in this image? ASSISTANT:" messages = [ { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": "What is shown in this image?"}, ], }, ] formatted_prompt = processor.apply_chat_template(messages, add_generation_prompt=True) self.assertEqual(expected_prompt, formatted_prompt) def test_image_token_filling(self): processor = AutoProcessor.from_pretrained("llava-hf/llava-v1.6-vicuna-7b-hf") processor.patch_size = 14 processor.vision_feature_select_strategy = "default" # Important to check with non square image image = torch.randint(0, 2, (3, 500, 316)) expected_image_tokens = 1526 image_token_index = 32000 messages = [ { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": "What is shown in this image?"}, ], }, ] inputs = processor( text=[processor.apply_chat_template(messages)], images=[image], return_tensors="pt", ) image_tokens = (inputs["input_ids"] == image_token_index).sum().item() self.assertEqual(expected_image_tokens, image_tokens)
transformers/tests/models/llava_next/test_processor_llava_next.py/0
{ "file_path": "transformers/tests/models/llava_next/test_processor_llava_next.py", "repo_id": "transformers", "token_count": 1775 }
179
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch LUKE model.""" import unittest from transformers import LukeConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukeTokenizer, ) class LukeModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, entity_length=3, mention_length=5, use_attention_mask=True, use_token_type_ids=True, use_entity_ids=True, use_entity_attention_mask=True, use_entity_token_type_ids=True, use_entity_position_ids=True, use_labels=True, vocab_size=99, entity_vocab_size=10, entity_emb_size=6, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, num_entity_classification_labels=9, num_entity_pair_classification_labels=6, num_entity_span_classification_labels=4, use_entity_aware_attention=True, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.entity_length = entity_length self.mention_length = mention_length self.use_attention_mask = use_attention_mask self.use_token_type_ids = use_token_type_ids self.use_entity_ids = use_entity_ids self.use_entity_attention_mask = use_entity_attention_mask self.use_entity_token_type_ids = use_entity_token_type_ids self.use_entity_position_ids = use_entity_position_ids self.use_labels = use_labels self.vocab_size = vocab_size self.entity_vocab_size = entity_vocab_size self.entity_emb_size = entity_emb_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.num_entity_classification_labels = num_entity_classification_labels self.num_entity_pair_classification_labels = num_entity_pair_classification_labels self.num_entity_span_classification_labels = num_entity_span_classification_labels self.scope = scope self.use_entity_aware_attention = use_entity_aware_attention self.encoder_seq_length = seq_length self.key_length = seq_length self.num_hidden_states_types = 2 # hidden_states and entity_hidden_states def prepare_config_and_inputs(self): # prepare words input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) attention_mask = None if self.use_attention_mask: attention_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) # prepare entities entity_ids = ids_tensor([self.batch_size, self.entity_length], self.entity_vocab_size) entity_attention_mask = None if self.use_entity_attention_mask: entity_attention_mask = random_attention_mask([self.batch_size, self.entity_length]) entity_token_type_ids = None if self.use_token_type_ids: entity_token_type_ids = ids_tensor([self.batch_size, self.entity_length], self.type_vocab_size) entity_position_ids = None if self.use_entity_position_ids: entity_position_ids = ids_tensor( [self.batch_size, self.entity_length, self.mention_length], self.mention_length ) sequence_labels = None token_labels = None choice_labels = None entity_labels = None entity_classification_labels = None entity_pair_classification_labels = None entity_span_classification_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) entity_labels = ids_tensor([self.batch_size, self.entity_length], self.entity_vocab_size) entity_classification_labels = ids_tensor([self.batch_size], self.num_entity_classification_labels) entity_pair_classification_labels = ids_tensor( [self.batch_size], self.num_entity_pair_classification_labels ) entity_span_classification_labels = ids_tensor( [self.batch_size, self.entity_length], self.num_entity_span_classification_labels ) config = self.get_config() return ( config, input_ids, attention_mask, token_type_ids, entity_ids, entity_attention_mask, entity_token_type_ids, entity_position_ids, sequence_labels, token_labels, choice_labels, entity_labels, entity_classification_labels, entity_pair_classification_labels, entity_span_classification_labels, ) def get_config(self): return LukeConfig( vocab_size=self.vocab_size, entity_vocab_size=self.entity_vocab_size, entity_emb_size=self.entity_emb_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, use_entity_aware_attention=self.use_entity_aware_attention, ) def create_and_check_model( self, config, input_ids, attention_mask, token_type_ids, entity_ids, entity_attention_mask, entity_token_type_ids, entity_position_ids, sequence_labels, token_labels, choice_labels, entity_labels, entity_classification_labels, entity_pair_classification_labels, entity_span_classification_labels, ): model = LukeModel(config=config) model.to(torch_device) model.eval() # test with words + entities result = model( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual( result.entity_last_hidden_state.shape, (self.batch_size, self.entity_length, self.hidden_size) ) # test with words only result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_masked_lm( self, config, input_ids, attention_mask, token_type_ids, entity_ids, entity_attention_mask, entity_token_type_ids, entity_position_ids, sequence_labels, token_labels, choice_labels, entity_labels, entity_classification_labels, entity_pair_classification_labels, entity_span_classification_labels, ): config.num_labels = self.num_entity_classification_labels model = LukeForMaskedLM(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, labels=token_labels, entity_labels=entity_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) if entity_ids is not None: self.parent.assertEqual( result.entity_logits.shape, (self.batch_size, self.entity_length, self.entity_vocab_size) ) else: self.parent.assertIsNone(result.entity_logits) def create_and_check_for_entity_classification( self, config, input_ids, attention_mask, token_type_ids, entity_ids, entity_attention_mask, entity_token_type_ids, entity_position_ids, sequence_labels, token_labels, choice_labels, entity_labels, entity_classification_labels, entity_pair_classification_labels, entity_span_classification_labels, ): config.num_labels = self.num_entity_classification_labels model = LukeForEntityClassification(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, labels=entity_classification_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_entity_classification_labels)) def create_and_check_for_entity_pair_classification( self, config, input_ids, attention_mask, token_type_ids, entity_ids, entity_attention_mask, entity_token_type_ids, entity_position_ids, sequence_labels, token_labels, choice_labels, entity_labels, entity_classification_labels, entity_pair_classification_labels, entity_span_classification_labels, ): config.num_labels = self.num_entity_pair_classification_labels model = LukeForEntityClassification(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, labels=entity_pair_classification_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_entity_pair_classification_labels)) def create_and_check_for_entity_span_classification( self, config, input_ids, attention_mask, token_type_ids, entity_ids, entity_attention_mask, entity_token_type_ids, entity_position_ids, sequence_labels, token_labels, choice_labels, entity_labels, entity_classification_labels, entity_pair_classification_labels, entity_span_classification_labels, ): config.num_labels = self.num_entity_span_classification_labels model = LukeForEntitySpanClassification(config) model.to(torch_device) model.eval() entity_start_positions = ids_tensor([self.batch_size, self.entity_length], self.seq_length) entity_end_positions = ids_tensor([self.batch_size, self.entity_length], self.seq_length) result = model( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, entity_start_positions=entity_start_positions, entity_end_positions=entity_end_positions, labels=entity_span_classification_labels, ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.entity_length, self.num_entity_span_classification_labels) ) def create_and_check_for_question_answering( self, config, input_ids, attention_mask, token_type_ids, entity_ids, entity_attention_mask, entity_token_type_ids, entity_position_ids, sequence_labels, token_labels, choice_labels, entity_labels, entity_classification_labels, entity_pair_classification_labels, entity_span_classification_labels, ): model = LukeForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_for_sequence_classification( self, config, input_ids, attention_mask, token_type_ids, entity_ids, entity_attention_mask, entity_token_type_ids, entity_position_ids, sequence_labels, token_labels, choice_labels, entity_labels, entity_classification_labels, entity_pair_classification_labels, entity_span_classification_labels, ): config.num_labels = self.num_labels model = LukeForSequenceClassification(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, labels=sequence_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification( self, config, input_ids, attention_mask, token_type_ids, entity_ids, entity_attention_mask, entity_token_type_ids, entity_position_ids, sequence_labels, token_labels, choice_labels, entity_labels, entity_classification_labels, entity_pair_classification_labels, entity_span_classification_labels, ): config.num_labels = self.num_labels model = LukeForTokenClassification(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, labels=token_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, attention_mask, token_type_ids, entity_ids, entity_attention_mask, entity_token_type_ids, entity_position_ids, sequence_labels, token_labels, choice_labels, entity_labels, entity_classification_labels, entity_pair_classification_labels, entity_span_classification_labels, ): config.num_choices = self.num_choices model = LukeForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_attention_mask = attention_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_entity_ids = entity_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_entity_token_type_ids = ( entity_token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() ) multiple_choice_entity_attention_mask = ( entity_attention_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() ) multiple_choice_entity_position_ids = ( entity_position_ids.unsqueeze(1).expand(-1, self.num_choices, -1, -1).contiguous() ) result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_attention_mask, token_type_ids=multiple_choice_token_type_ids, entity_ids=multiple_choice_entity_ids, entity_attention_mask=multiple_choice_entity_attention_mask, entity_token_type_ids=multiple_choice_entity_token_type_ids, entity_position_ids=multiple_choice_entity_position_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, attention_mask, token_type_ids, entity_ids, entity_attention_mask, entity_token_type_ids, entity_position_ids, sequence_labels, token_labels, choice_labels, entity_labels, entity_classification_labels, entity_pair_classification_labels, entity_span_classification_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, "entity_ids": entity_ids, "entity_token_type_ids": entity_token_type_ids, "entity_attention_mask": entity_attention_mask, "entity_position_ids": entity_position_ids, } return config, inputs_dict @require_torch class LukeModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( LukeModel, LukeForMaskedLM, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeForMultipleChoice, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": LukeModel, "fill-mask": LukeForMaskedLM, "question-answering": LukeForQuestionAnswering, "text-classification": LukeForSequenceClassification, "token-classification": LukeForTokenClassification, "zero-shot": LukeForSequenceClassification, } if is_torch_available() else {} ) test_pruning = False test_torchscript = False test_resize_embeddings = True test_head_masking = True # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_case_name, config_class, model_architecture, tokenizer_name, image_processor_name, feature_extractor_name, processor_name, ): if pipeline_test_case_name in ["QAPipelineTests", "ZeroShotClassificationPipelineTests"]: return True return False def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): entity_inputs_dict = {k: v for k, v in inputs_dict.items() if k.startswith("entity")} inputs_dict = {k: v for k, v in inputs_dict.items() if not k.startswith("entity")} inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if model_class == LukeForMultipleChoice: entity_inputs_dict = { k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous() if v.ndim == 2 else v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1, -1).contiguous() for k, v in entity_inputs_dict.items() } inputs_dict.update(entity_inputs_dict) if model_class == LukeForEntitySpanClassification: inputs_dict["entity_start_positions"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.entity_length), dtype=torch.long, device=torch_device ) inputs_dict["entity_end_positions"] = torch.ones( (self.model_tester.batch_size, self.model_tester.entity_length), dtype=torch.long, device=torch_device ) if return_labels: if model_class in ( LukeForEntityClassification, LukeForEntityPairClassification, LukeForSequenceClassification, LukeForMultipleChoice, ): inputs_dict["labels"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) elif model_class == LukeForEntitySpanClassification: inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.entity_length), dtype=torch.long, device=torch_device, ) elif model_class == LukeForTokenClassification: inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device, ) elif model_class == LukeForMaskedLM: inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device, ) inputs_dict["entity_labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.entity_length), dtype=torch.long, device=torch_device, ) return inputs_dict def setUp(self): self.model_tester = LukeModelTester(self) self.config_tester = ConfigTester(self, config_class=LukeConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @slow def test_model_from_pretrained(self): model_name = "studio-ousia/luke-base" model = LukeModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_masked_lm_with_word_only(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() config_and_inputs = (*config_and_inputs[:4], *((None,) * len(config_and_inputs[4:]))) self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_for_entity_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_entity_classification(*config_and_inputs) def test_for_entity_pair_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_entity_pair_classification(*config_and_inputs) def test_for_entity_span_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_entity_span_classification(*config_and_inputs) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True seq_length = self.model_tester.seq_length entity_length = self.model_tester.entity_length key_length = seq_length + entity_length for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_length + entity_length, key_length], ) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) added_hidden_states = self.model_tester.num_hidden_states_types self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_length + entity_length, key_length], ) def test_entity_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) entity_hidden_states = outputs.entity_hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(entity_hidden_states), expected_num_layers) entity_length = self.model_tester.entity_length self.assertListEqual( list(entity_hidden_states[0].shape[-2:]), [entity_length, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_retain_grad_entity_hidden_states(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = True # no need to test all models as different heads yield the same functionality model_class = self.all_model_classes[0] model = model_class(config) model.to(torch_device) inputs = self._prepare_for_class(inputs_dict, model_class) outputs = model(**inputs) output = outputs[0] entity_hidden_states = outputs.entity_hidden_states[0] entity_hidden_states.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(entity_hidden_states.grad) @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @require_torch class LukeModelIntegrationTests(unittest.TestCase): @slow def test_inference_base_model(self): model = LukeModel.from_pretrained("studio-ousia/luke-base").eval() model.to(torch_device) tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", task="entity_classification") text = ( "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped" " the new world number one avoid a humiliating second- round exit at Wimbledon ." ) span = (39, 42) encoding = tokenizer(text, entity_spans=[span], add_prefix_space=True, return_tensors="pt") # move all values to device for key, value in encoding.items(): encoding[key] = encoding[key].to(torch_device) outputs = model(**encoding) # Verify word hidden states expected_shape = torch.Size((1, 42, 768)) self.assertEqual(outputs.last_hidden_state.shape, expected_shape) expected_slice = torch.tensor( [[0.0037, 0.1368, -0.0091], [0.1099, 0.3329, -0.1095], [0.0765, 0.5335, 0.1179]] ).to(torch_device) torch.testing.assert_close(outputs.last_hidden_state[0, :3, :3], expected_slice, rtol=1e-4, atol=1e-4) # Verify entity hidden states expected_shape = torch.Size((1, 1, 768)) self.assertEqual(outputs.entity_last_hidden_state.shape, expected_shape) expected_slice = torch.tensor([[0.1457, 0.1044, 0.0174]]).to(torch_device) torch.testing.assert_close(outputs.entity_last_hidden_state[0, :3, :3], expected_slice, rtol=1e-4, atol=1e-4) @slow def test_inference_large_model(self): model = LukeModel.from_pretrained("studio-ousia/luke-large").eval() model.to(torch_device) tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-large", task="entity_classification") text = ( "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped" " the new world number one avoid a humiliating second- round exit at Wimbledon ." ) span = (39, 42) encoding = tokenizer(text, entity_spans=[span], add_prefix_space=True, return_tensors="pt") # move all values to device for key, value in encoding.items(): encoding[key] = encoding[key].to(torch_device) outputs = model(**encoding) # Verify word hidden states expected_shape = torch.Size((1, 42, 1024)) self.assertEqual(outputs.last_hidden_state.shape, expected_shape) expected_slice = torch.tensor( [[0.0133, 0.0865, 0.0095], [0.3093, -0.2576, -0.7418], [-0.1720, -0.2117, -0.2869]] ).to(torch_device) torch.testing.assert_close(outputs.last_hidden_state[0, :3, :3], expected_slice, rtol=1e-4, atol=1e-4) # Verify entity hidden states expected_shape = torch.Size((1, 1, 1024)) self.assertEqual(outputs.entity_last_hidden_state.shape, expected_shape) expected_slice = torch.tensor([[0.0466, -0.0106, -0.0179]]).to(torch_device) torch.testing.assert_close(outputs.entity_last_hidden_state[0, :3, :3], expected_slice, rtol=1e-4, atol=1e-4)
transformers/tests/models/luke/test_modeling_luke.py/0
{ "file_path": "transformers/tests/models/luke/test_modeling_luke.py", "repo_id": "transformers", "token_count": 17178 }
180
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest import warnings from transformers import AutoTokenizer, MarianConfig, MarianTokenizer, TranslationPipeline, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeq2SeqLM, TFMarianModel, TFMarianMTModel @require_tf class TFMarianModelTester: config_cls = MarianConfig config_updates = {} hidden_act = "gelu" def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=20, eos_token_id=2, pad_token_id=1, bos_token_id=0, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id def prepare_config_and_inputs_for_common(self): input_ids = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size) eos_tensor = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size), 1) input_ids = tf.concat([input_ids, eos_tensor], axis=1) decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) config = self.config_cls( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, **self.config_updates, ) inputs_dict = prepare_marian_inputs_dict(config, input_ids, decoder_input_ids) return config, inputs_dict def check_decoder_model_past_large_inputs(self, config, inputs_dict): model = TFMarianModel(config=config).get_decoder() input_ids = inputs_dict["input_ids"] input_ids = input_ids[:1, :] attention_mask = inputs_dict["attention_mask"][:1, :] head_mask = inputs_dict["head_mask"] self.batch_size = 1 # first forward pass outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = tf.cast(ids_tensor((self.batch_size, 3), 2), tf.int8) # append to next input_ids and next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) next_attention_mask = tf.concat([attention_mask, next_attn_mask], axis=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)[0] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1]) # select random slice random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx] output_from_past_slice = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3) def prepare_marian_inputs_dict( config, input_ids, decoder_input_ids, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, ): if attention_mask is None: attention_mask = tf.cast(tf.math.not_equal(input_ids, config.pad_token_id), tf.int8) if decoder_attention_mask is None: decoder_attention_mask = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.int8), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id), tf.int8), ], axis=-1, ) if head_mask is None: head_mask = tf.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: decoder_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: cross_attn_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class TFMarianModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (TFMarianMTModel, TFMarianModel) if is_tf_available() else () all_generative_model_classes = (TFMarianMTModel,) if is_tf_available() else () pipeline_model_mapping = ( { "feature-extraction": TFMarianModel, "summarization": TFMarianMTModel, "text2text-generation": TFMarianMTModel, "translation": TFMarianMTModel, } if is_tf_available() else {} ) is_encoder_decoder = True test_pruning = False test_onnx = False def setUp(self): self.model_tester = TFMarianModelTester(self) self.config_tester = ConfigTester(self, config_class=MarianConfig) def test_config(self): self.config_tester.run_common_tests() def test_decoder_model_past_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs) @require_tf class AbstractMarianIntegrationTest(unittest.TestCase): maxDiff = 1000 # show more chars for failing integration tests @classmethod def setUpClass(cls) -> None: cls.model_name = f"Helsinki-NLP/opus-mt-{cls.src}-{cls.tgt}" return cls @cached_property def tokenizer(self) -> MarianTokenizer: return AutoTokenizer.from_pretrained(self.model_name) @property def eos_token_id(self) -> int: return self.tokenizer.eos_token_id @cached_property def model(self): warnings.simplefilter("error") model: TFMarianMTModel = TFAutoModelForSeq2SeqLM.from_pretrained(self.model_name) assert isinstance(model, TFMarianMTModel) c = model.config self.assertListEqual(c.bad_words_ids, [[c.pad_token_id]]) self.assertEqual(c.max_length, 512) self.assertEqual(c.decoder_start_token_id, c.pad_token_id) return model def _assert_generated_batch_equal_expected(self, **tokenizer_kwargs): generated_words = self.translate_src_text(**tokenizer_kwargs) self.assertListEqual(self.expected_text, generated_words) def translate_src_text(self, **tokenizer_kwargs): model_inputs = self.tokenizer(self.src_text, **tokenizer_kwargs, padding=True, return_tensors="tf") generated_ids = self.model.generate( model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2, max_length=128 ) generated_words = self.tokenizer.batch_decode(generated_ids.numpy(), skip_special_tokens=True) return generated_words @require_sentencepiece @require_tokenizers @require_tf class TestMarian_MT_EN(AbstractMarianIntegrationTest): """Cover low resource/high perplexity setting. This breaks if pad_token_id logits not set to LARGE_NEGATIVE.""" src = "mt" tgt = "en" src_text = ["Billi messu b'mod ġentili, Ġesù fejjaq raġel li kien milqut bil - marda kerha tal - ġdiem."] expected_text = ["Touching gently, Jesus healed a man who was affected by the sad disease of leprosy."] @unittest.skip("Skipping until #12647 is resolved.") @slow def test_batch_generation_mt_en(self): self._assert_generated_batch_equal_expected() @require_sentencepiece @require_tokenizers @require_tf class TestMarian_en_zh(AbstractMarianIntegrationTest): src = "en" tgt = "zh" src_text = ["My name is Wolfgang and I live in Berlin"] expected_text = ["我叫沃尔夫冈 我住在柏林"] @unittest.skip("Skipping until #12647 is resolved.") @slow def test_batch_generation_en_zh(self): self._assert_generated_batch_equal_expected() @require_sentencepiece @require_tokenizers @require_tf class TestMarian_en_ROMANCE(AbstractMarianIntegrationTest): """Multilingual on target side.""" src = "en" tgt = "ROMANCE" src_text = [ ">>fr<< Don't spend so much time watching TV.", ">>pt<< Your message has been sent.", ">>es<< He's two years older than me.", ] expected_text = [ "Ne passez pas autant de temps à regarder la télé.", "A sua mensagem foi enviada.", "Es dos años más viejo que yo.", ] @unittest.skip("Skipping until #12647 is resolved.") @slow def test_batch_generation_en_ROMANCE_multi(self): self._assert_generated_batch_equal_expected() @unittest.skip("Skipping until #12647 is resolved.") @slow def test_pipeline(self): pipeline = TranslationPipeline(self.model, self.tokenizer, framework="tf") output = pipeline(self.src_text) self.assertEqual(self.expected_text, [x["translation_text"] for x in output])
transformers/tests/models/marian/test_modeling_tf_marian.py/0
{ "file_path": "transformers/tests/models/marian/test_modeling_tf_marian.py", "repo_id": "transformers", "token_count": 4994 }
181
# coding=utf-8 # Copyright 2021, The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch MBART model.""" import copy import tempfile import unittest from transformers import MBartConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, require_torch_fp16, slow, torch_device, ) from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( AutoTokenizer, BatchEncoding, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, ) from transformers.models.mbart.modeling_mbart import MBartDecoder, MBartEncoder def prepare_mbart_inputs_dict( config, input_ids, decoder_input_ids, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, ): if attention_mask is None: attention_mask = input_ids.ne(config.pad_token_id) if decoder_attention_mask is None: decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id) if head_mask is None: head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device) if decoder_head_mask is None: decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) if cross_attn_head_mask is None: cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class MBartModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=16, num_hidden_layers=2, num_attention_heads=4, intermediate_size=4, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=100, eos_token_id=2, pad_token_id=1, bos_token_id=0, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp( 3, ) input_ids[:, -1] = self.eos_token_id # Eos Token decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) config = self.get_config() inputs_dict = prepare_mbart_inputs_dict(config, input_ids, decoder_input_ids) return config, inputs_dict def get_config(self): return MBartConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, ) def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): model = MBartModel(config=config).get_decoder().to(torch_device).eval() input_ids = inputs_dict["input_ids"] attention_mask = inputs_dict["attention_mask"] head_mask = inputs_dict["head_mask"] # first forward pass outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def check_encoder_decoder_model_standalone(self, config, inputs_dict): model = MBartModel(config=config).to(torch_device).eval() outputs = model(**inputs_dict) encoder_last_hidden_state = outputs.encoder_last_hidden_state last_hidden_state = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: encoder = model.get_encoder() encoder.save_pretrained(tmpdirname) encoder = MBartEncoder.from_pretrained(tmpdirname).to(torch_device) encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3) with tempfile.TemporaryDirectory() as tmpdirname: decoder = model.get_decoder() decoder.save_pretrained(tmpdirname) decoder = MBartDecoder.from_pretrained(tmpdirname).to(torch_device) last_hidden_state_2 = decoder( input_ids=inputs_dict["decoder_input_ids"], attention_mask=inputs_dict["decoder_attention_mask"], encoder_hidden_states=encoder_last_hidden_state, encoder_attention_mask=inputs_dict["attention_mask"], )[0] self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3) @require_torch class MBartModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( (MBartModel, MBartForConditionalGeneration, MBartForSequenceClassification, MBartForQuestionAnswering) if is_torch_available() else () ) all_generative_model_classes = (MBartForConditionalGeneration,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": MBartModel, "fill-mask": MBartForConditionalGeneration, "question-answering": MBartForQuestionAnswering, "summarization": MBartForConditionalGeneration, "text-classification": MBartForSequenceClassification, "text-generation": MBartForCausalLM, "text2text-generation": MBartForConditionalGeneration, "translation": MBartForConditionalGeneration, "zero-shot": MBartForSequenceClassification, } if is_torch_available() else {} ) is_encoder_decoder = True fx_compatible = False # Fix me Michael test_pruning = False test_missing_keys = False # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_case_name, config_class, model_architecture, tokenizer_name, image_processor_name, feature_extractor_name, processor_name, ): if pipeline_test_case_name == "QAPipelineTests" and not tokenizer_name.endswith("Fast"): return True return False def setUp(self): self.model_tester = MBartModelTester(self) self.config_tester = ConfigTester(self, config_class=MBartConfig) def test_config(self): self.config_tester.run_common_tests() def test_save_load_strict(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) self.assertEqual(info["missing_keys"], []) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_encoder_decoder_model_standalone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs) # MBartForSequenceClassification does not support inputs_embeds def test_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MBartModel, MBartForConditionalGeneration, MBartForQuestionAnswering): model = model_class(config) model.to(torch_device) model.eval() inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) if not self.is_encoder_decoder: input_ids = inputs["input_ids"] del inputs["input_ids"] else: encoder_input_ids = inputs["input_ids"] decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids) del inputs["input_ids"] inputs.pop("decoder_input_ids", None) wte = model.get_input_embeddings() if not self.is_encoder_decoder: inputs["inputs_embeds"] = wte(input_ids) else: inputs["inputs_embeds"] = wte(encoder_input_ids) inputs["decoder_inputs_embeds"] = wte(decoder_input_ids) with torch.no_grad(): model(**inputs)[0] @require_torch_fp16 def test_generate_fp16(self): config, input_dict = self.model_tester.prepare_config_and_inputs() input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) model = MBartForConditionalGeneration(config).eval().to(torch_device) model.half() model.generate(input_ids, attention_mask=attention_mask) model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3) def test_ensure_weights_are_shared(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() config.tie_word_embeddings = True model = MBartForConditionalGeneration(config) # MBart shares four weights. # Not an issue to not have these correctly tied for torch.load, but it is an issue for safetensors. self.assertEqual( len( { model.get_output_embeddings().weight.data_ptr(), model.get_input_embeddings().weight.data_ptr(), model.base_model.decoder.embed_tokens.weight.data_ptr(), model.base_model.encoder.embed_tokens.weight.data_ptr(), } ), 1, ) config.tie_word_embeddings = False model = MBartForConditionalGeneration(config) # MBart shares four weights. # Not an issue to not have these correctly tied for torch.load, but it is an issue for safetensors. self.assertEqual( len( { model.get_output_embeddings().weight.data_ptr(), model.get_input_embeddings().weight.data_ptr(), model.base_model.decoder.embed_tokens.weight.data_ptr(), model.base_model.encoder.embed_tokens.weight.data_ptr(), } ), 2, ) @unittest.skip( reason="This architecure has tied weights by default and there is no way to remove it, check: https://github.com/huggingface/transformers/pull/31771#issuecomment-2210915245" ) def test_load_save_without_tied_weights(self): pass def test_resize_embeddings_persists_embeddings_type(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() config.scale_embedding = True model = MBartForConditionalGeneration(config) old_type = type(model.model.decoder.embed_tokens) model.resize_token_embeddings(new_num_tokens=config.vocab_size) new_type = type(model.model.decoder.embed_tokens) self.assertIs(old_type, new_type) def assert_tensors_close(a, b, atol=1e-12, prefix=""): """If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error.""" if a is None and b is None: return True try: if torch.allclose(a, b, atol=atol): return True raise except Exception: pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item() if a.numel() > 100: msg = f"tensor values are {pct_different:.1%} percent different." else: msg = f"{a} != {b}" if prefix: msg = prefix + ": " + msg raise AssertionError(msg) def _long_tensor(tok_lst): return torch.tensor(tok_lst, dtype=torch.long, device=torch_device) @require_torch @require_sentencepiece @require_tokenizers class AbstractSeq2SeqIntegrationTest(unittest.TestCase): maxDiff = 1000 # longer string compare tracebacks checkpoint_name = None @classmethod def setUpClass(cls): cls.tokenizer = AutoTokenizer.from_pretrained(cls.checkpoint_name, use_fast=False) return cls @cached_property def model(self): """Only load the model if needed.""" model = MBartForConditionalGeneration.from_pretrained(self.checkpoint_name).to(torch_device) if "cuda" in torch_device: model = model.half() return model @require_torch @require_sentencepiece @require_tokenizers class MBartEnroIntegrationTest(AbstractSeq2SeqIntegrationTest): checkpoint_name = "facebook/mbart-large-en-ro" src_text = [ " UN Chief Says There Is No Military Solution in Syria", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] tgt_text = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' " face decât să înrăutăţească violenţa şi mizeria pentru milioane de oameni.", ] expected_src_tokens = [8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2, 250004] @slow def test_enro_generate_one(self): batch: BatchEncoding = self.tokenizer( ["UN Chief Says There Is No Military Solution in Syria"], return_tensors="pt" ).to(torch_device) translated_tokens = self.model.generate(**batch) decoded = self.tokenizer.batch_decode(translated_tokens, skip_special_tokens=True) self.assertEqual(self.tgt_text[0], decoded[0]) # self.assertEqual(self.tgt_text[1], decoded[1]) @slow def test_enro_generate_batch(self): batch: BatchEncoding = self.tokenizer(self.src_text, return_tensors="pt", padding=True, truncation=True).to( torch_device ) translated_tokens = self.model.generate(**batch) decoded = self.tokenizer.batch_decode(translated_tokens, skip_special_tokens=True) assert self.tgt_text == decoded def test_mbart_enro_config(self): mbart_models = ["facebook/mbart-large-en-ro"] expected = {"scale_embedding": True, "output_past": True} for name in mbart_models: config = MBartConfig.from_pretrained(name) for k, v in expected.items(): try: self.assertEqual(v, getattr(config, k)) except AssertionError as e: e.args += (name, k) raise def test_mbart_fast_forward(self): config = MBartConfig( vocab_size=99, d_model=24, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=32, decoder_ffn_dim=32, max_position_embeddings=48, add_final_layer_norm=True, ) lm_model = MBartForConditionalGeneration(config).to(torch_device) context = torch.tensor( [[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]], device=torch_device, dtype=torch.long ) summary = torch.tensor([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]], device=torch_device, dtype=torch.long) result = lm_model(input_ids=context, decoder_input_ids=summary, labels=summary) expected_shape = (*summary.shape, config.vocab_size) self.assertEqual(result.logits.shape, expected_shape) @require_torch @require_sentencepiece @require_tokenizers class MBartCC25IntegrationTest(AbstractSeq2SeqIntegrationTest): checkpoint_name = "facebook/mbart-large-cc25" src_text = [ " UN Chief Says There Is No Military Solution in Syria", " I ate lunch twice yesterday", ] tgt_text = ["Şeful ONU declară că nu există o soluţie militară în Siria", "to be padded"] @unittest.skip(reason="This test is broken, still generates english") def test_cc25_generate(self): inputs = self.tokenizer([self.src_text[0]], return_tensors="pt").to(torch_device) translated_tokens = self.model.generate( input_ids=inputs["input_ids"].to(torch_device), decoder_start_token_id=self.tokenizer.lang_code_to_id["ro_RO"], ) decoded = self.tokenizer.batch_decode(translated_tokens, skip_special_tokens=True) self.assertEqual(self.tgt_text[0], decoded[0]) @slow def test_fill_mask(self): inputs = self.tokenizer(["One of the best <mask> I ever read!"], return_tensors="pt").to(torch_device) outputs = self.model.generate( inputs["input_ids"], decoder_start_token_id=self.tokenizer.lang_code_to_id["en_XX"], num_beams=1 ) prediction: str = self.tokenizer.batch_decode( outputs, clean_up_tokenization_spaces=True, skip_special_tokens=True )[0] self.assertEqual(prediction, "of the best books I ever read!") class MBartStandaloneDecoderModelTester: def __init__( self, parent, vocab_size=99, batch_size=13, d_model=16, decoder_seq_length=7, is_training=True, is_decoder=True, use_attention_mask=True, use_cache=False, use_labels=True, decoder_start_token_id=2, decoder_ffn_dim=32, decoder_layers=2, encoder_attention_heads=4, decoder_attention_heads=4, max_position_embeddings=30, is_encoder_decoder=False, pad_token_id=0, bos_token_id=1, eos_token_id=2, scope=None, ): self.parent = parent self.batch_size = batch_size self.decoder_seq_length = decoder_seq_length # For common tests self.seq_length = self.decoder_seq_length self.is_training = is_training self.use_attention_mask = use_attention_mask self.use_labels = use_labels self.vocab_size = vocab_size self.d_model = d_model self.hidden_size = d_model self.num_hidden_layers = decoder_layers self.decoder_layers = decoder_layers self.decoder_ffn_dim = decoder_ffn_dim self.encoder_attention_heads = encoder_attention_heads self.decoder_attention_heads = decoder_attention_heads self.num_attention_heads = decoder_attention_heads self.eos_token_id = eos_token_id self.bos_token_id = bos_token_id self.pad_token_id = pad_token_id self.decoder_start_token_id = decoder_start_token_id self.use_cache = use_cache self.max_position_embeddings = max_position_embeddings self.is_encoder_decoder = is_encoder_decoder self.scope = None self.decoder_key_length = decoder_seq_length self.base_model_out_len = 2 self.decoder_attention_idx = 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) attention_mask = None if self.use_attention_mask: attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2) lm_labels = None if self.use_labels: lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) config = MBartConfig( vocab_size=self.vocab_size, d_model=self.d_model, decoder_layers=self.decoder_layers, decoder_ffn_dim=self.decoder_ffn_dim, encoder_attention_heads=self.encoder_attention_heads, decoder_attention_heads=self.decoder_attention_heads, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, use_cache=self.use_cache, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, max_position_embeddings=self.max_position_embeddings, is_encoder_decoder=self.is_encoder_decoder, ) return ( config, input_ids, attention_mask, lm_labels, ) def create_and_check_decoder_model_past( self, config, input_ids, attention_mask, lm_labels, ): config.use_cache = True model = MBartDecoder(config=config).to(torch_device).eval() # first forward pass outputs = model(input_ids, use_cache=True) outputs_use_cache_conf = model(input_ids) outputs_no_past = model(input_ids, use_cache=False) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) past_key_values = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) output_from_no_past = model(next_input_ids)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3) def create_and_check_decoder_model_attention_mask_past( self, config, input_ids, attention_mask, lm_labels, ): model = MBartDecoder(config=config).to(torch_device).eval() # create attention mask attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) half_seq_length = input_ids.shape[-1] // 2 attn_mask[:, half_seq_length:] = 0 # first forward pass past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True)["past_key_values"] # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens # append to next input_ids and attn_mask next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) attn_mask = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], dim=1, ) # get two different outputs output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=attn_mask, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, attention_mask, lm_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class MBartStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): all_model_classes = (MBartDecoder, MBartForCausalLM) if is_torch_available() else () all_generative_model_classes = (MBartForCausalLM,) if is_torch_available() else () test_pruning = False is_encoder_decoder = False def setUp( self, ): self.model_tester = MBartStandaloneDecoderModelTester(self, is_training=False) self.config_tester = ConfigTester(self, config_class=MBartConfig) def test_config(self): self.config_tester.run_common_tests() def test_decoder_model_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*config_and_inputs) def test_decoder_model_attn_mask_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs) @unittest.skip(reason="Decoder cannot retain gradients") def test_retain_grad_hidden_states_attentions(self): return
transformers/tests/models/mbart/test_modeling_mbart.py/0
{ "file_path": "transformers/tests/models/mbart/test_modeling_mbart.py", "repo_id": "transformers", "token_count": 13430 }
182
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from transformers import MistralConfig, is_flax_available, is_tokenizers_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import jax.numpy as jnp from transformers.models.mistral.modeling_flax_mistral import ( FlaxMistralForCausalLM, FlaxMistralModel, ) if is_tokenizers_available(): from transformers import LlamaTokenizerFast class FlaxMistralModelTester: def __init__( self, parent, batch_size=2, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=False, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, num_key_value_heads=2, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, window_size=7, initializer_range=0.02, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.window_size = window_size self.initializer_range = initializer_range self.scope = None self.bos_token_id = vocab_size - 1 self.eos_token_id = vocab_size - 1 self.pad_token_id = vocab_size - 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = np.tril(np.ones((self.batch_size, self.seq_length))) config = MistralConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, num_key_value_heads=self.num_key_value_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, use_cache=True, is_decoder=False, initializer_range=self.initializer_range, sliding_window=self.window_size, ) config.pad_token_id = config.eos_token_id return (config, input_ids, input_mask) # Copied from tests.models.gpt_neo.test_modeling_flax_gpt_neo.FlaxGPTNeoModelTester.prepare_config_and_inputs_for_common def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, attention_mask = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict # Copied from tests.models.gpt_neo.test_modeling_flax_gpt_neo.FlaxGPTNeoModelTester.check_use_cache_forward def check_use_cache_forward(self, model_class_name, config, input_ids, attention_mask): max_decoder_length = 20 model = model_class_name(config) past_key_values = model.init_cache(input_ids.shape[0], max_decoder_length) attention_mask = jnp.ones((input_ids.shape[0], max_decoder_length), dtype="i4") position_ids = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1) ) outputs_cache = model( input_ids[:, :-1], attention_mask=attention_mask, past_key_values=past_key_values, position_ids=position_ids, ) position_ids = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="i4") outputs_cache_next = model( input_ids[:, -1:], attention_mask=attention_mask, past_key_values=outputs_cache.past_key_values, position_ids=position_ids, ) outputs = model(input_ids) diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}") # Copied from tests.models.gpt_neo.test_modeling_flax_gpt_neo.FlaxGPTNeoModelTester.check_use_cache_forward_with_attn_mask def check_use_cache_forward_with_attn_mask(self, model_class_name, config, input_ids, attention_mask): max_decoder_length = 20 model = model_class_name(config) attention_mask_cache = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))], axis=-1, ) past_key_values = model.init_cache(input_ids.shape[0], max_decoder_length) position_ids = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1) ) outputs_cache = model( input_ids[:, :-1], attention_mask=attention_mask_cache, past_key_values=past_key_values, position_ids=position_ids, ) position_ids = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="i4") outputs_cache_next = model( input_ids[:, -1:], past_key_values=outputs_cache.past_key_values, attention_mask=attention_mask_cache, position_ids=position_ids, ) outputs = model(input_ids, attention_mask=attention_mask) diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}") @require_flax class FlaxMistralModelTest(FlaxModelTesterMixin, FlaxGenerationTesterMixin, unittest.TestCase): all_model_classes = (FlaxMistralModel, FlaxMistralForCausalLM) if is_flax_available() else () all_generative_model_classes = (FlaxMistralForCausalLM,) if is_flax_available() else () def setUp(self): self.model_tester = FlaxMistralModelTester(self) def test_use_cache_forward(self): for model_class_name in self.all_model_classes: config, input_ids, attention_mask = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(model_class_name, config, input_ids, attention_mask) def test_use_cache_forward_with_attn_mask(self): for model_class_name in self.all_model_classes: config, input_ids, attention_mask = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( model_class_name, config, input_ids, attention_mask ) @slow def test_model_from_pretrained(self): for model_class_name in self.all_model_classes: model = model_class_name.from_pretrained("mistralai/Mistral-7B-v0.1", from_pt=True) outputs = model(np.ones((1, 1))) self.assertIsNotNone(outputs) @slow @require_flax class FlaxMistralIntegrationTest(unittest.TestCase): def setUp(self): self.model_id = "mistralai/Mistral-7B-v0.1" self.model = FlaxMistralForCausalLM.from_pretrained(self.model_id, from_pt=True) self.test_batch = jnp.arange(32).reshape(4, 8) + 1911 def test_model_logits(self): input_ids = jnp.array([[1, 306, 4658, 278, 6593, 310, 2834, 338]]) EXPECTED_MEAN = np.array([[-2.5548, -2.5737, -3.0600, -2.5906, -2.8478, -2.8118, -2.9325, -2.7694]]) EXPECTED_SLICE = np.array([-5.8781,-5.8616,-0.1052,-4.7200,-5.8781,-5.8774,-5.8773,-5.8777,-5.8781,-5.8780,-5.8781,-5.8779,-1.0787,1.7583,-5.8779,-5.8780,-5.8783,-5.8778,-5.8776,-5.8781,-5.8784,-5.8778,-5.8778,-5.8777,-5.8779,-5.8778,-5.8776,-5.8780,-5.8779,-5.8781]) # fmt: skip flax_logits = self.model(input_ids).logits diff_mean = jnp.abs(flax_logits.mean(-1) - EXPECTED_MEAN).max() diff_slice = jnp.abs(flax_logits[0, 0, :30] - EXPECTED_SLICE).max() self.assertAlmostEqual(diff_mean, 0, places=3) self.assertAlmostEqual(diff_slice, 0, places=3) def test_generated_text(self): tokenizer = LlamaTokenizerFast.from_pretrained(self.model_id) tokenizer.pad_token_id = 2 EXPECTED_TEXT_COMPLETION = """My favourite condiment is 100% ketchup. I love it on everything. I’m not a big""" prompt = "My favourite condiment is " inputs = tokenizer(prompt, return_tensors="np", truncation=True, padding=True) generated_ids = self.model.generate(**inputs, max_new_tokens=20, temperature=0).sequences generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True) self.assertEqual(generated_text, EXPECTED_TEXT_COMPLETION)
transformers/tests/models/mistral/test_modeling_flax_mistral.py/0
{ "file_path": "transformers/tests/models/mistral/test_modeling_flax_mistral.py", "repo_id": "transformers", "token_count": 4641 }
183
# coding=utf-8 # Copyright 2024, The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch Moshi model.""" import copy import tempfile import unittest import numpy as np import pytest from datasets import Audio, load_dataset from parameterized import parameterized from transformers import ( MoshiConfig, PretrainedConfig, ) from transformers.integrations.deepspeed import ( is_deepspeed_available, is_deepspeed_zero3_enabled, ) from transformers.testing_utils import ( is_flaky, is_torch_available, require_torch, require_torch_fp16, require_torch_sdpa, slow, torch_device, ) from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_deepspeed_available(): import deepspeed if is_torch_available(): import torch from transformers import ( AutoFeatureExtractor, AutoTokenizer, MoshiForCausalLM, MoshiForConditionalGeneration, MoshiModel, ) def _config_zero_init(config): configs_no_init = copy.deepcopy(config) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(configs_no_init, key, 1e-10) if isinstance(getattr(configs_no_init, key, None), PretrainedConfig): no_init_subconfig = _config_zero_init(getattr(configs_no_init, key)) setattr(configs_no_init, key, no_init_subconfig) return configs_no_init class MoshiDecoderTester: def __init__( self, parent, batch_size=4, # need batch_size != num_hidden_layers seq_length=7, is_training=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=4, hidden_act="silu", rms_norm_eps=0.001, ffn_dim=32, hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=100, pad_token_id=25, num_codebooks=4, audio_encoder_type="mimi", attn_implementation="eager", ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.rms_norm_eps = rms_norm_eps self.ffn_dim = ffn_dim self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.pad_token_id = pad_token_id self.num_codebooks = num_codebooks self.audio_encoder_type = audio_encoder_type self.attn_implementation = attn_implementation def prepare_config_and_inputs(self, batch_size=None): batch_size = self.batch_size if batch_size is None else batch_size input_ids = ids_tensor([batch_size, self.seq_length], self.vocab_size) config = self.get_config() attention_mask = input_ids.ne(self.pad_token_id) inputs_dict = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict def get_config(self): config = MoshiConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, d_ff=self.intermediate_size, num_codebooks=self.num_codebooks, rms_norm_eps=self.rms_norm_eps, tie_word_embeddings=False, pad_token_id=self.pad_token_id, ffn_dim=self.ffn_dim, audio_encoder_config={"model_type": self.audio_encoder_type}, attn_implementation=self.attn_implementation, ) return config def prepare_config_and_inputs_for_common(self, batch_size=None): config, inputs_dict = self.prepare_config_and_inputs(batch_size) return config, inputs_dict @require_torch class MoshiDecoderTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (MoshiModel, MoshiForCausalLM) if is_torch_available() else () all_generative_model_classes = ( (MoshiForCausalLM,) if is_torch_available() else () ) # we don't want to run all the generation tests, only a specific subset test_pruning = False test_resize_embeddings = True test_head_masking = False pipeline_model_mapping = ( { "feature-extraction": MoshiModel, "text-generation": MoshiForCausalLM, } if is_torch_available() else {} ) def setUp(self): self.model_tester = MoshiDecoderTester(self) self.config_tester = ConfigTester( self, config_class=MoshiConfig, hidden_size=16, audio_encoder_config={"model_type": self.model_tester.audio_encoder_type}, ) @unittest.skip(reason="The MoshiModel does not have support dynamic compile yet") def test_sdpa_can_compile_dynamic(self): pass def _get_input_ids_and_config(self, batch_size=1): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common(batch_size) input_ids = inputs_dict.pop("input_ids").to(torch_device) attention_mask = inputs_dict.pop("attention_mask").to(torch_device) return config, input_ids, attention_mask, inputs_dict def _get_logits_processor_kwargs(self, do_sample=False, config=None): logits_processor_kwargs = {} return logits_processor_kwargs @require_torch_sdpa @slow @parameterized.expand([("float16",), ("bfloat16",), ("float32",)]) def test_eager_matches_sdpa_inference(self, torch_dtype: str): self.skipTest(reason="Moshi has no strict equivalence between two modes, skipping this test.") # Copied from tests.test_modeling_common.ModelTesterMixin.test_resize_tokens_embeddings def test_resize_tokens_embeddings(self): if not self.test_resize_embeddings: self.skipTest(reason="test_resize_embeddings is set to `False`") ( original_config, inputs_dict, ) = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: config = copy.deepcopy(original_config) if is_deepspeed_zero3_enabled(): with deepspeed.zero.Init(): model = model_class(config) else: model = model_class(config) model.to(torch_device) model_embed_pre_resize = model.get_input_embeddings() type_model_embed_pre_resize = type(model_embed_pre_resize) if self.model_tester.is_training is False: model.eval() model_vocab_size = config.get_text_config().vocab_size # Retrieve the embeddings and clone theme model_embed = model.resize_token_embeddings(model_vocab_size) cloned_embeddings = model_embed.weight.clone() # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size model_embed = model.resize_token_embeddings(model_vocab_size + 10) new_model_vocab_size = model.config.get_text_config().vocab_size self.assertEqual(new_model_vocab_size, model_vocab_size + 10) # Check that it actually resizes the embeddings matrix self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10) # Check to make sure the type of embeddings returned post resizing is same as type of input type_model_embed_post_resize = type(model_embed) self.assertEqual(type_model_embed_pre_resize, type_model_embed_post_resize) # Check that added embeddings mean is close to the old embeddings mean if is_deepspeed_zero3_enabled(): with deepspeed.zero.GatheredParameters(model_embed.weight, modifier_rank=None): old_embeddings_mean = torch.mean(model_embed.weight.data[:-10, :], axis=0) new_embeddings_mean = torch.mean(model_embed.weight.data[-10:, :], axis=0) else: old_embeddings_mean = torch.mean(model_embed.weight.data[:-10, :], axis=0) new_embeddings_mean = torch.mean(model_embed.weight.data[-10:, :], axis=0) torch.testing.assert_close(old_embeddings_mean, new_embeddings_mean, rtol=1e-3, atol=1e-3) # Check that the model can still do a forward pass successfully (every parameter should be resized) if not is_deepspeed_zero3_enabled(): # A distriputed launcher is needed for the forward pass when deepspeed is enabled model(**self._prepare_for_class(inputs_dict, model_class)) # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size model_embed = model.resize_token_embeddings(model_vocab_size - 15) new_model_vocab_size = model.config.get_text_config().vocab_size self.assertEqual(new_model_vocab_size, model_vocab_size - 15) # Check that it actually resizes the embeddings matrix self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15) # Check that the model can still do a forward pass successfully (every parameter should be resized) # Input ids should be clamped to the maximum size of the vocabulary inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1) # make sure that decoder_input_ids are resized as well if not is_deepspeed_zero3_enabled(): # A distriputed launcher is needed for the forward pass when deepspeed is enabled if "decoder_input_ids" in inputs_dict: inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that adding and removing tokens has not modified the first part of the embedding matrix. models_equal = True for p1, p2 in zip(cloned_embeddings, model_embed.weight): if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) del model if is_deepspeed_zero3_enabled(): with deepspeed.zero.Init(): model = model_class(config) else: model = model_class(config) model.to(torch_device) model_vocab_size = config.get_text_config().vocab_size model.resize_token_embeddings(model_vocab_size + 10, pad_to_multiple_of=1) new_model_vocab_size = model.config.get_text_config().vocab_size self.assertTrue(new_model_vocab_size + 10, model_vocab_size) model_embed = model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=64) new_model_vocab_size = model.config.get_text_config().vocab_size self.assertTrue(model_embed.weight.shape[0] // 64, 0) self.assertTrue(model_embed.weight.shape[0], new_model_vocab_size) self.assertTrue(new_model_vocab_size, model.vocab_size) model_embed = model.resize_token_embeddings(model_vocab_size + 13, pad_to_multiple_of=64) self.assertTrue(model_embed.weight.shape[0] // 64, 0) # Check that resizing a model to a multiple of pad_to_multiple leads to a model of exactly that size target_dimension = 128 model_embed = model.resize_token_embeddings(target_dimension, pad_to_multiple_of=64) self.assertTrue(model_embed.weight.shape[0], target_dimension) with self.assertRaisesRegex( ValueError, "Asking to pad the embedding matrix to a multiple of `1.3`, which is not and integer. Please make sure to pass an integer", ): model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=1.3) # Test when `vocab_size` is smaller than `hidden_size`. del model config.vocab_size = 4 config.pad_token_id = 4 # Ignore copy if is_deepspeed_zero3_enabled(): with deepspeed.zero.Init(): model = model_class(config) else: model = model_class(config) model.to(torch_device) model_vocab_size = config.get_text_config().vocab_size # Retrieve the embeddings and clone theme model_embed = model.resize_token_embeddings(model_vocab_size) cloned_embeddings = model_embed.weight.clone() # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size model_embed = model.resize_token_embeddings(model_vocab_size + 10) new_model_vocab_size = model.config.get_text_config().vocab_size self.assertEqual(new_model_vocab_size, model_vocab_size + 10) # Check that it actually resizes the embeddings matrix self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10) # Check to make sure the type of embeddings returned post resizing is same as type of input type_model_embed_post_resize = type(model_embed) self.assertEqual(type_model_embed_pre_resize, type_model_embed_post_resize) # Check that added embeddings mean is close to the old embeddings mean if is_deepspeed_zero3_enabled(): with deepspeed.zero.GatheredParameters(model_embed.weight, modifier_rank=None): old_embeddings_mean = torch.mean(model_embed.weight.data[:-10, :], axis=0) new_embeddings_mean = torch.mean(model_embed.weight.data[-10:, :], axis=0) else: old_embeddings_mean = torch.mean(model_embed.weight.data[:-10, :], axis=0) new_embeddings_mean = torch.mean(model_embed.weight.data[-10:, :], axis=0) torch.testing.assert_close(old_embeddings_mean, new_embeddings_mean, rtol=1e-3, atol=1e-3) @unittest.skip(reason="Some undefined behavior encountered with test versions of this model. Skip for now.") def test_cpu_offload(self): pass @unittest.skip(reason="Some undefined behavior encountered with test versions of this model. Skip for now.") def test_disk_offload_bin(self): pass @unittest.skip(reason="Some undefined behavior encountered with test versions of this model. Skip for now.") def test_disk_offload_safetensors(self): pass @is_flaky(max_attempts=5, description="flaky on some models.") def test_save_load(self): super().test_save_load() class MoshiTester: def __init__( self, parent, batch_size=4, # need batch_size != num_hidden_layers seq_length=7, is_training=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=8, intermediate_size=4, hidden_act="silu", rms_norm_eps=0.001, ffn_dim=32, hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=100, pad_token_id=25, bos_token_id=25, num_codebooks=4, audio_encoder_type="mimi", attn_implementation="eager", depth_hidden_size=16, depth_num_hidden_layers=2, depth_max_position_embeddings=5, depth_num_attention_heads=8, depth_ffn_dim=16, depth_sliding_window=4, mimi_intermediate_size=40, mimi_hidden_size=32, mimi_num_filters=8, mimi_num_residual_layers=1, mimi_upsampling_ratios=[8, 4], mimi_codebook_size=64, mimi_vector_quantization_hidden_dimension=64, mimi_codebook_dim=64, mimi_upsample_groups=32, mimi_num_hidden_layers=2, mimi_num_attention_heads=2, mimi_num_key_value_heads=2, mimi_sliding_window=3, sampling_rate=800, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.rms_norm_eps = rms_norm_eps self.ffn_dim = ffn_dim self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id self.num_codebooks = num_codebooks self.attn_implementation = attn_implementation self.depth_hidden_size = depth_hidden_size self.depth_num_hidden_layers = depth_num_hidden_layers self.depth_max_position_embeddings = depth_max_position_embeddings self.depth_num_attention_heads = depth_num_attention_heads self.depth_ffn_dim = depth_ffn_dim self.depth_sliding_window = depth_sliding_window self.audio_encoder_type = audio_encoder_type self.mimi_intermediate_size = mimi_intermediate_size self.mimi_hidden_size = mimi_hidden_size self.mimi_num_filters = mimi_num_filters self.mimi_num_residual_layers = mimi_num_residual_layers self.mimi_upsampling_ratios = mimi_upsampling_ratios self.mimi_codebook_size = mimi_codebook_size self.mimi_vector_quantization_hidden_dimension = mimi_vector_quantization_hidden_dimension self.mimi_codebook_dim = mimi_codebook_dim self.mimi_upsample_groups = mimi_upsample_groups self.mimi_num_hidden_layers = mimi_num_hidden_layers self.mimi_num_attention_heads = mimi_num_attention_heads self.mimi_num_key_value_heads = mimi_num_key_value_heads self.mimi_sliding_window = mimi_sliding_window self.sampling_rate = sampling_rate self.num_hidden_states_types = 2 def prepare_config_and_inputs(self, batch_size=None): batch_size = self.batch_size if batch_size is None else batch_size input_ids = ids_tensor([batch_size, self.seq_length], self.vocab_size) moshi_audio_codes = ids_tensor([batch_size, self.num_codebooks, self.seq_length], self.mimi_codebook_size) user_audio_codes = ids_tensor([batch_size, self.num_codebooks, self.seq_length], self.mimi_codebook_size) attention_mask = input_ids.ne(self.pad_token_id) config = self.get_config() inputs_dict = { "input_ids": input_ids, "moshi_audio_codes": moshi_audio_codes, "user_audio_codes": user_audio_codes, "attention_mask": attention_mask, } return config, inputs_dict def get_config(self): mimi_dict_config = { "model_type": self.audio_encoder_type, "audio_channels": 1, "hidden_size": self.mimi_hidden_size, "num_filters": self.mimi_num_filters, "num_residual_layers": self.mimi_num_residual_layers, "upsampling_ratios": self.mimi_upsampling_ratios, "codebook_size": self.mimi_codebook_size, "vector_quantization_hidden_dimension": self.mimi_vector_quantization_hidden_dimension, "upsample_groups": self.mimi_upsample_groups, "num_hidden_layers": self.mimi_num_hidden_layers, "num_attention_heads": self.mimi_num_attention_heads, "num_key_value_heads": self.mimi_num_key_value_heads, "sliding_window": self.mimi_sliding_window, "codebook_dim": self.mimi_codebook_dim, "use_cache": False, "sampling_rate": self.sampling_rate, } depth_dict_config = { "hidden_size": self.depth_hidden_size, "num_hidden_layers": self.depth_num_hidden_layers, "max_position_embeddings": self.depth_max_position_embeddings, "num_attention_heads": self.depth_num_attention_heads, "ffn_dim": self.depth_ffn_dim, "sliding_window": self.depth_sliding_window, } config = MoshiConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, d_ff=self.intermediate_size, num_codebooks=self.num_codebooks, rms_norm_eps=self.rms_norm_eps, tie_word_embeddings=False, pad_token_id=self.pad_token_id, bos_token_id=self.bos_token_id, ffn_dim=self.ffn_dim, audio_encoder_config=mimi_dict_config, depth_decoder_config=depth_dict_config, attn_implementation=self.attn_implementation, ) return config def prepare_config_and_inputs_for_common(self, batch_size=None): config, inputs_dict = self.prepare_config_and_inputs(batch_size) return config, inputs_dict @require_torch class MoshiTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): all_model_classes = (MoshiForConditionalGeneration,) if is_torch_available() else () all_generative_model_classes = (MoshiForConditionalGeneration,) if is_torch_available() else () test_pruning = False # training is not supported yet for Moshi test_headmasking = False test_resize_embeddings = False test_torchscript = False def setUp(self): self.model_tester = MoshiTester(self) # special case for labels def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: inputs_dict["text_labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device, ) return inputs_dict def _get_input_ids_and_config(self, batch_size=2): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common(batch_size) input_ids = inputs_dict.pop("input_ids").to(torch_device) attention_mask = inputs_dict.pop("attention_mask").to(torch_device) # Make sure we only return `input_ids`. # Note that audio_codes will still be generated internally, so the ability to test audio codes is still there. # There are further tests to test that audio waveforms and codes are well generated. inputs_dict["return_audio_waveforms"] = False inputs_dict["return_audio_codes"] = False inputs_dict["concat_unconditional_inputs"] = False return config, input_ids, attention_mask, inputs_dict def prepare_config_and_inputs_for_generate(self, batch_size=2): config, filtered_inputs_dict = super().prepare_config_and_inputs_for_generate(batch_size=batch_size) # Make sure we only return `input_ids`. # Note that audio_codes will still be generated internally, so the ability to test audio codes is still there. # There are further tests to test that audio waveforms and codes are well generated. filtered_inputs_dict["return_audio_waveforms"] = False filtered_inputs_dict["return_audio_codes"] = False filtered_inputs_dict["concat_unconditional_inputs"] = False return config, filtered_inputs_dict def _check_hidden_states_for_generate( self, batch_size, hidden_states, min_length, max_length, config, use_cache=False, num_beam_groups=1 ): # Overwrite because the generate method actually alway uses `inputs_embeds` so `use_cache` is always `True` self.assertIsInstance(hidden_states, tuple) self.assertListEqual( [isinstance(iter_hidden_states, tuple) for iter_hidden_states in hidden_states], [True] * len(hidden_states), ) self.assertEqual(len(hidden_states), (max_length - min_length) * num_beam_groups) for idx, iter_hidden_states in enumerate(hidden_states): seq_len = min_length if idx == 0 else 1 expected_shape = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states], [expected_shape] * len(iter_hidden_states), ) def _check_outputs(self, output, config, use_cache=False, num_return_sequences=1, num_beams=1): # Overwrite because the generate method actually alway uses `inputs_embeds` so `use_cache` is always `True` super()._check_outputs( output, config, use_cache=True, num_return_sequences=num_return_sequences, num_beams=num_beams ) def _check_hidden_states_for_generate( self, batch_size, hidden_states, min_length, max_length, config, use_cache=False, num_beam_groups=1 ): # Overwrite because the generate method actually alway uses `inputs_embeds` so `use_cache` is always `True` self.assertIsInstance(hidden_states, tuple) self.assertListEqual( [isinstance(iter_hidden_states, tuple) for iter_hidden_states in hidden_states], [True] * len(hidden_states), ) self.assertEqual(len(hidden_states), (max_length - min_length) * num_beam_groups) for idx, iter_hidden_states in enumerate(hidden_states): seq_len = 1 expected_shape = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states], [expected_shape] * len(iter_hidden_states), ) def _check_attentions_for_generate( self, batch_size, attentions, min_length, max_length, config, use_cache=False, num_beam_groups=1 ): # Overwrite because the generate method actually alway uses `inputs_embeds` so `use_cache` is always `True` self.assertIsInstance(attentions, tuple) self.assertListEqual( [isinstance(iter_attentions, tuple) for iter_attentions in attentions], [True] * len(attentions) ) self.assertEqual(len(attentions), (max_length - min_length) * num_beam_groups) for idx, iter_attentions in enumerate(attentions): tgt_len = 1 src_len = min_length + idx expected_shape = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions], [expected_shape] * len(iter_attentions) ) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): uniform_init_parms = ["conv", "input_proj", "output_proj"] if param.requires_grad: if any(x in name for x in uniform_init_parms): self.assertTrue( -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @unittest.skip(reason="Continuing from past key values is not straightforward as we're dealing with 3 inputs") def test_generate_continue_from_past_key_values(self): pass @unittest.skip("Moshi doesn't support contrastive generation yet.") def test_contrastive_generate(self): pass @unittest.skip("Moshi doesn't support contrastive generation yet.") def test_contrastive_generate_dict_outputs_use_cache(self): pass @unittest.skip("Moshi doesn't support contrastive generation yet.") def test_contrastive_generate_low_memory(self): pass @unittest.skip("Adapting this test is costly. `test_eager_matches_sdpa_generate` tests this already.") @parameterized.expand([("float16",), ("bfloat16",), ("float32",)]) @require_torch_sdpa @slow def test_eager_matches_sdpa_inference(self, torch_dtype: str): pass @unittest.skip(reason="The Moshi model does not have support dynamic compile yet") def test_sdpa_can_compile_dynamic(self): pass @pytest.mark.generate def test_left_padding_compatibility(self): # NOTE: left-padding results in small numerical differences. This is expected. # See https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535 # Then, test left-padding for model_class in self.all_generative_model_classes: config, input_ids, attention_mask, input_dict = self._get_input_ids_and_config() model = model_class(config).to(torch_device).eval() # no cache as some models require special cache classes to be init outside forward model.generation_config.use_cache = False # Without padding next_logits_wo_padding = model(input_ids=input_ids, attention_mask=attention_mask, **input_dict).logits[ :, -1, : ] # With left-padding (length 32) # can hardcode pad_token to be 0 as we'll do attn masking anyway pad_token_id = ( config.get_text_config().pad_token_id if config.get_text_config().pad_token_id is not None else 0 ) pad_size = (input_ids.shape[0], 32) padding = torch.ones(pad_size, dtype=input_ids.dtype, device=torch_device) * pad_token_id padded_input_ids = torch.cat((padding, input_ids), dim=1) padded_attention_mask = torch.cat((torch.zeros_like(padding), attention_mask), dim=1) padding = ( torch.ones( (pad_size[0], self.model_tester.num_codebooks, 32), dtype=input_ids.dtype, device=torch_device ) * config.audio_vocab_size ) padded_moshi_audio_codes = torch.cat((padding, input_dict["moshi_audio_codes"]), dim=2) padded_user_audio_codes = torch.cat((padding, input_dict["user_audio_codes"]), dim=2) model_kwargs = { "input_ids": padded_input_ids, "attention_mask": padded_attention_mask, "moshi_audio_codes": padded_moshi_audio_codes, "user_audio_codes": padded_user_audio_codes, } next_logits_with_padding = model(**model_kwargs).logits[:, -1, :] # They should result in very similar logits torch.testing.assert_close(next_logits_wo_padding, next_logits_with_padding, rtol=1e-5, atol=1e-5) @require_torch_sdpa @slow @is_flaky(max_attempts=5, description="flaky on some models.") def test_eager_matches_sdpa_generate(self): """Overwritten -- mochi has custom inputs and custom output checks""" max_new_tokens = 5 for model_class in self.all_generative_model_classes: if not model_class._supports_sdpa: self.skipTest(f"{model_class.__name__} does not support SDPA") config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() dummy_input = inputs_dict[model_class.main_input_name] if dummy_input.dtype in [torch.float32, torch.bfloat16]: dummy_input = dummy_input.to(torch.float16) inputs_dict[model_class.main_input_name] = dummy_input # make sure that all models have enough positions for generation if hasattr(config, "max_position_embeddings"): config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1 model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model_sdpa = model_class.from_pretrained( tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True, ).to(torch_device) self.assertTrue(model_sdpa.config._attn_implementation == "sdpa") model_eager = model_class.from_pretrained( tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True, attn_implementation="eager", ).to(torch_device) self.assertTrue(model_eager.config._attn_implementation == "eager") for name, submodule in model_eager.named_modules(): class_name = submodule.__class__.__name__ if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name: raise ValueError("The eager model should not have SDPA attention layers") has_sdpa = False for name, submodule in model_sdpa.named_modules(): class_name = submodule.__class__.__name__ if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name: has_sdpa = True break if not has_sdpa: raise ValueError("The SDPA model should have SDPA attention layers") # Just test that a large cache works as expected res_eager = model_eager.generate( **inputs_dict, max_new_tokens=max_new_tokens, do_sample=False, depth_decoder_do_sample=False, ) res_sdpa = model_sdpa.generate( **inputs_dict, max_new_tokens=max_new_tokens, do_sample=False, depth_decoder_do_sample=False, ) torch.testing.assert_close(res_eager.sequences, res_sdpa.sequences) torch.testing.assert_close(res_eager.audio_sequences, res_sdpa.audio_sequences) @pytest.mark.generate def test_generate_without_input_ids(self): config, _, _, _ = self._get_input_ids_and_config() for model_class in self.all_generative_model_classes: model = model_class(config).to(torch_device) model.eval() output_ids_generate = model.generate( do_sample=False, max_new_tokens=self.max_new_tokens, remove_invalid_values=True ) self.assertIsNotNone(output_ids_generate) @unittest.skip(reason="The audio encoder has no gradients.") def test_training_gradient_checkpointing(self): pass @unittest.skip(reason="The audio encoder has no gradients.") def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip(reason="The audio encoder has no gradients.") def test_training_gradient_checkpointing_use_reentrant_false(self): pass def test_generate_from_input_values(self): for model_class in self.all_generative_model_classes: config, input_ids, _, _ = self._get_input_ids_and_config() model = model_class(config).to(torch_device).eval() input_values_length = int( self.model_tester.seq_length * config.sampling_rate / config.audio_encoder_config.frame_rate ) user_input_values = floats_tensor((input_ids.shape[0], 1, input_values_length)) moshi_input_values = floats_tensor((input_ids.shape[0], 1, input_values_length)) user_audio_codes = model.audio_encoder.encode(user_input_values, num_quantizers=model.num_codebooks)[0] moshi_audio_codes = model.audio_encoder.encode(moshi_input_values, num_quantizers=model.num_codebooks)[0] outputs_from_audio_codes = model.generate( input_ids, max_new_tokens=5, user_audio_codes=user_audio_codes, moshi_audio_codes=moshi_audio_codes ) outputs_from_audio_values = model.generate( input_ids, max_new_tokens=5, user_input_values=user_input_values, moshi_input_values=moshi_input_values ) self.assertTrue((outputs_from_audio_values.sequences == outputs_from_audio_codes.sequences).all()) self.assertTrue( torch.allclose(outputs_from_audio_codes.audio_sequences, outputs_from_audio_values.audio_sequences) ) def test_generate_depth_decoder_kwargs(self): # test sampling and beam search for model_class in self.all_generative_model_classes: config, input_ids, _, input_dict = self._get_input_ids_and_config() model = model_class(config).to(torch_device).eval() model.generate(input_ids, max_new_tokens=5, **input_dict, depth_decoder_do_sample=True) model.generate( input_ids, max_new_tokens=5, **input_dict, depth_decoder_do_sample=True, depth_decoder_num_beams=5 ) def test_generate_from_unconditional(self): # test sampling and beam search for model_class in self.all_generative_model_classes: config, input_ids, _, input_dict = self._get_input_ids_and_config() model = model_class(config).to(torch_device).eval() # check bs>1 model.generate( **model.get_unconditional_inputs(num_samples=4), max_new_tokens=5, concat_unconditional_inputs=False ) # check same results from uncondtional or no inputs outputs_from_unconditional = model.generate( **model.get_unconditional_inputs(num_samples=1), max_new_tokens=5, concat_unconditional_inputs=False ) outputs_from_none = model.generate(max_new_tokens=5) self.assertTrue((outputs_from_unconditional.sequences == outputs_from_none.sequences).all()) self.assertTrue( torch.allclose(outputs_from_unconditional.audio_sequences, outputs_from_none.audio_sequences) ) @unittest.skip(reason="Compile not yet supported because in Moshi models") def test_sdpa_can_dispatch_on_flash(self): pass @unittest.skip(reason="Some undefined behavior encountered with test versions of this model. Skip for now.") def test_cpu_offload(self): pass @unittest.skip(reason="Some undefined behavior encountered with test versions of this model. Skip for now.") def test_disk_offload_bin(self): pass @unittest.skip(reason="Some undefined behavior encountered with test versions of this model. Skip for now.") def test_disk_offload_safetensors(self): pass @is_flaky(max_attempts=5, description="flaky on some models.") def test_save_load(self): super().test_save_load() def place_dict_on_device(dict_to_place, device): for key in dict_to_place: if dict_to_place[key] is not None and isinstance(dict_to_place[key], torch.Tensor): dict_to_place[key] = dict_to_place[key].to(device) return dict_to_place @require_torch class MoshiIntegrationTests(unittest.TestCase): @cached_property def feature_extractor(self): return AutoFeatureExtractor.from_pretrained("kmhf/hf-moshiko") @cached_property def tokenizer(self): return AutoTokenizer.from_pretrained("kmhf/hf-moshiko") def _load_datasample(self): ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") dataset = ds.cast_column("audio", Audio(sampling_rate=self.feature_extractor.sampling_rate)) # automatic decoding with librispeech speech_sample = dataset.sort("id")[0]["audio"]["array"] return speech_sample @slow def test_moshika_conditional_greedy(self): model = MoshiForConditionalGeneration.from_pretrained( "kmhf/hf-moshika", torch_dtype=torch.float16, device_map="auto" ) inputs = self.feature_extractor(self._load_datasample(), return_tensors="pt").to( device=torch_device, dtype=torch.float16 ) user_audio_codes = model.audio_encoder.encode(**inputs, num_quantizers=8).audio_codes input_ids = self.tokenizer.encode("<pad><pad><pad><pad><unk> Hello,<pad><unk>", return_tensors="pt").to( torch_device ) # fmt: off moshi_audio_codes = [[[1049, 127, 1880, 972, 972, 1156, 1913, 415, 1933], [1700, 243, 91, 91, 91, 745, 1478, 638, 57], [1626, 457, 457, 457, 457, 1839, 200, 2011, 1142], [546, 290, 390, 390, 290, 1408, 1812, 1187, 1911], [306, 306, 1314, 1314, 1314, 759, 796, 854, 1466], [1443, 1443, 1030, 317, 347, 1178, 613, 1576, 2023], [1871, 428, 1433, 1433, 1978, 1405, 1755, 820, 610], [2008, 1744, 1511, 568, 1533, 550, 237, 1412, 1401]]] # fmt: on moshi_audio_codes = torch.tensor(moshi_audio_codes, device=torch_device) user_audio_codes = user_audio_codes[:, :, : moshi_audio_codes.shape[-1]] model_outputs = model.generate( user_audio_codes=user_audio_codes, moshi_audio_codes=moshi_audio_codes, input_ids=input_ids, do_sample=False, depth_decoder_do_sample=False, return_audio_codes=True, max_new_tokens=2, ) expected_text_token = 452 expected_audio_tokens = [916, 1396, 1238, 579, 1105, 914, 1257, 810] # fmt: skip self.assertTrue(expected_text_token == model_outputs.sequences[0, -2].cpu().item()) self.assertTrue(expected_audio_tokens == model_outputs.audio_codes[0, :, -1].cpu().tolist()) @slow def test_moshiko_greedy_unconditional_fp16_eager(self): model = MoshiForConditionalGeneration.from_pretrained( "kmhf/hf-moshiko", torch_dtype=torch.float16, device_map="auto" ) some_expected_audio_tokens = [[1049, 127], [1700, 243], [1626, 457], [546, 290], [306, 306], [1443, 1443], [1871, 428], [2008, 1744]] # fmt: skip model_outputs = model.generate( do_sample=False, depth_decoder_do_sample=False, return_audio_codes=True, max_new_tokens=10 ) # eager equivalence is not as strict as sdpa. self.assertTrue(some_expected_audio_tokens == model_outputs.audio_codes[0, :, :2].cpu().tolist()) @slow def test_moshiko_greedy_unconditional_fp32(self): model = MoshiForConditionalGeneration.from_pretrained( "kmhf/hf-moshiko", torch_dtype=torch.float32, device_map="auto" ) expected_audio_codesum = 72065 expected_text_tokens = [3, 3, 3, 0, 11725, 261, 3, 3, 3, 3] # fmt: skip some_expected_audio_tokens = [[1049, 127], [1700, 243], [1626, 457], [546, 290], [306, 306], [1443, 1443], [1871, 428], [2008, 1744]] # fmt: skip model_outputs = model.generate( do_sample=False, depth_decoder_do_sample=False, return_audio_codes=True, max_new_tokens=10 ) # make sure audio encoded codes are correct audio_code_sums = model_outputs.audio_codes.sum().item() self.assertTrue(np.abs(audio_code_sums - expected_audio_codesum) <= (3e-3 * audio_code_sums)) self.assertTrue(expected_text_tokens == model_outputs.sequences[0, 1:].cpu().tolist()) self.assertTrue(some_expected_audio_tokens == model_outputs.audio_codes[0, :, :2].cpu().tolist()) @slow @require_torch_fp16 def test_moshiko_greedy_unconditional_fp16(self): model = MoshiForConditionalGeneration.from_pretrained( "kmhf/hf-moshiko", torch_dtype=torch.float16, device_map="auto" ) expected_audio_codesum = 72065 expected_text_tokens = [3, 3, 3, 0, 11725, 261, 3, 3, 3, 3] # fmt: skip some_expected_audio_tokens = [[1049, 127], [1700, 243], [1626, 457], [546, 290], [306, 306], [1443, 1443], [1871, 428], [2008, 1744]] # fmt: skip model_outputs = model.generate( do_sample=False, depth_decoder_do_sample=False, return_audio_codes=True, max_new_tokens=10 ) # make sure audio encoded codes are correct audio_code_sums = model_outputs.audio_codes.sum().item() self.assertTrue(np.abs(audio_code_sums - expected_audio_codesum) <= (3e-3 * audio_code_sums)) self.assertTrue(expected_text_tokens == model_outputs.sequences[0, 1:].cpu().tolist()) self.assertTrue(some_expected_audio_tokens == model_outputs.audio_codes[0, :, :2].cpu().tolist()) @slow @require_torch_fp16 def test_moshika_greedy_unconditional_fp16(self): model = MoshiForConditionalGeneration.from_pretrained( "kmhf/hf-moshika", torch_dtype=torch.float16, device_map="auto" ) expected_audio_codesum = 72932 expected_text_tokens = [3, 3, 3, 0, 667, 263, 3, 3, 0, 705] # fmt: skip some_expected_audio_tokens = [[1049, 127], [1700, 243], [1626, 457], [546, 290], [306, 306], [1443, 347], [1871, 428], [2008, 2008]] # fmt: skip model_outputs = model.generate( do_sample=False, depth_decoder_do_sample=False, return_audio_codes=True, max_new_tokens=10 ) # make sure audio encoded codes are correct audio_code_sums = model_outputs.audio_codes.sum().item() self.assertTrue(np.abs(audio_code_sums - expected_audio_codesum) <= 2048) self.assertTrue(expected_text_tokens == model_outputs.sequences[0, 1:].cpu().tolist()) self.assertTrue(some_expected_audio_tokens == model_outputs.audio_codes[0, :, :2].cpu().tolist())
transformers/tests/models/moshi/test_modeling_moshi.py/0
{ "file_path": "transformers/tests/models/moshi/test_modeling_moshi.py", "repo_id": "transformers", "token_count": 21617 }
184
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the MusicGen processor.""" import random import shutil import tempfile import unittest import numpy as np from transformers import T5Tokenizer, T5TokenizerFast from transformers.testing_utils import require_sentencepiece, require_torch from transformers.utils.import_utils import is_speech_available if is_speech_available(): from transformers import EncodecFeatureExtractor, MusicgenProcessor global_rng = random.Random() # Copied from tests.models.whisper.test_feature_extraction_whisper.floats_list def floats_list(shape, scale=1.0, rng=None, name=None): """Creates a random float32 tensor""" if rng is None: rng = global_rng values = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values @require_torch @require_sentencepiece class MusicgenProcessorTest(unittest.TestCase): def setUp(self): self.checkpoint = "facebook/musicgen-small" self.tmpdirname = tempfile.mkdtemp() def get_tokenizer(self, **kwargs): return T5Tokenizer.from_pretrained(self.checkpoint, **kwargs) def get_feature_extractor(self, **kwargs): return EncodecFeatureExtractor.from_pretrained(self.checkpoint, **kwargs) def tearDown(self): shutil.rmtree(self.tmpdirname) def test_save_load_pretrained_default(self): tokenizer = self.get_tokenizer() feature_extractor = self.get_feature_extractor() processor = MusicgenProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) processor.save_pretrained(self.tmpdirname) processor = MusicgenProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer, T5TokenizerFast) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string()) self.assertIsInstance(processor.feature_extractor, EncodecFeatureExtractor) def test_save_load_pretrained_additional_features(self): processor = MusicgenProcessor(tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor()) processor.save_pretrained(self.tmpdirname) tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") feature_extractor_add_kwargs = self.get_feature_extractor(do_normalize=False, padding_value=1.0) processor = MusicgenProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, T5TokenizerFast) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string()) self.assertIsInstance(processor.feature_extractor, EncodecFeatureExtractor) def test_feature_extractor(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = MusicgenProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) raw_speech = floats_list((3, 1000)) input_feat_extract = feature_extractor(raw_speech, return_tensors="np") input_processor = processor(raw_speech, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) def test_tokenizer(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = MusicgenProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) input_str = "This is a test string" encoded_processor = processor(text=input_str) encoded_tok = tokenizer(input_str) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def test_tokenizer_decode(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = MusicgenProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] decoded_processor = processor.batch_decode(sequences=predicted_ids) decoded_tok = tokenizer.batch_decode(predicted_ids) self.assertListEqual(decoded_tok, decoded_processor) def test_model_input_names(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = MusicgenProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) self.assertListEqual( processor.model_input_names, feature_extractor.model_input_names, msg="`processor` and `feature_extractor` model input names do not match", ) def test_decode_audio(self): feature_extractor = self.get_feature_extractor(padding_side="left") tokenizer = self.get_tokenizer() processor = MusicgenProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) raw_speech = [floats_list((1, x))[0] for x in range(5, 20, 5)] padding_mask = processor(raw_speech).padding_mask generated_speech = np.asarray(floats_list((3, 20)))[:, None, :] decoded_audios = processor.batch_decode(generated_speech, padding_mask=padding_mask) self.assertIsInstance(decoded_audios, list) for audio in decoded_audios: self.assertIsInstance(audio, np.ndarray) self.assertTrue(decoded_audios[0].shape == (1, 10)) self.assertTrue(decoded_audios[1].shape == (1, 15)) self.assertTrue(decoded_audios[2].shape == (1, 20))
transformers/tests/models/musicgen/test_processor_musicgen.py/0
{ "file_path": "transformers/tests/models/musicgen/test_processor_musicgen.py", "repo_id": "transformers", "token_count": 2474 }
185
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch OneFormer model.""" import copy import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import OneFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import ( is_flaky, require_timm, require_torch, require_torch_accelerator, require_torch_fp16, require_torch_multi_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OneFormerForUniversalSegmentation, OneFormerModel if is_vision_available(): from transformers import OneFormerProcessor if is_vision_available(): from PIL import Image def _config_zero_init(config): configs_no_init = copy.deepcopy(config) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(configs_no_init, key, 1e-10) return configs_no_init class OneFormerModelTester: def __init__( self, parent, batch_size=2, is_training=True, vocab_size=99, use_auxiliary_loss=False, num_queries=10, num_channels=3, min_size=32 * 8, max_size=32 * 8, num_labels=4, hidden_dim=64, sequence_length=77, n_ctx=4, ): self.parent = parent self.batch_size = batch_size self.is_training = is_training self.vocab_size = vocab_size self.use_auxiliary_loss = use_auxiliary_loss self.num_queries = num_queries self.num_channels = num_channels self.min_size = min_size self.max_size = max_size self.num_labels = num_labels self.hidden_dim = hidden_dim self.sequence_length = sequence_length self.n_ctx = n_ctx def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]).to( torch_device ) task_inputs = ( torch.randint(high=self.vocab_size, size=(self.batch_size, self.sequence_length)).to(torch_device).long() ) pixel_mask = torch.ones([self.batch_size, self.min_size, self.max_size], device=torch_device) text_inputs = ( torch.randint( high=self.vocab_size, size=(self.batch_size, self.num_queries - self.n_ctx, self.sequence_length) ) .to(torch_device) .long() ) mask_labels = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size], device=torch_device) > 0.5 ).float() class_labels = (torch.rand((self.batch_size, self.num_labels), device=torch_device) > 0.5).long() config = self.get_config() return config, pixel_values, task_inputs, text_inputs, pixel_mask, mask_labels, class_labels def get_config(self): config = OneFormerConfig( text_encoder_vocab_size=self.vocab_size, hidden_size=self.hidden_dim, num_queries=self.num_queries, num_labels=self.num_labels, encoder_feedforward_dim=32, dim_feedforward=64, encoder_layers=2, decoder_layers=2, ) config.backbone_config.embed_dim = 16 config.backbone_config.depths = [1, 1, 1, 1] config.backbone_config.hidden_size = 16 config.backbone_config.num_channels = self.num_channels config.backbone_config.num_heads = [1, 1, 2, 2] config.backbone = None config.hidden_dim = self.hidden_dim config.mask_dim = self.hidden_dim config.conv_dim = self.hidden_dim config.text_encoder_width = self.hidden_dim config.task_seq_len = self.sequence_length config.max_seq_len = self.sequence_length config.text_encoder_context_length = self.sequence_length config.text_encoder_n_ctx = self.n_ctx return config def prepare_config_and_inputs_for_common(self): config, pixel_values, task_inputs, pixel_mask, _, _, _ = self.prepare_config_and_inputs() inputs_dict = {"pixel_values": pixel_values, "pixel_mask": pixel_mask, "task_inputs": task_inputs} return config, inputs_dict def check_output_hidden_state(self, output, config): encoder_hidden_states = output.encoder_hidden_states pixel_decoder_hidden_states = output.pixel_decoder_hidden_states transformer_decoder_hidden_states = output.transformer_decoder_hidden_states self.parent.assertTrue(len(encoder_hidden_states), len(config.backbone_config.depths)) self.parent.assertTrue(len(pixel_decoder_hidden_states), config.encoder_layers) self.parent.assertTrue(len(transformer_decoder_hidden_states), config.decoder_layers - 1) def create_and_check_oneformer_model( self, config, pixel_values, task_inputs, pixel_mask, output_hidden_states=False ): with torch.no_grad(): model = OneFormerModel(config=config) model.to(torch_device) model.eval() output = model(pixel_values=pixel_values, task_inputs=task_inputs, pixel_mask=pixel_mask) output = model(pixel_values, task_inputs=task_inputs, output_hidden_states=True) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_object_queries.shape, (self.batch_size, self.num_queries, self.hidden_dim), ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_hidden_states is not None) self.parent.assertTrue(output.encoder_hidden_states is not None) if output_hidden_states: self.check_output_hidden_state(output, config) def create_and_check_oneformer_universal_segmentation_head_model( self, config, pixel_values, task_inputs, text_inputs, pixel_mask, mask_labels, class_labels ): model = OneFormerForUniversalSegmentation(config=config) model.to(torch_device) model.eval() def comm_check_on_output(result): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_hidden_states is not None) self.parent.assertTrue(result.pixel_decoder_hidden_states is not None) self.parent.assertTrue(result.encoder_hidden_states is not None) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape, (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4), ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): result = model(pixel_values=pixel_values, task_inputs=task_inputs, pixel_mask=pixel_mask) result = model(pixel_values, task_inputs) comm_check_on_output(result) config.is_training = True model = OneFormerForUniversalSegmentation(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model( pixel_values=pixel_values, task_inputs=task_inputs, pixel_mask=pixel_mask, mask_labels=mask_labels, class_labels=class_labels, text_inputs=text_inputs, ) comm_check_on_output(result) self.parent.assertTrue(result.loss is not None) self.parent.assertEqual(result.loss.shape, torch.Size([1])) @require_torch class OneFormerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (OneFormerModel, OneFormerForUniversalSegmentation) if is_torch_available() else () pipeline_model_mapping = {"feature-extraction": OneFormerModel} if is_torch_available() else {} is_encoder_decoder = False test_pruning = False test_head_masking = False test_missing_keys = False # TODO: Fix the failed tests when this model gets more usage def is_pipeline_test_to_skip( self, pipeline_test_case_name, config_class, model_architecture, tokenizer_name, image_processor_name, feature_extractor_name, processor_name, ): if pipeline_test_case_name == "FeatureExtractionPipelineTests": return True return False def setUp(self): self.model_tester = OneFormerModelTester(self) self.config_tester = ConfigTester(self, config_class=OneFormerConfig, has_text_modality=False) def test_config(self): self.config_tester.run_common_tests() @is_flaky( description="The `attention_mask` computed with `< 0.5` in `OneFormerTransformerDecoder.forward_prediction_heads` is sensitive to input values." ) def test_batching_equivalence(self): super().test_batching_equivalence() def test_oneformer_model(self): config, inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_oneformer_model(config, **inputs, output_hidden_states=False) def test_oneformer_universal_segmentation_head_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_oneformer_universal_segmentation_head_model(*config_and_inputs) def test_model_main_input_name(self): for model_class in self.all_model_classes: model_signature = inspect.signature(getattr(model_class, "forward")) # The main input is the name of the argument after `self` observed_main_input_name = list(model_signature.parameters.keys())[1:3] self.assertEqual(model_class.main_input_name, observed_main_input_name) @unittest.skip(reason="OneFormer uses two main inputs") def test_torchscript_simple(self): pass @unittest.skip(reason="OneFormer uses two main inputs") def test_torchscript_output_attentions(self): pass @unittest.skip(reason="OneFormer uses two main inputs") def test_torchscript_output_hidden_state(self): pass @unittest.skip(reason="OneFormer does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="OneFormer does not have a get_input_embeddings method") def test_model_get_set_embeddings(self): pass @unittest.skip(reason="OneFormer is not a generative model") def test_generate_without_input_ids(self): pass @unittest.skip(reason="OneFormer does not use token embeddings") def test_resize_tokens_embeddings(self): pass @require_torch_multi_gpu @unittest.skip( reason="OneFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def test_multi_gpu_data_parallel_forward(self): pass def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values", "task_inputs"] self.assertListEqual(arg_names[:2], expected_arg_names) @slow def test_model_from_pretrained(self): for model_name in ["shi-labs/oneformer_ade20k_swin_tiny"]: model = OneFormerModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_model_with_labels(self): size = (self.model_tester.min_size,) * 2 inputs = { "pixel_values": torch.randn((2, 3, *size), device=torch_device), "task_inputs": torch.randint(high=self.model_tester.vocab_size, size=(2, 77), device=torch_device).long(), "text_inputs": torch.randint( high=self.model_tester.vocab_size, size=(2, 6, 77), device=torch_device ).long(), "mask_labels": torch.randn((2, 150, *size), device=torch_device), "class_labels": torch.zeros(2, 150, device=torch_device).long(), } config = self.model_tester.get_config() config.is_training = True model = OneFormerForUniversalSegmentation(config).to(torch_device) outputs = model(**inputs) self.assertTrue(outputs.loss is not None) def test_hidden_states_output(self): config, inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_oneformer_model(config, **inputs, output_hidden_states=True) def test_attention_outputs(self): config, inputs = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config).to(torch_device) outputs = model(**inputs, output_attentions=True) self.assertTrue(outputs.attentions is not None) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.contrastive_temperature = 1 configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) def test_training(self): if not self.model_tester.is_training: self.skipTest(reason="model_tester.is_training is set to False") # only OneFormerForUniversalSegmentation has the loss model_class = self.all_model_classes[1] ( config, pixel_values, task_inputs, text_inputs, pixel_mask, mask_labels, class_labels, ) = self.model_tester.prepare_config_and_inputs() config.is_training = True model = model_class(config) model.to(torch_device) model.train() loss = model( pixel_values, task_inputs, text_inputs=text_inputs, mask_labels=mask_labels, class_labels=class_labels ).loss loss.backward() def test_retain_grad_hidden_states_attentions(self): # only OneFormerForUniversalSegmentation has the loss model_class = self.all_model_classes[1] ( config, pixel_values, task_inputs, text_inputs, pixel_mask, mask_labels, class_labels, ) = self.model_tester.prepare_config_and_inputs() config.output_hidden_states = True config.output_attentions = True config.is_training = True model = model_class(config) model.to(torch_device) model.train() outputs = model( pixel_values, task_inputs, text_inputs=text_inputs, mask_labels=mask_labels, class_labels=class_labels ) encoder_hidden_states = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() pixel_decoder_hidden_states = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() transformer_decoder_class_predictions = outputs.transformer_decoder_class_predictions transformer_decoder_class_predictions.retain_grad() transformer_decoder_mask_predictions = outputs.transformer_decoder_mask_predictions transformer_decoder_mask_predictions.retain_grad() attentions = outputs.attentions[0][0] attentions.retain_grad() outputs.loss.backward(retain_graph=True) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(pixel_decoder_hidden_states.grad) self.assertIsNotNone(transformer_decoder_class_predictions.grad) self.assertIsNotNone(transformer_decoder_mask_predictions.grad) self.assertIsNotNone(attentions.grad) @require_timm def test_backbone_selection(self): config, inputs = self.model_tester.prepare_config_and_inputs_for_common() config.backbone_config = None config.backbone_kwargs = {"out_indices": [1, 2, 3]} config.use_pretrained_backbone = True # Load a timm backbone # We can't load transformer checkpoint with timm backbone, as we can't specify features_only and out_indices config.backbone = "resnet18" config.use_timm_backbone = True for model_class in self.all_model_classes: model = model_class(config).to(torch_device).eval() if model.__class__.__name__ == "OneFormerModel": self.assertEqual(model.pixel_level_module.encoder.out_indices, [1, 2, 3]) elif model.__class__.__name__ == "OneFormerForUniversalSegmentation": self.assertEqual(model.model.pixel_level_module.encoder.out_indices, [1, 2, 3]) # Load a HF backbone config.backbone = "microsoft/resnet-18" config.use_timm_backbone = False for model_class in self.all_model_classes: model = model_class(config).to(torch_device).eval() if model.__class__.__name__ == "OneFormerModel": self.assertEqual(model.pixel_level_module.encoder.out_indices, [1, 2, 3]) elif model.__class__.__name__ == "OneFormerForUniversalSegmentation": self.assertEqual(model.model.pixel_level_module.encoder.out_indices, [1, 2, 3]) TOLERANCE = 1e-4 # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_vision @slow class OneFormerModelIntegrationTest(unittest.TestCase): @cached_property def model_checkpoints(self): return "shi-labs/oneformer_ade20k_swin_tiny" @cached_property def default_processor(self): return OneFormerProcessor.from_pretrained(self.model_checkpoints) if is_vision_available() else None def test_inference_no_head(self): model = OneFormerModel.from_pretrained(self.model_checkpoints).to(torch_device) processor = self.default_processor image = prepare_img() inputs = processor(image, ["semantic"], return_tensors="pt").to(torch_device) inputs_shape = inputs["pixel_values"].shape # check size self.assertEqual(inputs_shape, (1, 3, 512, 682)) task_inputs_shape = inputs["task_inputs"].shape # check size self.assertEqual(task_inputs_shape, (1, 77)) with torch.no_grad(): outputs = model(**inputs) expected_slice_hidden_state = torch.tensor( [[0.2723, 0.8280, 0.6026], [1.2699, 1.1257, 1.1444], [1.1344, 0.6153, 0.4177]] ).to(torch_device) self.assertTrue( torch.allclose( outputs.encoder_hidden_states[-1][0, 0, :3, :3], expected_slice_hidden_state, atol=TOLERANCE ) ) expected_slice_hidden_state = torch.tensor( [[1.0581, 1.2276, 1.2003], [1.1903, 1.2925, 1.2862], [1.158, 1.2559, 1.3216]] ).to(torch_device) self.assertTrue( torch.allclose( outputs.pixel_decoder_hidden_states[0][0, 0, :3, :3], expected_slice_hidden_state, atol=TOLERANCE ) ) expected_slice_hidden_state = torch.tensor( [[3.0668, -1.1833, -5.1103], [3.344, -3.362, -5.1101], [2.6017, -4.3613, -4.1444]] ).to(torch_device) self.assertTrue( torch.allclose( outputs.transformer_decoder_class_predictions[0, :3, :3], expected_slice_hidden_state, atol=TOLERANCE ) ) def test_inference_universal_segmentation_head(self): model = OneFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints).to(torch_device).eval() processor = self.default_processor image = prepare_img() inputs = processor(image, ["semantic"], return_tensors="pt").to(torch_device) inputs_shape = inputs["pixel_values"].shape # check size self.assertEqual(inputs_shape, (1, 3, 512, 682)) with torch.no_grad(): outputs = model(**inputs) # masks_queries_logits masks_queries_logits = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape, (1, model.config.num_queries, inputs_shape[-2] // 4, (inputs_shape[-1] + 2) // 4), ) expected_slice = [[[3.1848, 4.2141, 4.1993], [2.9000, 3.5721, 3.6603], [2.5358, 3.0883, 3.6168]]] expected_slice = torch.tensor(expected_slice).to(torch_device) torch.testing.assert_close(masks_queries_logits[0, 0, :3, :3], expected_slice, rtol=TOLERANCE, atol=TOLERANCE) # class_queries_logits class_queries_logits = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape, (1, model.config.num_queries, model.config.num_labels + 1), ) expected_slice = torch.tensor( [[3.0668, -1.1833, -5.1103], [3.3440, -3.3620, -5.1101], [2.6017, -4.3613, -4.1444]] ).to(torch_device) torch.testing.assert_close(class_queries_logits[0, :3, :3], expected_slice, rtol=TOLERANCE, atol=TOLERANCE) @require_torch_accelerator @require_torch_fp16 def test_inference_fp16(self): model = ( OneFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints) .to(torch_device, dtype=torch.float16) .eval() ) processor = self.default_processor image = prepare_img() inputs = processor(image, ["semantic"], return_tensors="pt").to(torch_device, dtype=torch.float16) with torch.no_grad(): _ = model(**inputs) def test_with_segmentation_maps_and_loss(self): dummy_model = OneFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints) processor = self.default_processor processor.image_processor.num_text = dummy_model.config.num_queries - dummy_model.config.text_encoder_n_ctx dummy_model.config.is_training = True model = OneFormerForUniversalSegmentation(dummy_model.config).to(torch_device).eval() del dummy_model inputs = processor( [np.zeros((3, 512, 640)), np.zeros((3, 512, 640))], ["semantic", "semantic"], segmentation_maps=[np.zeros((384, 384)).astype(np.float32), np.zeros((384, 384)).astype(np.float32)], return_tensors="pt", ) inputs["pixel_values"] = inputs["pixel_values"].to(torch_device) inputs["task_inputs"] = inputs["task_inputs"].to(torch_device) inputs["text_inputs"] = inputs["text_inputs"].to(torch_device) inputs["mask_labels"] = [el.to(torch_device) for el in inputs["mask_labels"]] inputs["class_labels"] = [el.to(torch_device) for el in inputs["class_labels"]] with torch.no_grad(): outputs = model(**inputs) self.assertTrue(outputs.loss is not None)
transformers/tests/models/oneformer/test_modeling_oneformer.py/0
{ "file_path": "transformers/tests/models/oneformer/test_modeling_oneformer.py", "repo_id": "transformers", "token_count": 10924 }
186
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch Perceiver model.""" import copy import inspect import math import tempfile import unittest import warnings from typing import Dict, List, Tuple import numpy as np from datasets import load_dataset from transformers import PerceiverConfig from transformers.testing_utils import ( IS_ROCM_SYSTEM, require_torch, require_torch_multi_gpu, require_vision, slow, torch_device, ) from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverModel, PerceiverTokenizer, ) from transformers.models.auto.modeling_auto import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, MODEL_FOR_MASKED_LM_MAPPING_NAMES, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, MODEL_MAPPING_NAMES, ) if is_vision_available(): from PIL import Image from transformers import PerceiverImageProcessor class PerceiverModelTester: def __init__( self, parent, batch_size=13, seq_length=7, num_channels=3, image_size=32, train_size=[20, 20], num_frames=5, audio_samples_per_frame=200, samples_per_patch=20, nchunks=20, num_latents=10, d_latents=20, d_model=64, num_blocks=1, num_self_attends_per_block=2, num_self_attention_heads=1, num_cross_attention_heads=1, self_attention_widening_factor=4, cross_attention_widening_factor=4, is_training=True, use_input_mask=True, use_labels=True, vocab_size=99, hidden_act="gelu", attention_probs_dropout_prob=0.1, initializer_range=0.02, max_position_embeddings=7, num_labels=3, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.num_channels = num_channels self.image_size = image_size self.train_size = train_size self.num_frames = num_frames self.audio_samples_per_frame = audio_samples_per_frame self.samples_per_patch = samples_per_patch self.nchunks = nchunks self.num_latents = num_latents self.d_latents = d_latents self.d_model = d_model self.num_blocks = num_blocks self.num_self_attends_per_block = num_self_attends_per_block self.num_self_attention_heads = num_self_attention_heads self.num_cross_attention_heads = num_cross_attention_heads self.self_attention_widening_factor = self_attention_widening_factor self.cross_attention_widening_factor = cross_attention_widening_factor self.is_training = is_training self.use_input_mask = use_input_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_act = hidden_act self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.num_labels = num_labels self.scope = scope # set subsampling for multimodal model (take first chunk) image_chunk_size = np.prod((self.num_frames, self.image_size, self.image_size)) // self.nchunks audio_chunk_size = self.num_frames * self.audio_samples_per_frame // self.samples_per_patch // self.nchunks self.subsampling = { "image": torch.arange(0, image_chunk_size), "audio": torch.arange(0, audio_chunk_size), "label": None, } def prepare_config_and_inputs(self, model_class=None): config = self.get_config() input_mask = None sequence_labels = None token_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.num_labels) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) if model_class is None or model_class.__name__ == "PerceiverModel": inputs = floats_tensor([self.batch_size, self.seq_length, config.d_model], scale=1.0) return config, inputs, input_mask, sequence_labels, token_labels elif model_class.__name__ in ["PerceiverForMaskedLM", "PerceiverForSequenceClassification"]: inputs = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) # input mask is only relevant for text inputs if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) elif model_class.__name__ == "PerceiverForImageClassificationLearned": inputs = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) elif model_class.__name__ == "PerceiverForImageClassificationFourier": inputs = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) elif model_class.__name__ == "PerceiverForImageClassificationConvProcessing": inputs = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) elif model_class.__name__ == "PerceiverForOpticalFlow": inputs = floats_tensor([self.batch_size, 2, 27, self.train_size[0], self.train_size[1]]) elif model_class.__name__ == "PerceiverForMultimodalAutoencoding": images = torch.randn( (self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size), device=torch_device, ) audio = torch.randn( (self.batch_size, self.num_frames * self.audio_samples_per_frame, 1), device=torch_device ) inputs = { "image": images, "audio": audio, "label": torch.zeros((self.batch_size, self.num_labels), device=torch_device), } else: raise ValueError(f"Model class {model_class} not supported") return config, inputs, input_mask, sequence_labels, token_labels def get_config(self): return PerceiverConfig( num_latents=self.num_latents, d_latents=self.d_latents, d_model=self.d_model, qk_channels=self.d_latents, v_channels=self.d_latents, num_blocks=self.num_blocks, num_self_attends_per_block=self.num_self_attends_per_block, num_self_attention_heads=self.num_self_attention_heads, num_cross_attention_heads=self.num_cross_attention_heads, self_attention_widening_factor=self.self_attention_widening_factor, cross_attention_widening_factor=self.cross_attention_widening_factor, vocab_size=self.vocab_size, hidden_act=self.hidden_act, attention_probs_dropout_prob=self.attention_probs_dropout_prob, initializer_range=self.initializer_range, max_position_embeddings=self.max_position_embeddings, image_size=self.image_size, train_size=self.train_size, num_frames=self.num_frames, audio_samples_per_frame=self.audio_samples_per_frame, samples_per_patch=self.samples_per_patch, num_labels=self.num_labels, output_num_channels=32, _label_trainable_num_channels=16, ) def get_pipeline_config(self): config = self.get_config() # Byte level vocab config.vocab_size = 261 config.max_position_embeddings = 40 return config def create_and_check_for_masked_lm(self, config, inputs, input_mask, sequence_labels, token_labels): model = PerceiverForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(inputs, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_sequence_classification(self, config, inputs, input_mask, sequence_labels, token_labels): model = PerceiverForSequenceClassification(config=config) model.to(torch_device) model.eval() result = model(inputs, attention_mask=input_mask, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_image_classification_learned( self, config, inputs, input_mask, sequence_labels, token_labels ): model = PerceiverForImageClassificationLearned(config=config) model.to(torch_device) model.eval() result = model(inputs, attention_mask=input_mask, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_image_classification_fourier( self, config, inputs, input_mask, sequence_labels, token_labels ): model = PerceiverForImageClassificationFourier(config=config) model.to(torch_device) model.eval() result = model(inputs, attention_mask=input_mask, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_image_classification_conv( self, config, inputs, input_mask, sequence_labels, token_labels ): model = PerceiverForImageClassificationConvProcessing(config=config) model.to(torch_device) model.eval() result = model(inputs, attention_mask=input_mask, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, inputs, input_mask, sequence_labels, token_labels = config_and_inputs inputs_dict = {"inputs": inputs, "attention_mask": input_mask} return config, inputs_dict def prepare_config_and_inputs_for_model_class(self, model_class): config_and_inputs = self.prepare_config_and_inputs(model_class) config, inputs, input_mask, sequence_labels, token_labels = config_and_inputs inputs_dict = {"inputs": inputs, "attention_mask": input_mask} return config, inputs_dict @require_torch class PerceiverModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( PerceiverModel, PerceiverForMaskedLM, PerceiverForImageClassificationLearned, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForOpticalFlow, PerceiverForMultimodalAutoencoding, PerceiverForSequenceClassification, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": PerceiverModel, "fill-mask": PerceiverForMaskedLM, "image-classification": ( PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, ), "text-classification": PerceiverForSequenceClassification, "zero-shot": PerceiverForSequenceClassification, } if is_torch_available() else {} ) test_pruning = False test_head_masking = False test_torchscript = False maxDiff = None def setUp(self): self.model_tester = PerceiverModelTester(self) self.config_tester = ConfigTester( self, config_class=PerceiverConfig, hidden_size=37, common_properties=["d_model", "num_self_attention_heads", "num_cross_attention_heads"], ) def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = copy.deepcopy(inputs_dict) if model_class.__name__ == "PerceiverForMultimodalAutoencoding": inputs_dict["subsampled_output_points"] = self.model_tester.subsampling if return_labels: if model_class.__name__ in [ *MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values(), "PerceiverForImageClassificationLearned", "PerceiverForImageClassificationFourier", "PerceiverForImageClassificationConvProcessing", *MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES.values(), ]: inputs_dict["labels"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) elif model_class.__name__ in [ *MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES.values(), *MODEL_FOR_MASKED_LM_MAPPING_NAMES.values(), ]: inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device ) return inputs_dict def test_config(self): self.config_tester.run_common_tests() def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs(model_class=PerceiverForMaskedLM) self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs(model_class=PerceiverForSequenceClassification) self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_image_classification_learned(self): config_and_inputs = self.model_tester.prepare_config_and_inputs( model_class=PerceiverForImageClassificationLearned ) self.model_tester.create_and_check_for_image_classification_learned(*config_and_inputs) def test_for_image_classification_fourier(self): config_and_inputs = self.model_tester.prepare_config_and_inputs( model_class=PerceiverForImageClassificationFourier ) self.model_tester.create_and_check_for_image_classification_fourier(*config_and_inputs) def test_for_image_classification_conv(self): config_and_inputs = self.model_tester.prepare_config_and_inputs( model_class=PerceiverForImageClassificationConvProcessing ) self.model_tester.create_and_check_for_image_classification_conv(*config_and_inputs) def test_model_get_set_embeddings(self): for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class) model = model_class(config) # we overwrite this, as the embeddings of Perceiver are an instance of nn.Parameter # and Perceiver doesn't support get_output_embeddings self.assertIsInstance(model.get_input_embeddings(), (nn.Parameter)) def test_training(self): if not self.model_tester.is_training: self.skipTest(reason="model_tester.is_training is set to False") for model_class in self.all_model_classes: if model_class.__name__ in [ *MODEL_MAPPING_NAMES.values(), "PerceiverForOpticalFlow", "PerceiverForMultimodalAutoencoding", ]: continue config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class) config.return_dict = True model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() def test_forward_signature(self): for model_class in self.all_model_classes: config, _ = self.model_tester.prepare_config_and_inputs_for_model_class(model_class) model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["inputs"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_determinism(self): for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class) model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): inputs_dict = self._prepare_for_class(inputs_dict, model_class) first = model(**inputs_dict)[0] second = model(**inputs_dict)[0] if model_class.__name__ == "PerceiverForMultimodalAutoencoding": # model outputs a dictionary with logits per modality, let's verify each modality for modality in first.keys(): out_1 = first[modality].cpu().numpy() out_2 = second[modality].cpu().numpy() out_1 = out_1[~np.isnan(out_1)] out_2 = out_2[~np.isnan(out_2)] max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) else: out_1 = first.cpu().numpy() out_2 = second.cpu().numpy() out_1 = out_1[~np.isnan(out_1)] out_2 = out_2[~np.isnan(out_2)] max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) def test_attention_outputs(self): seq_len = getattr(self.model_tester, "num_latents", None) for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class) config.return_dict = True inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) self_attentions = outputs.attentions cross_attentions = outputs.cross_attentions # check expected number of attentions depending on model class expected_num_self_attentions = self.model_tester.num_blocks * self.model_tester.num_self_attends_per_block if model.__class__.__name__ == "PerceiverModel": # we expect to have 2 cross-attentions, namely one in the PerceiverEncoder, and one in PerceiverBasicDecoder expected_num_cross_attentions = 1 else: # we expect to have 2 cross-attentions, namely one in the PerceiverEncoder, and one in PerceiverBasicDecoder expected_num_cross_attentions = 2 self.assertEqual(len(self_attentions), expected_num_self_attentions) self.assertEqual(len(cross_attentions), expected_num_cross_attentions) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) self_attentions = outputs.attentions cross_attentions = outputs.cross_attentions self.assertEqual(len(self_attentions), expected_num_self_attentions) self.assertEqual(len(cross_attentions), expected_num_cross_attentions) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_self_attention_heads, seq_len, seq_len], ) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(out_len + 1, len(outputs)) self_attentions = outputs.attentions self.assertEqual(len(self_attentions), expected_num_self_attentions) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_self_attention_heads, seq_len, seq_len], ) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_layers = self.model_tester.num_blocks * self.model_tester.num_self_attends_per_block + 1 self.assertEqual(len(hidden_states), expected_num_layers) seq_length = self.model_tester.num_latents self.assertListEqual( list(hidden_states[0].shape[-2:]), [seq_length, self.model_tester.d_latents], ) for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class) inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_model_outputs_equivalence(self): def set_nan_tensor_to_zero(t): t[t != t] = 0 return t def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}): with torch.no_grad(): tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs) dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple() def recursive_check(tuple_object, dict_object): if isinstance(tuple_object, (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object): recursive_check(tuple_iterable_value, dict_iterable_value) elif isinstance(tuple_object, Dict): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values(), dict_object.values() ): recursive_check(tuple_iterable_value, dict_iterable_value) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5 ), msg=( "Tuple and dict output are not equal. Difference:" f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has" f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}." ), ) recursive_check(tuple_output, dict_output) for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class) model = model_class(config) model.to(torch_device) model.eval() tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs) if model_class.__name__ not in ["PerceiverForOpticalFlow", "PerceiverForMultimodalAutoencoding"]: # optical flow + multimodal models don't support training for now tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) if model_class.__name__ not in ["PerceiverForOpticalFlow", "PerceiverForMultimodalAutoencoding"]: # optical flow + multimodal models don't support training for now tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) if model_class.__name__ not in ["PerceiverForOpticalFlow", "PerceiverForMultimodalAutoencoding"]: # optical flow + multimodal models don't support training for now tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) if model_class.__name__ not in ["PerceiverForOpticalFlow", "PerceiverForMultimodalAutoencoding"]: # optical flow + multimodal models don't support training for now tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence( model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True} ) def test_retain_grad_hidden_states_attentions(self): # no need to test all models as different heads yield the same functionality model_class = PerceiverForMaskedLM config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class) config.output_hidden_states = True config.output_attentions = True model = model_class(config) model.to(torch_device) inputs = self._prepare_for_class(inputs_dict, model_class) outputs = model(**inputs) output = outputs[0] # Encoder-only model hidden_states = outputs.hidden_states[0] attentions = outputs.attentions[0] hidden_states.retain_grad() attentions.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(hidden_states.grad) self.assertIsNotNone(attentions.grad) def test_feed_forward_chunking(self): for model_class in self.all_model_classes: original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class) torch.manual_seed(0) config = copy.deepcopy(original_config) model = model_class(config) model.to(torch_device) model.eval() hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0] torch.manual_seed(0) config.chunk_size_feed_forward = 1 model = model_class(config) model.to(torch_device) model.eval() hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0] if model_class.__name__ == "PerceiverForMultimodalAutoencoding": # model outputs a dictionary with logits for each modality for modality in hidden_states_no_chunk.keys(): self.assertTrue( torch.allclose(hidden_states_no_chunk[modality], hidden_states_with_chunk[modality], atol=1e-3) ) else: torch.testing.assert_close(hidden_states_no_chunk, hidden_states_with_chunk, rtol=1e-3, atol=1e-3) def test_save_load(self): for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_model_class(model_class) model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) if model_class.__name__ == "PerceiverForMultimodalAutoencoding": for modality in outputs[0].keys(): out_2 = outputs[0][modality].cpu().numpy() out_2[np.isnan(out_2)] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model = model_class.from_pretrained(tmpdirname) model.to(torch_device) with torch.no_grad(): after_outputs = model(**self._prepare_for_class(inputs_dict, model_class)) # Make sure we don't have nans out_1 = after_outputs[0][modality].cpu().numpy() out_1[np.isnan(out_1)] = 0 max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) else: out_2 = outputs[0].cpu().numpy() out_2[np.isnan(out_2)] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model = model_class.from_pretrained(tmpdirname) model.to(torch_device) with torch.no_grad(): after_outputs = model(**self._prepare_for_class(inputs_dict, model_class)) # Make sure we don't have nans out_1 = after_outputs[0].cpu().numpy() out_1[np.isnan(out_1)] = 0 max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) def test_correct_missing_keys(self): if not self.test_missing_keys: self.skipTest(reason="test_missing_keys is set to False") config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # most Perceiver models don't have a typical head like is the case with BERT if model_class.__name__ in [ "PerceiverForOpticalFlow", "PerceiverForMultimodalAutoencoding", *MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values(), "PerceiverForImageClassificationLearned", "PerceiverForImageClassificationFourier", "PerceiverForImageClassificationConvProcessing", *MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES.values(), ]: continue model = model_class(config) base_model_prefix = model.base_model_prefix if hasattr(model, base_model_prefix): with tempfile.TemporaryDirectory() as temp_dir_name: model.base_model.save_pretrained(temp_dir_name) model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True) with self.subTest(msg=f"Missing keys for {model.__class__.__name__}"): self.assertGreater(len(loading_info["missing_keys"]), 0) def test_problem_types(self): problem_types = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if model_class.__name__ not in MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values(): continue config, inputs, input_mask, _, _ = self.model_tester.prepare_config_and_inputs(model_class=model_class) inputs_dict = {"inputs": inputs, "attention_mask": input_mask} for problem_type in problem_types: with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"): config.problem_type = problem_type["title"] config.num_labels = problem_type["num_labels"] model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) if problem_type["num_labels"] > 1: inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"]) inputs["labels"] = inputs["labels"].to(problem_type["dtype"]) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=True) as warning_list: loss = model(**inputs).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message): raise ValueError( f"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @require_torch_multi_gpu @unittest.skip( reason=( "Perceiver does not work with data parallel (DP) because of a bug in PyTorch:" " https://github.com/pytorch/pytorch/issues/36035" ) ) def test_multi_gpu_data_parallel_forward(self): pass @unittest.skip(reason="Perceiver models don't have a typical head like is the case with BERT") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="Perceiver models don't have a typical head like is the case with BERT") def test_save_load_fast_init_to_base(self): pass @unittest.skip(reason="Perceiver doesn't support resize_token_embeddings") def test_resize_tokens_embeddings(self): pass @unittest.skip(reason="Perceiver doesn't support resize_token_embeddings") def test_resize_embeddings_untied(self): pass @unittest.skip(reason="Perceiver doesn't support inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="Perceiver doesn't support the AutoModel API") def test_load_with_mismatched_shapes(self): pass @slow def test_model_from_pretrained(self): model_name = "deepmind/language-perceiver" model = PerceiverModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image # Helper functions for optical flow integration test def prepare_optical_flow_images(): dataset = load_dataset("hf-internal-testing/fixtures_sintel", split="test", trust_remote_code=True) image1 = Image.open(dataset[0]["file"]).convert("RGB") image2 = Image.open(dataset[0]["file"]).convert("RGB") return image1, image2 def normalize(img): return img / 255.0 * 2 - 1 def extract_image_patches(x, kernel, stride=1, dilation=1): # Do TF 'SAME' Padding b, c, h, w = x.shape h2 = math.ceil(h / stride) w2 = math.ceil(w / stride) pad_row = (h2 - 1) * stride + (kernel - 1) * dilation + 1 - h pad_col = (w2 - 1) * stride + (kernel - 1) * dilation + 1 - w x = torch.nn.functional.pad(x, (pad_row // 2, pad_row - pad_row // 2, pad_col // 2, pad_col - pad_col // 2)) # Extract patches patches = x.unfold(2, kernel, stride).unfold(3, kernel, stride) patches = patches.permute(0, 4, 5, 1, 2, 3).contiguous() return patches.view(b, -1, patches.shape[-2], patches.shape[-1]) @require_torch @require_vision class PerceiverModelIntegrationTest(unittest.TestCase): @slow def test_inference_masked_lm(self): tokenizer = PerceiverTokenizer.from_pretrained("deepmind/language-perceiver") model = PerceiverForMaskedLM.from_pretrained("deepmind/language-perceiver") model.to(torch_device) # prepare inputs text = "This is an incomplete sentence where some words are missing." encoding = tokenizer(text, padding="max_length", return_tensors="pt") # mask " missing.". encoding.input_ids[0, 52:61] = tokenizer.mask_token_id inputs, input_mask = encoding.input_ids.to(torch_device), encoding.attention_mask.to(torch_device) # forward pass with torch.no_grad(): outputs = model(inputs=inputs, attention_mask=input_mask) logits = outputs.logits # verify logits expected_shape = torch.Size((1, tokenizer.model_max_length, len(tokenizer))) self.assertEqual(logits.shape, expected_shape) expected_slice = torch.tensor( [[-10.8609, -10.7651, -10.9187], [-12.1689, -11.9389, -12.1479], [-12.1518, -11.9707, -12.2073]], device=torch_device, ) torch.testing.assert_close(logits[0, :3, :3], expected_slice, rtol=1e-4, atol=1e-4) expected_greedy_predictions = [38, 115, 111, 121, 121, 111, 116, 109, 52] masked_tokens_predictions = logits[0, 52:61].argmax(dim=-1).tolist() self.assertListEqual(expected_greedy_predictions, masked_tokens_predictions) @slow def test_inference_image_classification(self): image_processor = PerceiverImageProcessor() model = PerceiverForImageClassificationLearned.from_pretrained("deepmind/vision-perceiver-learned") model.to(torch_device) # prepare inputs image = prepare_img() inputs = image_processor(image, return_tensors="pt").pixel_values.to(torch_device) input_mask = None # forward pass with torch.no_grad(): outputs = model(inputs=inputs, attention_mask=input_mask) logits = outputs.logits # verify logits expected_shape = torch.Size((1, model.config.num_labels)) self.assertEqual(logits.shape, expected_shape) expected_slice = torch.tensor([-1.1652, -0.1992, -0.7520], device=torch_device) atol = 1e-3 if IS_ROCM_SYSTEM else 1e-4 torch.testing.assert_close(logits[0, :3], expected_slice, rtol=atol, atol=atol) @slow def test_inference_image_classification_fourier(self): image_processor = PerceiverImageProcessor() model = PerceiverForImageClassificationFourier.from_pretrained("deepmind/vision-perceiver-fourier") model.to(torch_device) # prepare inputs image = prepare_img() inputs = image_processor(image, return_tensors="pt").pixel_values.to(torch_device) input_mask = None # forward pass with torch.no_grad(): outputs = model(inputs=inputs, attention_mask=input_mask) logits = outputs.logits # verify logits expected_shape = torch.Size((1, model.config.num_labels)) self.assertEqual(logits.shape, expected_shape) expected_slice = torch.tensor([-1.1295, -0.2832, 0.3226], device=torch_device) torch.testing.assert_close(logits[0, :3], expected_slice, rtol=1e-4, atol=1e-4) @slow def test_inference_image_classification_conv(self): image_processor = PerceiverImageProcessor() model = PerceiverForImageClassificationConvProcessing.from_pretrained("deepmind/vision-perceiver-conv") model.to(torch_device) # prepare inputs image = prepare_img() inputs = image_processor(image, return_tensors="pt").pixel_values.to(torch_device) input_mask = None # forward pass with torch.no_grad(): outputs = model(inputs=inputs, attention_mask=input_mask) logits = outputs.logits # verify logits expected_shape = torch.Size((1, model.config.num_labels)) self.assertEqual(logits.shape, expected_shape) expected_slice = torch.tensor([-1.1186, 0.0554, 0.0897], device=torch_device) torch.testing.assert_close(logits[0, :3], expected_slice, rtol=1e-4, atol=1e-4) @slow def test_inference_optical_flow(self): model = PerceiverForOpticalFlow.from_pretrained("deepmind/optical-flow-perceiver") model.to(torch_device) # prepare inputs image1, image2 = prepare_optical_flow_images() img1 = normalize(np.array(image1)) img2 = normalize(np.array(image1)) # stack images img1 = torch.tensor(np.moveaxis(img1, -1, 0)) img2 = torch.tensor(np.moveaxis(img2, -1, 0)) images = torch.stack([img1, img2], dim=0) # extract 3x3 patches patch_size = model.config.train_size inputs = images[..., : patch_size[0], : patch_size[1]].unsqueeze(0) batch_size, _, C, H, W = inputs.shape patches = extract_image_patches(inputs.view(batch_size * 2, C, H, W), kernel=3) _, C, H, W = patches.shape patches = patches.view(batch_size, -1, C, H, W).float() # forward pass with torch.no_grad(): outputs = model(inputs=patches.to(torch_device)) logits = outputs.logits # verify logits expected_shape = torch.Size((1, 368, 496, 2)) self.assertEqual(logits.shape, expected_shape) expected_slice = torch.tensor( [ [[0.0025, -0.0050], [0.0025, -0.0049], [0.0025, -0.0048]], [[0.0026, -0.0049], [0.0026, -0.0048], [0.0026, -0.0047]], [[0.0026, -0.0049], [0.0026, -0.0048], [0.0026, -0.0046]], ], device=torch_device, ) torch.testing.assert_close(logits[0, :3, :3, :3], expected_slice, rtol=1e-4, atol=1e-4) @slow def test_inference_interpolate_pos_encoding(self): image_processor = PerceiverImageProcessor(size={"height": 384, "width": 384}) model = PerceiverForImageClassificationLearned.from_pretrained("deepmind/vision-perceiver-learned") model.to(torch_device) # prepare inputs image = prepare_img() inputs = image_processor(image, return_tensors="pt").pixel_values.to(torch_device) input_mask = None # forward pass with torch.no_grad(): outputs = model(inputs=inputs, attention_mask=input_mask, interpolate_pos_encoding=True) logits = outputs.logits # verify logits expected_shape = torch.Size((1, model.config.num_labels)) self.assertEqual(logits.shape, expected_shape)
transformers/tests/models/perceiver/test_modeling_perceiver.py/0
{ "file_path": "transformers/tests/models/perceiver/test_modeling_perceiver.py", "repo_id": "transformers", "token_count": 21277 }
187
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team, The Microsoft Research team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import tempfile import unittest from transformers import ProphetNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( ProphetNetDecoder, ProphetNetEncoder, ProphetNetForCausalLM, ProphetNetForConditionalGeneration, ProphetNetModel, ProphetNetTokenizer, ) from transformers.modeling_outputs import BaseModelOutput class ProphetNetModelTester: def __init__( self, parent, vocab_size=99, batch_size=13, hidden_size=16, encoder_seq_length=7, decoder_seq_length=9, # For common tests is_training=True, use_attention_mask=True, use_labels=True, decoder_start_token_id=0, encoder_ffn_dim=32, num_encoder_layers=2, num_encoder_attention_heads=4, decoder_ffn_dim=32, num_decoder_layers=2, num_decoder_attention_heads=4, max_position_embeddings=30, is_encoder_decoder=True, pad_token_id=0, bos_token_id=1, eos_token_id=2, ngram=2, num_buckets=32, relative_max_distance=128, disable_ngram_loss=False, scope=None, ): self.parent = parent self.batch_size = batch_size self.encoder_seq_length = encoder_seq_length self.decoder_seq_length = decoder_seq_length # For common tests self.seq_length = self.decoder_seq_length self.is_training = is_training self.use_attention_mask = use_attention_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_decoder_layers self.num_encoder_layers = num_encoder_layers self.num_decoder_layers = num_decoder_layers self.decoder_ffn_dim = decoder_ffn_dim self.encoder_ffn_dim = encoder_ffn_dim self.num_attention_heads = num_decoder_attention_heads self.num_encoder_attention_heads = num_encoder_attention_heads self.num_decoder_attention_heads = num_decoder_attention_heads self.eos_token_id = eos_token_id self.bos_token_id = bos_token_id self.pad_token_id = pad_token_id self.decoder_start_token_id = decoder_start_token_id self.ngram = ngram self.num_buckets = num_buckets self.relative_max_distance = relative_max_distance self.disable_ngram_loss = disable_ngram_loss self.max_position_embeddings = max_position_embeddings self.is_encoder_decoder = is_encoder_decoder self.scope = None self.decoder_key_length = decoder_seq_length self.base_model_out_len = 7 self.num_hidden_states_types = 3 # encoder, decoder_main, decoder_ngram self.decoder_attention_idx = 2 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size) decoder_input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) attention_mask = None decoder_attention_mask = None if self.use_attention_mask: attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2) decoder_attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2) lm_labels = None if self.use_labels: lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) config = self.get_config() return ( config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ) def get_config(self): return ProphetNetConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_encoder_layers=self.num_encoder_layers, num_decoder_layers=self.num_decoder_layers, decoder_ffn_dim=self.decoder_ffn_dim, encoder_ffn_dim=self.encoder_ffn_dim, num_encoder_attention_heads=self.num_encoder_attention_heads, num_decoder_attention_heads=self.num_decoder_attention_heads, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, ngram=self.ngram, num_buckets=self.num_buckets, relative_max_distance=self.relative_max_distance, disable_ngram_loss=self.disable_ngram_loss, max_position_embeddings=self.max_position_embeddings, is_encoder_decoder=self.is_encoder_decoder, ) def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ) = self.prepare_config_and_inputs() encoder_hidden_states = floats_tensor([self.batch_size, self.encoder_seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2) return ( config, decoder_input_ids, decoder_attention_mask, encoder_hidden_states, encoder_attention_mask, lm_labels, ) def check_prepare_lm_labels_via_shift_left( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = ProphetNetModel(config=config) model.to(torch_device) model.eval() # make sure that lm_labels are correctly padded from the right lm_labels.masked_fill_((lm_labels == self.decoder_start_token_id), self.eos_token_id) # add casaul pad token mask triangular_mask = torch.tril(lm_labels.new_ones(lm_labels.shape)).logical_not() lm_labels.masked_fill_(triangular_mask, self.pad_token_id) decoder_input_ids = model._shift_right(lm_labels) for i, (decoder_input_ids_slice, lm_labels_slice) in enumerate(zip(decoder_input_ids, lm_labels)): # first item self.parent.assertEqual(decoder_input_ids_slice[0].item(), self.decoder_start_token_id) if i < decoder_input_ids_slice.shape[-1]: if i < decoder_input_ids.shape[-1] - 1: # items before diagonal self.parent.assertListEqual( decoder_input_ids_slice[1 : i + 1].tolist(), lm_labels_slice[:i].tolist() ) # pad items after diagonal if i < decoder_input_ids.shape[-1] - 2: self.parent.assertListEqual( decoder_input_ids_slice[i + 2 :].tolist(), lm_labels_slice[i + 1 : -1].tolist() ) else: # all items after square self.parent.assertListEqual(decoder_input_ids_slice[1:].tolist(), lm_labels_slice[:-1].tolist()) def create_and_check_model( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = ProphetNetModel(config=config) model.to(torch_device) model.eval() result = model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, ) result = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) decoder_output = result.last_hidden_state decoder_past = result.past_key_values encoder_output = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size(), (self.batch_size, self.encoder_seq_length, self.hidden_size)) self.parent.assertEqual(decoder_output.size(), (self.batch_size, self.decoder_seq_length, self.hidden_size)) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(decoder_past), config.num_decoder_layers) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0]), 4) # cross-attention + uni-directional self-attention def create_and_check_with_lm_head( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = ProphetNetForConditionalGeneration(config=config).to(torch_device).eval() outputs = model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, labels=lm_labels, ) self.parent.assertEqual(len(outputs), 5) self.parent.assertEqual(outputs["logits"].size(), (self.batch_size, self.decoder_seq_length, self.vocab_size)) self.parent.assertEqual(outputs["loss"].size(), ()) def create_and_check_causal_lm_decoder( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = ProphetNetForCausalLM(config=config).to(torch_device).eval() outputs = model( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, labels=lm_labels, ) self.parent.assertEqual(len(outputs), 4) self.parent.assertEqual(outputs["logits"].size(), (self.batch_size, self.decoder_seq_length, self.vocab_size)) self.parent.assertEqual(outputs["loss"].size(), ()) def create_and_check_generate_with_past_key_value_states( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = ProphetNetForConditionalGeneration(config=config).to(torch_device).eval() torch.manual_seed(0) output_without_past_cache = model.generate( input_ids[:1], num_beams=2, max_length=5, do_sample=True, use_cache=False ) torch.manual_seed(0) output_with_past_cache = model.generate(input_ids[:1], num_beams=2, max_length=5, do_sample=True) self.parent.assertTrue(torch.all(output_with_past_cache == output_without_past_cache)) def create_and_check_decoder_generate_with_past_key_value_states( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = ProphetNetForCausalLM(config=config).to(torch_device).eval() torch.manual_seed(0) output_without_past_cache = model.generate( input_ids[:1], num_beams=2, max_length=10, do_sample=True, use_cache=False ) torch.manual_seed(0) output_with_past_cache = model.generate(input_ids[:1], num_beams=2, max_length=10, do_sample=True) self.parent.assertTrue(torch.all(output_with_past_cache == output_without_past_cache)) def create_and_check_model_fp16_forward( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = ProphetNetModel(config=config).to(torch_device).half().eval() output = model(input_ids, decoder_input_ids=input_ids, attention_mask=attention_mask)["last_hidden_state"] self.parent.assertFalse(torch.isnan(output).any().item()) def create_and_check_encoder_decoder_shared_weights( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): for model_class in [ProphetNetModel, ProphetNetForConditionalGeneration]: torch.manual_seed(0) model = model_class(config=config).to(torch_device).eval() # load state dict copies weights but does not tie them if model_class == ProphetNetForConditionalGeneration: model.prophetnet.encoder.load_state_dict(model.prophetnet.decoder.state_dict(), strict=False) else: model.encoder.load_state_dict(model.decoder.state_dict(), strict=False) torch.manual_seed(0) tied_config = copy.deepcopy(config) tied_config.tie_encoder_decoder = True tied_model = model_class(config=tied_config).to(torch_device).eval() model_result = model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, ) tied_model_result = tied_model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, ) # check that models has less parameters self.parent.assertLess( sum(p.numel() for p in tied_model.parameters()), sum(p.numel() for p in model.parameters()) ) random_slice_idx = ids_tensor((1,), model_result[0].shape[-1]).item() # check that outputs are equal self.parent.assertTrue( torch.allclose( model_result[0][0, :, random_slice_idx], tied_model_result[0][0, :, random_slice_idx], atol=1e-4 ) ) # check that outputs after saving and loading are equal with tempfile.TemporaryDirectory() as tmpdirname: tied_model.save_pretrained(tmpdirname) tied_model = model_class.from_pretrained(tmpdirname) tied_model.to(torch_device) tied_model.eval() # check that models has less parameters self.parent.assertLess( sum(p.numel() for p in tied_model.parameters()), sum(p.numel() for p in model.parameters()) ) random_slice_idx = ids_tensor((1,), model_result[0].shape[-1]).item() tied_model_result = tied_model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, ) # check that outputs are equal self.parent.assertTrue( torch.allclose( model_result[0][0, :, random_slice_idx], tied_model_result[0][0, :, random_slice_idx], atol=1e-4, ) ) def check_fast_integration( self, config, *args, ): input_ids = torch.tensor([[7, 4, 78, 0, 24, 52, 43]], device=torch_device, dtype=torch.long) decoder_input_ids = torch.tensor([[12, 62, 25, 11, 47, 15, 14]], device=torch_device, dtype=torch.long) attention_mask = torch.tensor([[1, 1, 1, 0, 1, 0, 0]], device=torch_device, dtype=torch.long) decoder_attention_mask = torch.tensor([[1, 1, 1, 0, 0, 1, 0]], device=torch_device, dtype=torch.long) lm_labels = torch.tensor([[62, 25, 11, 47, 15, 14, 24]], device=torch_device, dtype=torch.long) torch.manual_seed(0) config.ngram = 4 model = ProphetNetForConditionalGeneration(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, labels=lm_labels, ) self.parent.assertTrue(torch.allclose(result.loss, torch.tensor(4.5892, device=torch_device), atol=1e-3)) expected_logit_slice = torch.tensor( [-0.0184, 0.0758, -0.0543, -0.0093, 0.0050, -0.0660, -0.1453], device=torch_device ) self.parent.assertTrue(torch.allclose(result.logits[0, :, 1], expected_logit_slice, atol=1e-3)) def check_model_with_attn_mask(self, config, input_ids, decoder_input_ids, *args): model = ProphetNetModel(config=config) model.to(torch_device) model.eval() outputs_no_mask = model(input_ids=input_ids[:, :5], decoder_input_ids=decoder_input_ids[:, :5]) attention_mask = torch.ones_like(input_ids) decoder_attention_mask = torch.ones_like(decoder_input_ids) attention_mask[:, 5:] = 0 outputs_with_mask = model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, ) # check encoder self.parent.assertTrue( torch.allclose( outputs_no_mask.encoder_last_hidden_state[0, :, 0], outputs_with_mask.encoder_last_hidden_state[0, :5, 0], atol=1e-3, ) ) # check decoder # main stream self.parent.assertTrue( torch.allclose( outputs_no_mask.last_hidden_state[0, :, 0], outputs_with_mask.last_hidden_state[0, :5, 0], atol=1e-3 ) ) # predict stream self.parent.assertTrue( torch.allclose( outputs_no_mask.last_hidden_state_ngram[0, :5, 0], outputs_with_mask.last_hidden_state_ngram[0, :5, 0], atol=1e-2, ) ) def check_causal_lm_from_pretrained( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, *args ): model = ProphetNetForConditionalGeneration(config).to(torch_device).eval() with tempfile.TemporaryDirectory() as tmp_dirname: model.save_pretrained(tmp_dirname) decoder = ProphetNetForCausalLM.from_pretrained(tmp_dirname).to(torch_device) encoder_hidden_states = model.prophetnet.encoder(input_ids).last_hidden_state model_outputs = model( encoder_outputs=BaseModelOutput(last_hidden_state=encoder_hidden_states), decoder_input_ids=decoder_input_ids, ) dec_outputs = decoder(encoder_hidden_states=encoder_hidden_states, input_ids=decoder_input_ids) self.parent.assertTrue( torch.allclose( model_outputs.logits[0, :5], dec_outputs.logits[0, :5], atol=1e-3, ) ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "use_cache": False, } return config, inputs_dict class ProphetNetStandaloneDecoderModelTester: def __init__( self, parent, vocab_size=99, batch_size=13, hidden_size=16, encoder_seq_length=7, decoder_seq_length=7, # For common tests is_training=True, is_decoder=True, use_attention_mask=True, add_cross_attention=False, use_cache=False, use_labels=True, decoder_start_token_id=0, encoder_ffn_dim=32, num_encoder_layers=2, num_encoder_attention_heads=4, decoder_ffn_dim=32, num_decoder_layers=2, num_decoder_attention_heads=4, max_position_embeddings=30, is_encoder_decoder=False, pad_token_id=0, bos_token_id=1, eos_token_id=2, ngram=2, num_buckets=32, relative_max_distance=128, disable_ngram_loss=False, scope=None, ): self.parent = parent self.batch_size = batch_size self.encoder_seq_length = encoder_seq_length self.decoder_seq_length = decoder_seq_length # For common tests self.seq_length = self.decoder_seq_length self.is_training = is_training self.use_attention_mask = use_attention_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_decoder_layers self.num_encoder_layers = num_encoder_layers self.num_decoder_layers = num_decoder_layers self.decoder_ffn_dim = decoder_ffn_dim self.encoder_ffn_dim = encoder_ffn_dim self.num_attention_heads = num_decoder_attention_heads self.num_encoder_attention_heads = num_encoder_attention_heads self.num_decoder_attention_heads = num_decoder_attention_heads self.eos_token_id = eos_token_id self.bos_token_id = bos_token_id self.pad_token_id = pad_token_id self.decoder_start_token_id = decoder_start_token_id self.ngram = ngram self.num_buckets = num_buckets self.relative_max_distance = relative_max_distance self.use_cache = use_cache self.disable_ngram_loss = disable_ngram_loss self.max_position_embeddings = max_position_embeddings self.add_cross_attention = add_cross_attention self.is_encoder_decoder = is_encoder_decoder self.scope = None self.decoder_key_length = decoder_seq_length self.base_model_out_len = 2 self.num_hidden_states_types = 2 # decoder_main, decoder_ngram self.decoder_attention_idx = 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size) attention_mask = None if self.use_attention_mask: attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2) lm_labels = None if self.use_labels: lm_labels = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size) config = ProphetNetConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_encoder_layers=self.num_encoder_layers, num_decoder_layers=self.num_decoder_layers, decoder_ffn_dim=self.decoder_ffn_dim, encoder_ffn_dim=self.encoder_ffn_dim, num_encoder_attention_heads=self.num_encoder_attention_heads, num_decoder_attention_heads=self.num_decoder_attention_heads, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, use_cache=self.use_cache, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, ngram=self.ngram, num_buckets=self.num_buckets, relative_max_distance=self.relative_max_distance, disable_ngram_loss=self.disable_ngram_loss, max_position_embeddings=self.max_position_embeddings, add_cross_attention=self.add_cross_attention, is_encoder_decoder=self.is_encoder_decoder, ) return ( config, input_ids, attention_mask, lm_labels, ) def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, attention_mask, lm_labels, ) = self.prepare_config_and_inputs() encoder_hidden_states = floats_tensor([self.batch_size, self.encoder_seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, lm_labels, ) def create_and_check_decoder_model_past( self, config, input_ids, attention_mask, lm_labels, ): config.use_cache = True model = ProphetNetDecoder(config=config).to(torch_device).eval() # first forward pass outputs = model(input_ids, use_cache=True) outputs_use_cache_conf = model(input_ids) outputs_no_past = model(input_ids, use_cache=False) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) past_key_values = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) output_from_no_past = model(next_input_ids)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3) def create_and_check_decoder_model_attention_mask_past( self, config, input_ids, attention_mask, lm_labels, ): model = ProphetNetDecoder(config=config).to(torch_device).eval() # create attention mask attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) half_seq_length = input_ids.shape[-1] // 2 attn_mask[:, half_seq_length:] = 0 # first forward pass past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True)["past_key_values"] # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens # append to next input_ids and attn_mask next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) attn_mask = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], dim=1, ) # get two different outputs output_from_no_past = model(next_input_ids)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-2) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, attention_mask, lm_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, } return config, inputs_dict class ProphetNetStandaloneEncoderModelTester: def __init__( self, parent, vocab_size=99, batch_size=13, hidden_size=16, encoder_seq_length=7, decoder_seq_length=7, # For common tests is_training=True, is_decoder=False, use_attention_mask=True, add_cross_attention=False, use_cache=False, use_labels=True, decoder_start_token_id=0, encoder_ffn_dim=32, num_encoder_layers=2, num_encoder_attention_heads=4, decoder_ffn_dim=32, num_decoder_layers=2, num_decoder_attention_heads=4, max_position_embeddings=30, is_encoder_decoder=False, pad_token_id=0, bos_token_id=1, eos_token_id=2, num_buckets=32, relative_max_distance=128, disable_ngram_loss=False, scope=None, ): self.parent = parent self.batch_size = batch_size self.encoder_seq_length = encoder_seq_length self.decoder_seq_length = decoder_seq_length # For common tests self.seq_length = self.decoder_seq_length self.is_training = is_training self.use_attention_mask = use_attention_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_decoder_layers self.num_encoder_layers = num_encoder_layers self.num_decoder_layers = num_decoder_layers self.decoder_ffn_dim = decoder_ffn_dim self.encoder_ffn_dim = encoder_ffn_dim self.num_attention_heads = num_decoder_attention_heads self.num_encoder_attention_heads = num_encoder_attention_heads self.num_decoder_attention_heads = num_decoder_attention_heads self.eos_token_id = eos_token_id self.bos_token_id = bos_token_id self.pad_token_id = pad_token_id self.decoder_start_token_id = decoder_start_token_id self.num_buckets = num_buckets self.relative_max_distance = relative_max_distance self.use_cache = use_cache self.disable_ngram_loss = disable_ngram_loss self.max_position_embeddings = max_position_embeddings self.add_cross_attention = add_cross_attention self.is_encoder_decoder = is_encoder_decoder self.scope = None self.decoder_key_length = decoder_seq_length self.base_model_out_len = 1 self.num_hidden_states_types = 1 self.decoder_attention_idx = 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size) attention_mask = None if self.use_attention_mask: attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2) config = ProphetNetConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_encoder_layers=self.num_encoder_layers, num_decoder_layers=self.num_decoder_layers, decoder_ffn_dim=self.decoder_ffn_dim, encoder_ffn_dim=self.encoder_ffn_dim, num_encoder_attention_heads=self.num_encoder_attention_heads, num_decoder_attention_heads=self.num_decoder_attention_heads, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, use_cache=self.use_cache, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, num_buckets=self.num_buckets, relative_max_distance=self.relative_max_distance, disable_ngram_loss=self.disable_ngram_loss, max_position_embeddings=self.max_position_embeddings, add_cross_attention=self.add_cross_attention, is_encoder_decoder=self.is_encoder_decoder, ) return ( config, input_ids, attention_mask, ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, attention_mask, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class ProphetNetModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (ProphetNetModel, ProphetNetForConditionalGeneration) if is_torch_available() else () all_generative_model_classes = (ProphetNetForConditionalGeneration,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": ProphetNetModel, "summarization": ProphetNetForConditionalGeneration, "text-generation": ProphetNetForCausalLM, "text2text-generation": ProphetNetForConditionalGeneration, "translation": ProphetNetForConditionalGeneration, } if is_torch_available() else {} ) test_pruning = False test_resize_embeddings = False is_encoder_decoder = True # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_case_name, config_class, model_architecture, tokenizer_name, image_processor_name, feature_extractor_name, processor_name, ): if pipeline_test_case_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `ProphetNetConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def setUp(self): self.model_tester = ProphetNetModelTester(self) self.config_tester = ConfigTester(self, config_class=ProphetNetConfig) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_lm_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_with_lm_head(*config_and_inputs) def test_only_decoder_causal_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_causal_lm_decoder(*config_and_inputs) def test_fast_integration(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_fast_integration(*config_and_inputs) def test_shared_weights(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_encoder_decoder_shared_weights(*config_and_inputs) def test_shift_labels_via_shift_left(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_prepare_lm_labels_via_shift_left(*config_and_inputs) @unittest.skip(reason="Flaky test with no simple resolution. TODO Fix me @patrickvonplaten") def test_decoder_model_generate(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_generate_with_past_key_value_states(*config_and_inputs) def test_encoder_decoder_model_generate(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_generate_with_past_key_value_states(*config_and_inputs) def test_attn_mask_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_model_with_attn_mask(*config_and_inputs) def test_config_save(self): config = self.model_tester.prepare_config_and_inputs()[0] config.add_cross_attention = False with tempfile.TemporaryDirectory() as tmp_dirname: config.save_pretrained(tmp_dirname) config = ProphetNetConfig.from_pretrained(tmp_dirname) self.assertFalse(config.add_cross_attention) def test_causal_lm_from_pretrained(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_causal_lm_from_pretrained(*config_and_inputs) @unittest.skipIf(torch_device == "cpu", "Cant do half precision") def test_fp16_forward(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fp16_forward(*config_and_inputs) # methods overwrite method in `test_modeling_common.py` def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() seq_len = getattr(self.model_tester, "seq_length", None) decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len) decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length) encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) chunk_length = getattr(self.model_tester, "chunk_length", None) if chunk_length is not None and hasattr(self.model_tester, "num_hashes"): encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:]), [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length], ) else: self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) out_len = len(outputs) correct_outlen = 7 # loss is at first position if "labels" in inputs_dict: correct_outlen += 1 # loss is added to beginning self.assertEqual(out_len, correct_outlen) # decoder attentions decoder_attentions = outputs.decoder_attentions self.assertIsInstance(decoder_attentions, (list, tuple)) self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length], ) # cross attentions cross_attentions = outputs.cross_attentions self.assertIsInstance(cross_attentions, (list, tuple)) self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(cross_attentions[0].shape[-3:]), [ self.model_tester.num_attention_heads, (self.model_tester.ngram + 1) * decoder_seq_length, encoder_key_length, ], ) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) if hasattr(self.model_tester, "num_hidden_states_types"): added_hidden_states = self.model_tester.num_hidden_states_types elif self.is_encoder_decoder: added_hidden_states = 2 else: added_hidden_states = 1 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) if chunk_length is not None: self.assertListEqual( list(self_attentions[0].shape[-4:]), [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length], ) else: self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) def test_retain_grad_hidden_states_attentions(self): # decoder cannot keep gradients config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = True # no need to test all models as different heads yield the same functionality model_class = self.all_model_classes[0] model = model_class(config) model.to(torch_device) inputs = self._prepare_for_class(inputs_dict, model_class) outputs = model(**inputs) output = outputs[0] encoder_hidden_states = outputs.encoder_hidden_states[0] encoder_attentions = outputs.encoder_attentions[0] encoder_hidden_states.retain_grad() encoder_attentions.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(encoder_attentions.grad) @unittest.skip(reason="Generating with head_masking has not been implemented for ProphetNet models yet.") def test_generate_with_head_masking(self): pass @require_torch class ProphetNetStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): all_model_classes = (ProphetNetDecoder, ProphetNetForCausalLM) if is_torch_available() else () all_generative_model_classes = (ProphetNetForCausalLM,) if is_torch_available() else () test_pruning = False test_resize_embeddings = False is_encoder_decoder = False def setUp(self): self.model_tester = ProphetNetStandaloneDecoderModelTester(self, is_training=False) self.config_tester = ConfigTester(self, config_class=ProphetNetConfig) def test_config(self): self.config_tester.run_common_tests() def test_decoder_model_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*config_and_inputs) def test_decoder_model_attn_mask_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs) @unittest.skip(reason="Decoder cannot keep gradients") def test_retain_grad_hidden_states_attentions(self): return @require_torch class ProphetNetStandaloneEncoderModelTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (ProphetNetEncoder,) if is_torch_available() else () test_pruning = False test_resize_embeddings = False is_encoder_decoder = False def setUp(self): self.model_tester = ProphetNetStandaloneEncoderModelTester(self, is_training=False) self.config_tester = ConfigTester(self, config_class=ProphetNetConfig) def test_config(self): self.config_tester.run_common_tests() @require_torch class ProphetNetModelIntegrationTest(unittest.TestCase): @slow def test_pretrained_checkpoint_hidden_states(self): model = ProphetNetForConditionalGeneration.from_pretrained("microsoft/prophetnet-large-uncased") model.to(torch_device) # encoder-decoder outputs encoder_ids = torch.tensor( [ [ 2871, 102, 2048, 3176, 2780, 1997, 2871, 26727, 2169, 2097, 12673, 1996, 8457, 2006, 2049, 8240, 2859, 2799, 1012, 2023, 6512, 2038, 2174, 13977, 2195, 25962, 1012, 102, ] ] ).to(torch_device) decoder_prev_ids = torch.tensor([[102, 2129, 2116, 2372, 2024, 2006, 2169, 1997, 2122, 2048, 2780, 1029]]).to( torch_device ) output = model( input_ids=encoder_ids, attention_mask=None, encoder_outputs=None, decoder_input_ids=decoder_prev_ids, ) output_predited_logits = output[0] expected_shape = torch.Size((1, 12, 30522)) self.assertEqual(output_predited_logits.shape, expected_shape) expected_slice = torch.tensor( [[[-7.7729, -8.0343, -8.26001], [-7.74213, -7.8629, -8.6000], [-7.7328, -7.8269, -8.5264]]] ).to(torch_device) # torch.testing.assert_close(output_predited_logits[:, :3, :3], expected_slice, rtol=1e-4, atol=1e-4) assert torch.allclose(output_predited_logits[:, :3, :3], expected_slice, atol=1e-4) # encoder outputs encoder_outputs = model.prophetnet.encoder(encoder_ids)[0] expected_encoder_outputs_slice = torch.tensor( [[[-0.2526, -0.1951, -0.2185], [-0.8923, 0.2992, -0.4623], [-0.4585, 0.0165, -0.6652]]] ).to(torch_device) expected_shape_encoder = torch.Size((1, 28, 1024)) self.assertEqual(encoder_outputs.shape, expected_shape_encoder) # torch.testing.assert_close(encoder_outputs[:, :3, :3], expected_encoder_outputs_slice, rtol=1e-4, atol=1e-4) assert torch.allclose(encoder_outputs[:, :3, :3], expected_encoder_outputs_slice, atol=1e-4) # decoder outputs decoder_outputs = model.prophetnet.decoder(decoder_prev_ids, encoder_hidden_states=encoder_outputs) predicting_streams = decoder_outputs[1].view(1, model.config.ngram, 12, -1) predicting_streams_logits = model.lm_head(predicting_streams) next_first_stream_logits = predicting_streams_logits[:, 0] # torch.testing.assert_close(next_first_stream_logits[:, :3, :3], expected_slice, rtol=1e-4, atol=1e-4) assert torch.allclose(next_first_stream_logits[:, :3, :3], expected_slice, atol=1e-4) @slow def test_cnndm_inference(self): model = ProphetNetForConditionalGeneration.from_pretrained("microsoft/prophetnet-large-uncased-cnndm") model.config.max_length = 512 model.to(torch_device) tokenizer = ProphetNetTokenizer.from_pretrained("microsoft/prophetnet-large-uncased-cnndm") ARTICLE_TO_SUMMARIZE = ( "USTC was founded in Beijing by the Chinese Academy of Sciences (CAS) in September 1958. The Director of" " CAS, Mr. Guo Moruo was appointed the first president of USTC. USTC's founding mission was to develop a" " high-level science and technology workforce, as deemed critical for development of China's economy," ' defense, and science and technology education. The establishment was hailed as "A Major Event in the' ' History of Chinese Education and Science." CAS has supported USTC by combining most of its institutes' " with the departments of the university. USTC is listed in the top 16 national key universities, becoming" " the youngest national key university.".lower() ) input_ids = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=511, return_tensors="pt").input_ids input_ids = input_ids.to(torch_device) summary_ids = model.generate( input_ids, num_beams=4, length_penalty=1.0, no_repeat_ngram_size=3, early_stopping=True ) EXPECTED_SUMMARIZE_512 = ( "us ##tc was founded by the chinese academy of sciences ( cas ) in 1958 . [X_SEP] us ##tc is listed in the" " top 16 national key universities ." ) generated_titles = [ " ".join(tokenizer.convert_ids_to_tokens(g, skip_special_tokens=True)) for g in summary_ids ] self.assertListEqual( [EXPECTED_SUMMARIZE_512], generated_titles, ) input_ids = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=99, return_tensors="pt").input_ids input_ids = input_ids.to(torch_device) # actually 98 tokens are used. max_length=100 contains bos and eos. summary_ids = model.generate( input_ids, num_beams=4, length_penalty=1.0, no_repeat_ngram_size=3, early_stopping=True ) EXPECTED_SUMMARIZE_100 = ( r"us ##tc was founded in beijing by the chinese academy of sciences ( cas ) in 1958 . [X_SEP] us ##tc " "'" " s founding mission was to develop a high - level science and technology workforce . [X_SEP]" ' establishment hailed as " a major event in the history of chinese education and science "' ) generated_titles = [ " ".join(tokenizer.convert_ids_to_tokens(g, skip_special_tokens=True)) for g in summary_ids ] self.assertListEqual( [EXPECTED_SUMMARIZE_100], generated_titles, ) @slow def test_question_gen_inference(self): model = ProphetNetForConditionalGeneration.from_pretrained("microsoft/prophetnet-large-uncased-squad-qg") model.to(torch_device) tokenizer = ProphetNetTokenizer.from_pretrained("microsoft/prophetnet-large-uncased-squad-qg") INPUTS = [ "Bill Gates [SEP] Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975.", "1975 [SEP] Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975.", "April 4, 1975 [SEP] Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975.", ] input_ids = tokenizer(INPUTS, truncation=True, padding=True, return_tensors="pt").input_ids input_ids = input_ids.to(torch_device) gen_output = model.generate(input_ids, num_beams=5, early_stopping=True) generated_questions = tokenizer.batch_decode(gen_output, skip_special_tokens=True) EXPECTED_QUESTIONS = [ "along with paul allen, who founded microsoft?", "what year was microsoft founded?", "when was microsoft founded?", ] self.assertListEqual( EXPECTED_QUESTIONS, generated_questions, )
transformers/tests/models/prophetnet/test_modeling_prophetnet.py/0
{ "file_path": "transformers/tests/models/prophetnet/test_modeling_prophetnet.py", "repo_id": "transformers", "token_count": 25727 }
188
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import unittest from transformers import AutoProcessor, AutoTokenizer, Qwen2AudioProcessor, WhisperFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio @require_torch @require_torchaudio class Qwen2AudioProcessorTest(unittest.TestCase): def setUp(self): self.checkpoint = "Qwen/Qwen2-Audio-7B-Instruct" self.tmpdirname = tempfile.mkdtemp() def test_can_load_various_tokenizers(self): processor = Qwen2AudioProcessor.from_pretrained(self.checkpoint) tokenizer = AutoTokenizer.from_pretrained(self.checkpoint) self.assertEqual(processor.tokenizer.__class__, tokenizer.__class__) def test_save_load_pretrained_default(self): tokenizer = AutoTokenizer.from_pretrained(self.checkpoint) processor = Qwen2AudioProcessor.from_pretrained(self.checkpoint) feature_extractor = processor.feature_extractor processor = Qwen2AudioProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) processor.save_pretrained(self.tmpdirname) processor = Qwen2AudioProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab()) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string()) self.assertIsInstance(processor.feature_extractor, WhisperFeatureExtractor) def test_tokenizer_integration(self): slow_tokenizer = AutoTokenizer.from_pretrained(self.checkpoint, use_fast=False) fast_tokenizer = AutoTokenizer.from_pretrained(self.checkpoint, from_slow=True, legacy=False) prompt = "<|im_start|>system\nAnswer the questions.<|im_end|><|im_start|>user\n<|audio_bos|><|AUDIO|><|audio_eos|>\nWhat is it in this audio?<|im_end|><|im_start|>assistant\n" EXPECTED_OUTPUT = [ "<|im_start|>", "system", "Ċ", "Answer", "Ġthe", "Ġquestions", ".", "<|im_end|>", "<|im_start|>", "user", "Ċ", "<|audio_bos|>", "<|AUDIO|>", "<|audio_eos|>", "Ċ", "What", "Ġis", "Ġit", "Ġin", "Ġthis", "Ġaudio", "?", "<|im_end|>", "<|im_start|>", "assistant", "Ċ", ] print(slow_tokenizer.tokenize(prompt)) self.assertEqual(slow_tokenizer.tokenize(prompt), EXPECTED_OUTPUT) self.assertEqual(fast_tokenizer.tokenize(prompt), EXPECTED_OUTPUT) def test_chat_template(self): processor = AutoProcessor.from_pretrained(self.checkpoint) expected_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\nAudio 1: <|audio_bos|><|AUDIO|><|audio_eos|>\nWhat's that sound?<|im_end|>\n<|im_start|>assistant\nIt is the sound of glass shattering.<|im_end|>\n<|im_start|>user\nAudio 2: <|audio_bos|><|AUDIO|><|audio_eos|>\nHow about this one?<|im_end|>\n<|im_start|>assistant\n" messages = [ {"role": "system", "content": "You are a helpful assistant."}, { "role": "user", "content": [ { "type": "audio", "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/glass-breaking-151256.mp3", }, {"type": "text", "text": "What's that sound?"}, ], }, {"role": "assistant", "content": "It is the sound of glass shattering."}, { "role": "user", "content": [ { "type": "audio", "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/f2641_0_throatclearing.wav", }, {"type": "text", "text": "How about this one?"}, ], }, ] formatted_prompt = processor.apply_chat_template(messages, add_generation_prompt=True) self.assertEqual(expected_prompt, formatted_prompt)
transformers/tests/models/qwen2_audio/test_processor_qwen2_audio.py/0
{ "file_path": "transformers/tests/models/qwen2_audio/test_processor_qwen2_audio.py", "repo_id": "transformers", "token_count": 2277 }
189
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class ReformerTokenizationTest(TokenizerTesterMixin, unittest.TestCase): from_pretrained_id = "google/reformer-crime-and-punishment" tokenizer_class = ReformerTokenizer rust_tokenizer_class = ReformerTokenizerFast test_rust_tokenizer = True test_seq2seq = False test_sentencepiece = True def setUp(self): super().setUp() tokenizer = ReformerTokenizer(SAMPLE_VOCAB, keep_accents=True) tokenizer.save_pretrained(self.tmpdirname) def test_convert_token_and_id(self): """Test ``_convert_token_to_id`` and ``_convert_id_to_token``.""" token = "<s>" token_id = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id) self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token) def test_get_vocab(self): vocab_keys = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0], "<unk>") self.assertEqual(vocab_keys[1], "<s>") self.assertEqual(vocab_keys[-1], "j") self.assertEqual(len(vocab_keys), 1_000) def test_vocab_size(self): self.assertEqual(self.get_tokenizer().vocab_size, 1_000) def test_rust_and_python_full_tokenizers(self): if not self.test_rust_tokenizer: self.skipTest(reason="test_rust_tokenizer is set to False") tokenizer = self.get_tokenizer() rust_tokenizer = self.get_rust_tokenizer() sequence = "I was born in 92000, and this is falsé." tokens = tokenizer.tokenize(sequence) rust_tokens = rust_tokenizer.tokenize(sequence) self.assertListEqual(tokens, rust_tokens) ids = tokenizer.encode(sequence, add_special_tokens=False) rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False) self.assertListEqual(ids, rust_ids) rust_tokenizer = self.get_rust_tokenizer() ids = tokenizer.encode(sequence) rust_ids = rust_tokenizer.encode(sequence) self.assertListEqual(ids, rust_ids) def test_padding(self, max_length=15): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) # Simple input s = "This is a simple input" s2 = ["This is a simple input 1", "This is a simple input 2"] p = ("This is a simple input", "This is a pair") p2 = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(ValueError, tokenizer_r.encode, s, max_length=max_length, padding="max_length") # Simple input self.assertRaises(ValueError, tokenizer_r.encode_plus, s, max_length=max_length, padding="max_length") # Simple input self.assertRaises( ValueError, tokenizer_r.batch_encode_plus, s2, max_length=max_length, padding="max_length", ) # Pair input self.assertRaises(ValueError, tokenizer_r.encode, p, max_length=max_length, padding="max_length") # Pair input self.assertRaises(ValueError, tokenizer_r.encode_plus, p, max_length=max_length, padding="max_length") # Pair input self.assertRaises( ValueError, tokenizer_r.batch_encode_plus, p2, max_length=max_length, padding="max_length", ) @unittest.skip(reason="Tokenizer has no padding token") def test_padding_different_model_input_name(self): pass def test_full_tokenizer(self): tokenizer = ReformerTokenizer(SAMPLE_VOCAB, keep_accents=True) tokens = tokenizer.tokenize("This is a test") self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(tokens), [285, 46, 10, 170, 382], ) tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( tokens, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ], ) ids = tokenizer.convert_tokens_to_ids(tokens) self.assertListEqual( ids, [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4], ) back_tokens = tokenizer.convert_ids_to_tokens(ids) self.assertListEqual( back_tokens, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ], ) @cached_property def big_tokenizer(self): return ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment") @slow def test_tokenization_base_easy_symbols(self): symbols = "Hello World!" original_tokenizer_encodings = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(original_tokenizer_encodings, self.big_tokenizer.encode(symbols)) @slow def test_tokenization_base_hard_symbols(self): symbols = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) original_tokenizer_encodings = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(original_tokenizer_encodings, self.big_tokenizer.encode(symbols)) @require_torch @slow def test_torch_encode_plus_sent_to_model(self): import torch from transformers import ReformerConfig, ReformerModel # Build sequence first_ten_tokens = list(self.big_tokenizer.get_vocab().keys())[:10] sequence = " ".join(first_ten_tokens) encoded_sequence = self.big_tokenizer.encode_plus(sequence, return_tensors="pt") batch_encoded_sequence = self.big_tokenizer.batch_encode_plus([sequence, sequence], return_tensors="pt") config = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) config.axial_pos_shape = encoded_sequence["input_ids"].shape model = ReformerModel(config) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**encoded_sequence) model(**batch_encoded_sequence) @slow def test_tokenizer_integration(self): expected_encoding = {'input_ids': [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # fmt: skip # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 sequences = [ "This is a very simple sentence.", "The quick brown fox jumps over the lazy dog.", ] self.tokenizer_integration_test_util( expected_encoding=expected_encoding, model_name="google/reformer-crime-and-punishment", revision="0e6c3decb8211d49bf881013425dc8b0448b3f5a", padding=False, sequences=sequences, )
transformers/tests/models/reformer/test_tokenization_reformer.py/0
{ "file_path": "transformers/tests/models/reformer/test_tokenization_reformer.py", "repo_id": "transformers", "token_count": 6425 }
190
# coding = utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch RT_DETR model.""" import inspect import math import tempfile import unittest from parameterized import parameterized from transformers import ( RTDetrConfig, RTDetrImageProcessor, RTDetrResNetConfig, is_torch_available, is_vision_available, ) from transformers.testing_utils import ( require_torch, require_torch_accelerator, require_vision, slow, torch_device, ) from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import RTDetrForObjectDetection, RTDetrModel if is_vision_available(): from PIL import Image CHECKPOINT = "PekingU/rtdetr_r50vd" # TODO: replace class RTDetrModelTester: def __init__( self, parent, batch_size=3, is_training=True, use_labels=True, n_targets=3, num_labels=10, initializer_range=0.02, layer_norm_eps=1e-5, batch_norm_eps=1e-5, # backbone backbone_config=None, # encoder HybridEncoder encoder_hidden_dim=32, encoder_in_channels=[128, 256, 512], feat_strides=[8, 16, 32], encoder_layers=1, encoder_ffn_dim=64, encoder_attention_heads=2, dropout=0.0, activation_dropout=0.0, encode_proj_layers=[2], positional_encoding_temperature=10000, encoder_activation_function="gelu", activation_function="silu", eval_size=None, normalize_before=False, # decoder RTDetrTransformer d_model=32, num_queries=30, decoder_in_channels=[32, 32, 32], decoder_ffn_dim=64, num_feature_levels=3, decoder_n_points=4, decoder_layers=2, decoder_attention_heads=2, decoder_activation_function="relu", attention_dropout=0.0, num_denoising=0, label_noise_ratio=0.5, box_noise_scale=1.0, learn_initial_query=False, anchor_image_size=None, image_size=64, disable_custom_kernels=True, with_box_refine=True, ): self.parent = parent self.batch_size = batch_size self.num_channels = 3 self.is_training = is_training self.use_labels = use_labels self.n_targets = n_targets self.num_labels = num_labels self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.batch_norm_eps = batch_norm_eps self.backbone_config = backbone_config self.encoder_hidden_dim = encoder_hidden_dim self.encoder_in_channels = encoder_in_channels self.feat_strides = feat_strides self.encoder_layers = encoder_layers self.encoder_ffn_dim = encoder_ffn_dim self.encoder_attention_heads = encoder_attention_heads self.dropout = dropout self.activation_dropout = activation_dropout self.encode_proj_layers = encode_proj_layers self.positional_encoding_temperature = positional_encoding_temperature self.encoder_activation_function = encoder_activation_function self.activation_function = activation_function self.eval_size = eval_size self.normalize_before = normalize_before self.d_model = d_model self.num_queries = num_queries self.decoder_in_channels = decoder_in_channels self.decoder_ffn_dim = decoder_ffn_dim self.num_feature_levels = num_feature_levels self.decoder_n_points = decoder_n_points self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.decoder_activation_function = decoder_activation_function self.attention_dropout = attention_dropout self.num_denoising = num_denoising self.label_noise_ratio = label_noise_ratio self.box_noise_scale = box_noise_scale self.learn_initial_query = learn_initial_query self.anchor_image_size = anchor_image_size self.image_size = image_size self.disable_custom_kernels = disable_custom_kernels self.with_box_refine = with_box_refine self.encoder_seq_length = math.ceil(self.image_size / 32) * math.ceil(self.image_size / 32) def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) pixel_mask = torch.ones([self.batch_size, self.image_size, self.image_size], device=torch_device) labels = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) labels = [] for i in range(self.batch_size): target = {} target["class_labels"] = torch.randint( high=self.num_labels, size=(self.n_targets,), device=torch_device ) target["boxes"] = torch.rand(self.n_targets, 4, device=torch_device) labels.append(target) config = self.get_config() config.num_labels = self.num_labels return config, pixel_values, pixel_mask, labels def get_config(self): hidden_sizes = [10, 20, 30, 40] backbone_config = RTDetrResNetConfig( embeddings_size=10, hidden_sizes=hidden_sizes, depths=[1, 1, 2, 1], out_features=["stage2", "stage3", "stage4"], out_indices=[2, 3, 4], ) return RTDetrConfig.from_backbone_configs( backbone_config=backbone_config, encoder_hidden_dim=self.encoder_hidden_dim, encoder_in_channels=hidden_sizes[1:], feat_strides=self.feat_strides, encoder_layers=self.encoder_layers, encoder_ffn_dim=self.encoder_ffn_dim, encoder_attention_heads=self.encoder_attention_heads, dropout=self.dropout, activation_dropout=self.activation_dropout, encode_proj_layers=self.encode_proj_layers, positional_encoding_temperature=self.positional_encoding_temperature, encoder_activation_function=self.encoder_activation_function, activation_function=self.activation_function, eval_size=self.eval_size, normalize_before=self.normalize_before, d_model=self.d_model, num_queries=self.num_queries, decoder_in_channels=self.decoder_in_channels, decoder_ffn_dim=self.decoder_ffn_dim, num_feature_levels=self.num_feature_levels, decoder_n_points=self.decoder_n_points, decoder_layers=self.decoder_layers, decoder_attention_heads=self.decoder_attention_heads, decoder_activation_function=self.decoder_activation_function, attention_dropout=self.attention_dropout, num_denoising=self.num_denoising, label_noise_ratio=self.label_noise_ratio, box_noise_scale=self.box_noise_scale, learn_initial_query=self.learn_initial_query, anchor_image_size=self.anchor_image_size, image_size=self.image_size, disable_custom_kernels=self.disable_custom_kernels, with_box_refine=self.with_box_refine, ) def prepare_config_and_inputs_for_common(self): config, pixel_values, pixel_mask, labels = self.prepare_config_and_inputs() inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict def create_and_check_rt_detr_model(self, config, pixel_values, pixel_mask, labels): model = RTDetrModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values=pixel_values, pixel_mask=pixel_mask) result = model(pixel_values) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.num_queries, self.d_model)) def create_and_check_rt_detr_object_detection_head_model(self, config, pixel_values, pixel_mask, labels): model = RTDetrForObjectDetection(config=config) model.to(torch_device) model.eval() result = model(pixel_values=pixel_values, pixel_mask=pixel_mask) result = model(pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, self.num_labels)) self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4)) result = model(pixel_values=pixel_values, pixel_mask=pixel_mask, labels=labels) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, self.num_labels)) self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4)) @require_torch class RTDetrModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (RTDetrModel, RTDetrForObjectDetection) if is_torch_available() else () pipeline_model_mapping = ( {"image-feature-extraction": RTDetrModel, "object-detection": RTDetrForObjectDetection} if is_torch_available() else {} ) is_encoder_decoder = True test_torchscript = False test_pruning = False test_head_masking = False test_missing_keys = False # special case for head models def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class.__name__ == "RTDetrForObjectDetection": labels = [] for i in range(self.model_tester.batch_size): target = {} target["class_labels"] = torch.ones( size=(self.model_tester.n_targets,), device=torch_device, dtype=torch.long ) target["boxes"] = torch.ones( self.model_tester.n_targets, 4, device=torch_device, dtype=torch.float ) labels.append(target) inputs_dict["labels"] = labels return inputs_dict def setUp(self): self.model_tester = RTDetrModelTester(self) self.config_tester = ConfigTester( self, config_class=RTDetrConfig, has_text_modality=False, common_properties=["hidden_size", "num_attention_heads"], ) def test_config(self): self.config_tester.run_common_tests() def test_rt_detr_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_rt_detr_model(*config_and_inputs) def test_rt_detr_object_detection_head_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_rt_detr_object_detection_head_model(*config_and_inputs) @unittest.skip(reason="RTDetr does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="RTDetr does not use test_inputs_embeds_matches_input_ids") def test_inputs_embeds_matches_input_ids(self): pass @unittest.skip(reason="RTDetr does not support input and output embeddings") def test_model_get_set_embeddings(self): pass @unittest.skip(reason="RTDetr does not support input and output embeddings") def test_model_common_attributes(self): pass @unittest.skip(reason="RTDetr does not use token embeddings") def test_resize_tokens_embeddings(self): pass @unittest.skip(reason="Feed forward chunking is not implemented") def test_feed_forward_chunking(self): pass def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions self.assertEqual(len(attentions), self.model_tester.encoder_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions self.assertEqual(len(attentions), self.model_tester.encoder_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [ self.model_tester.encoder_attention_heads, self.model_tester.encoder_seq_length, self.model_tester.encoder_seq_length, ], ) out_len = len(outputs) correct_outlen = 13 # loss is at first position if "labels" in inputs_dict: correct_outlen += 1 # loss is added to beginning # Object Detection model returns pred_logits and pred_boxes if model_class.__name__ == "RTDetrForObjectDetection": correct_outlen += 2 self.assertEqual(out_len, correct_outlen) # decoder attentions decoder_attentions = outputs.decoder_attentions self.assertIsInstance(decoder_attentions, (list, tuple)) self.assertEqual(len(decoder_attentions), self.model_tester.decoder_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [ self.model_tester.decoder_attention_heads, self.model_tester.num_queries, self.model_tester.num_queries, ], ) # cross attentions cross_attentions = outputs.cross_attentions self.assertIsInstance(cross_attentions, (list, tuple)) self.assertEqual(len(cross_attentions), self.model_tester.decoder_layers) self.assertListEqual( list(cross_attentions[0].shape[-3:]), [ self.model_tester.decoder_attention_heads, self.model_tester.num_feature_levels, self.model_tester.decoder_n_points, ], ) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) if hasattr(self.model_tester, "num_hidden_states_types"): added_hidden_states = self.model_tester.num_hidden_states_types else: # RTDetr should maintin encoder_hidden_states output added_hidden_states = 2 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.encoder_attentions self.assertEqual(len(self_attentions), self.model_tester.encoder_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [ self.model_tester.encoder_attention_heads, self.model_tester.encoder_seq_length, self.model_tester.encoder_seq_length, ], ) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", len(self.model_tester.encoder_in_channels) - 1 ) self.assertEqual(len(hidden_states), expected_num_layers) self.assertListEqual( list(hidden_states[1].shape[-2:]), [ self.model_tester.image_size // self.model_tester.feat_strides[-1], self.model_tester.image_size // self.model_tester.feat_strides[-1], ], ) if config.is_encoder_decoder: hidden_states = outputs.decoder_hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.decoder_layers + 1 ) self.assertIsInstance(hidden_states, (list, tuple)) self.assertEqual(len(hidden_states), expected_num_layers) self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.model_tester.num_queries, self.model_tester.d_model], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_retain_grad_hidden_states_attentions(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = True model_class = self.all_model_classes[0] model = model_class(config) model.to(torch_device) inputs = self._prepare_for_class(inputs_dict, model_class) outputs = model(**inputs) # we take the first output since last_hidden_state is the first item output = outputs[0] encoder_hidden_states = outputs.encoder_hidden_states[0] encoder_attentions = outputs.encoder_attentions[0] encoder_hidden_states.retain_grad() encoder_attentions.retain_grad() decoder_attentions = outputs.decoder_attentions[0] decoder_attentions.retain_grad() cross_attentions = outputs.cross_attentions[0] cross_attentions.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(encoder_attentions.grad) self.assertIsNotNone(decoder_attentions.grad) self.assertIsNotNone(cross_attentions.grad) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_different_timm_backbone(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # let's pick a random timm backbone config.backbone = "tf_mobilenetv3_small_075" config.backbone_config = None config.use_timm_backbone = True config.backbone_kwargs = {"out_indices": [2, 3, 4]} for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) if model_class.__name__ == "RTDetrForObjectDetection": expected_shape = ( self.model_tester.batch_size, self.model_tester.num_queries, self.model_tester.num_labels, ) self.assertEqual(outputs.logits.shape, expected_shape) # Confirm out_indices was propogated to backbone self.assertEqual(len(model.model.backbone.intermediate_channel_sizes), 3) else: # Confirm out_indices was propogated to backbone self.assertEqual(len(model.backbone.intermediate_channel_sizes), 3) self.assertTrue(outputs) def test_hf_backbone(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # Load a pretrained HF checkpoint as backbone config.backbone = "microsoft/resnet-18" config.backbone_config = None config.use_timm_backbone = False config.use_pretrained_backbone = True config.backbone_kwargs = {"out_indices": [2, 3, 4]} for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) if model_class.__name__ == "RTDetrForObjectDetection": expected_shape = ( self.model_tester.batch_size, self.model_tester.num_queries, self.model_tester.num_labels, ) self.assertEqual(outputs.logits.shape, expected_shape) # Confirm out_indices was propogated to backbone self.assertEqual(len(model.model.backbone.intermediate_channel_sizes), 3) else: # Confirm out_indices was propogated to backbone self.assertEqual(len(model.backbone.intermediate_channel_sizes), 3) self.assertTrue(outputs) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) configs_no_init.initializer_bias_prior_prob = 0.2 bias_value = -1.3863 # log_e ((1 - 0.2) / 0.2) failed_cases = [] for model_class in self.all_model_classes: model = model_class(config=configs_no_init) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "RTDetrConvEncoder": backbone_params = [f"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if ("class_embed" in name and "bias" in name) or "enc_score_head.bias" in name: bias_tensor = torch.full_like(param.data, bias_value) if not torch.allclose(param.data, bias_tensor, atol=1e-4): failed_cases.append( f"Parameter {name} of model {model_class} seems not properly initialized. " f"Biases should be initialized to {bias_value}, got {param.data}" ) elif ( "level_embed" in name or "sampling_offsets.bias" in name or "value_proj" in name or "output_proj" in name or "reference_points" in name or "enc_score_head.weight" in name or ("class_embed" in name and "weight" in name) or name in backbone_params ): continue else: mean = param.data.mean() round_mean = (mean * 1e9).round() / 1e9 round_mean = round_mean.item() if round_mean not in [0.0, 1.0]: failed_cases.append( f"Parameter {name} of model {model_class} seems not properly initialized. " f"Mean is {round_mean}, but should be in [0, 1]" ) message = "\n" + "\n".join(failed_cases) self.assertTrue(not failed_cases, message) @parameterized.expand(["float32", "float16", "bfloat16"]) @require_torch_accelerator @slow def test_inference_with_different_dtypes(self, torch_dtype_str): torch_dtype = { "float32": torch.float32, "float16": torch.float16, "bfloat16": torch.bfloat16, }[torch_dtype_str] config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device).to(torch_dtype) model.eval() for key, tensor in inputs_dict.items(): if tensor.dtype == torch.float32: inputs_dict[key] = tensor.to(torch_dtype) with torch.no_grad(): _ = model(**self._prepare_for_class(inputs_dict, model_class)) @parameterized.expand(["float32", "float16", "bfloat16"]) @require_torch_accelerator @slow def test_inference_equivalence_for_static_and_dynamic_anchors(self, torch_dtype_str): torch_dtype = { "float32": torch.float32, "float16": torch.float16, "bfloat16": torch.bfloat16, }[torch_dtype_str] config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() h, w = inputs_dict["pixel_values"].shape[-2:] # convert inputs to the desired dtype for key, tensor in inputs_dict.items(): if tensor.dtype == torch.float32: inputs_dict[key] = tensor.to(torch_dtype) for model_class in self.all_model_classes: with tempfile.TemporaryDirectory() as tmpdirname: model_class(config).save_pretrained(tmpdirname) model_static = model_class.from_pretrained( tmpdirname, anchor_image_size=[h, w], device_map=torch_device, torch_dtype=torch_dtype ).eval() model_dynamic = model_class.from_pretrained( tmpdirname, anchor_image_size=None, device_map=torch_device, torch_dtype=torch_dtype ).eval() self.assertIsNotNone(model_static.config.anchor_image_size) self.assertIsNone(model_dynamic.config.anchor_image_size) with torch.no_grad(): outputs_static = model_static(**self._prepare_for_class(inputs_dict, model_class)) outputs_dynamic = model_dynamic(**self._prepare_for_class(inputs_dict, model_class)) self.assertTrue( torch.allclose( outputs_static.last_hidden_state, outputs_dynamic.last_hidden_state, rtol=1e-4, atol=1e-4 ), f"Max diff: {(outputs_static.last_hidden_state - outputs_dynamic.last_hidden_state).abs().max()}", ) TOLERANCE = 1e-4 # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class RTDetrModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return RTDetrImageProcessor.from_pretrained(CHECKPOINT) if is_vision_available() else None def test_inference_object_detection_head(self): model = RTDetrForObjectDetection.from_pretrained(CHECKPOINT).to(torch_device) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) with torch.no_grad(): outputs = model(**inputs) expected_shape_logits = torch.Size((1, 300, model.config.num_labels)) self.assertEqual(outputs.logits.shape, expected_shape_logits) expected_logits = torch.tensor( [ [-4.64763879776001, -5.001153945922852, -4.978509902954102], [-4.159348487854004, -4.703853607177734, -5.946484565734863], [-4.437461853027344, -4.65836238861084, -6.235235691070557], ] ).to(torch_device) expected_boxes = torch.tensor( [ [0.1688060760498047, 0.19992263615131378, 0.21225441992282867], [0.768376350402832, 0.41226309537887573, 0.4636859893798828], [0.25953856110572815, 0.5483334064483643, 0.4777486026287079], ] ).to(torch_device) torch.testing.assert_close(outputs.logits[0, :3, :3], expected_logits, rtol=1e-4, atol=1e-4) expected_shape_boxes = torch.Size((1, 300, 4)) self.assertEqual(outputs.pred_boxes.shape, expected_shape_boxes) torch.testing.assert_close(outputs.pred_boxes[0, :3, :3], expected_boxes, rtol=1e-4, atol=1e-4) # verify postprocessing results = image_processor.post_process_object_detection( outputs, threshold=0.0, target_sizes=[image.size[::-1]] )[0] expected_scores = torch.tensor( [0.9703017473220825, 0.9599503874778748, 0.9575679302215576, 0.9506784677505493], device=torch_device ) expected_labels = [57, 15, 15, 65] expected_slice_boxes = torch.tensor( [ [0.13774872, 0.37821293, 640.13074, 476.21088], [343.38132, 24.276838, 640.1404, 371.49573], [13.225126, 54.179348, 318.98422, 472.2207], [40.114475, 73.44104, 175.9573, 118.48469], ], device=torch_device, ) torch.testing.assert_close(results["scores"][:4], expected_scores, rtol=1e-4, atol=1e-4) self.assertSequenceEqual(results["labels"][:4].tolist(), expected_labels) torch.testing.assert_close(results["boxes"][:4], expected_slice_boxes, rtol=1e-4, atol=1e-4)
transformers/tests/models/rt_detr/test_modeling_rt_detr.py/0
{ "file_path": "transformers/tests/models/rt_detr/test_modeling_rt_detr.py", "repo_id": "transformers", "token_count": 15268 }
191
# coding=utf-8 # Copyright 2021 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class SegformerImageProcessingTester: def __init__( self, parent, batch_size=7, num_channels=3, min_resolution=30, max_resolution=400, do_resize=True, size=None, do_normalize=True, image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5], do_reduce_labels=False, ): size = size if size is not None else {"height": 30, "width": 30} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std self.do_reduce_labels = do_reduce_labels def prepare_image_processor_dict(self): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def expected_output_image_shape(self, images): return self.num_channels, self.size["height"], self.size["width"] def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) def prepare_semantic_single_inputs(): dataset = load_dataset("hf-internal-testing/fixtures_ade20k", split="test", trust_remote_code=True) image = Image.open(dataset[0]["file"]) map = Image.open(dataset[1]["file"]) return image, map def prepare_semantic_batch_inputs(): dataset = load_dataset("hf-internal-testing/fixtures_ade20k", split="test", trust_remote_code=True) image1 = Image.open(dataset[0]["file"]) map1 = Image.open(dataset[1]["file"]) image2 = Image.open(dataset[2]["file"]) map2 = Image.open(dataset[3]["file"]) return [image1, image2], [map1, map2] @require_torch @require_vision class SegformerImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = SegformerImageProcessor if is_vision_available() else None def setUp(self): super().setUp() self.image_processor_tester = SegformerImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) self.assertTrue(hasattr(image_processing, "do_reduce_labels")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"height": 30, "width": 30}) self.assertEqual(image_processor.do_reduce_labels, False) image_processor = self.image_processing_class.from_dict( self.image_processor_dict, size=42, do_reduce_labels=True ) self.assertEqual(image_processor.size, {"height": 42, "width": 42}) self.assertEqual(image_processor.do_reduce_labels, True) def test_call_segmentation_maps(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True) maps = [] for image in image_inputs: self.assertIsInstance(image, torch.Tensor) maps.append(torch.zeros(image.shape[-2:]).long()) # Test not batched input encoding = image_processing(image_inputs[0], maps[0], return_tensors="pt") self.assertEqual( encoding["pixel_values"].shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) self.assertEqual( encoding["labels"].shape, ( 1, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) self.assertEqual(encoding["labels"].dtype, torch.long) self.assertTrue(encoding["labels"].min().item() >= 0) self.assertTrue(encoding["labels"].max().item() <= 255) # Test batched encoding = image_processing(image_inputs, maps, return_tensors="pt") self.assertEqual( encoding["pixel_values"].shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) self.assertEqual( encoding["labels"].shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) self.assertEqual(encoding["labels"].dtype, torch.long) self.assertTrue(encoding["labels"].min().item() >= 0) self.assertTrue(encoding["labels"].max().item() <= 255) # Test not batched input (PIL images) image, segmentation_map = prepare_semantic_single_inputs() encoding = image_processing(image, segmentation_map, return_tensors="pt") self.assertEqual( encoding["pixel_values"].shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) self.assertEqual( encoding["labels"].shape, ( 1, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) self.assertEqual(encoding["labels"].dtype, torch.long) self.assertTrue(encoding["labels"].min().item() >= 0) self.assertTrue(encoding["labels"].max().item() <= 255) # Test batched input (PIL images) images, segmentation_maps = prepare_semantic_batch_inputs() encoding = image_processing(images, segmentation_maps, return_tensors="pt") self.assertEqual( encoding["pixel_values"].shape, ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) self.assertEqual( encoding["labels"].shape, ( 2, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) self.assertEqual(encoding["labels"].dtype, torch.long) self.assertTrue(encoding["labels"].min().item() >= 0) self.assertTrue(encoding["labels"].max().item() <= 255) def test_reduce_labels(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 image, map = prepare_semantic_single_inputs() encoding = image_processing(image, map, return_tensors="pt") self.assertTrue(encoding["labels"].min().item() >= 0) self.assertTrue(encoding["labels"].max().item() <= 150) image_processing.do_reduce_labels = True encoding = image_processing(image, map, return_tensors="pt") self.assertTrue(encoding["labels"].min().item() >= 0) self.assertTrue(encoding["labels"].max().item() <= 255) def test_removed_deprecated_kwargs(self): image_processor_dict = dict(self.image_processor_dict) image_processor_dict.pop("do_reduce_labels", None) image_processor_dict["reduce_labels"] = True # test we are able to create the image processor with the deprecated kwargs image_processor = self.image_processing_class(**image_processor_dict) self.assertEqual(image_processor.do_reduce_labels, True) # test we still support reduce_labels with config image_processor = self.image_processing_class.from_dict(image_processor_dict) self.assertEqual(image_processor.do_reduce_labels, True)
transformers/tests/models/segformer/test_image_processing_segformer.py/0
{ "file_path": "transformers/tests/models/segformer/test_image_processing_segformer.py", "repo_id": "transformers", "token_count": 4591 }
192
# coding=utf-8 # Copyright 2021 HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import ( require_deterministic_for_xpu, require_torch, require_torch_sdpa, slow, torch_device, ) from ...test_modeling_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_bert import BertModelTester from ..speech_to_text.test_modeling_speech_to_text import Speech2TextModelTester from ..wav2vec2.test_modeling_wav2vec2 import Wav2Vec2ModelTester if is_torch_available(): import numpy as np import torch from transformers import ( BertLMHeadModel, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, Wav2Vec2Model, ) from transformers.modeling_outputs import BaseModelOutput from transformers.models.speech_to_text.modeling_speech_to_text import Speech2TextEncoder @require_torch class EncoderDecoderMixin: def get_encoder_decoder_model(self, config, decoder_config): pass def prepare_config_and_inputs(self): pass def get_pretrained_model_and_inputs(self): pass def check_encoder_decoder_model_from_pretrained_configs( self, config, attention_mask, decoder_config, decoder_input_ids, decoder_attention_mask, input_values=None, input_features=None, **kwargs, ): encoder_decoder_config = SpeechEncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config) self.assertTrue(encoder_decoder_config.decoder.is_decoder) enc_dec_model = SpeechEncoderDecoderModel(encoder_decoder_config) enc_dec_model.to(torch_device) enc_dec_model.eval() self.assertTrue(enc_dec_model.config.is_encoder_decoder) self.assertFalse(enc_dec_model.config.tie_word_embeddings) outputs_encoder_decoder = enc_dec_model( input_values=input_values, input_features=input_features, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, ) self.assertEqual( outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)) ) def check_encoder_decoder_model( self, config, attention_mask, decoder_config, decoder_input_ids, decoder_attention_mask, input_values=None, input_features=None, **kwargs, ): encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config) enc_dec_model = SpeechEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model) self.assertTrue(enc_dec_model.config.decoder.is_decoder) self.assertTrue(enc_dec_model.config.decoder.add_cross_attention) self.assertTrue(enc_dec_model.config.is_encoder_decoder) enc_dec_model.to(torch_device) outputs_encoder_decoder = enc_dec_model( input_values=input_values, input_features=input_features, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, output_hidden_states=True, ) self.assertEqual( outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)) ) encoder_outputs = BaseModelOutput(last_hidden_state=outputs_encoder_decoder.encoder_hidden_states[-1]) outputs_encoder_decoder = enc_dec_model( encoder_outputs=encoder_outputs, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, ) self.assertEqual( outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)) ) def check_encoder_decoder_model_with_inputs( self, config, attention_mask, decoder_config, decoder_input_ids, decoder_attention_mask, input_values=None, input_features=None, **kwargs, ): inputs = input_values if input_features is None else input_features encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config) enc_dec_model = SpeechEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model) enc_dec_model.to(torch_device) outputs_encoder_decoder = enc_dec_model( inputs, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, output_hidden_states=True, ) self.assertEqual( outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)) ) outputs_encoder_decoder_kwarg = enc_dec_model( inputs=inputs, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, output_hidden_states=True, ) self.assertEqual( outputs_encoder_decoder_kwarg["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)) ) def check_encoder_decoder_model_from_pretrained( self, config, attention_mask, decoder_config, decoder_input_ids, decoder_attention_mask, return_dict, input_values=None, input_features=None, **kwargs, ): encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config) kwargs = {"encoder_model": encoder_model, "decoder_model": decoder_model, "return_dict": return_dict} enc_dec_model = SpeechEncoderDecoderModel.from_encoder_decoder_pretrained(**kwargs) enc_dec_model.to(torch_device) outputs_encoder_decoder = enc_dec_model( input_values=input_values, input_features=input_features, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, output_hidden_states=True, return_dict=True, ) self.assertEqual( outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)) ) def check_save_and_load( self, config, attention_mask, decoder_config, decoder_input_ids, decoder_attention_mask, input_values=None, input_features=None, **kwargs, ): encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config) enc_dec_model = SpeechEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model) enc_dec_model.to(torch_device) enc_dec_model.eval() with torch.no_grad(): outputs = enc_dec_model( input_values=input_values, input_features=input_features, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, ) out_2 = outputs[0].cpu().numpy() out_2[np.isnan(out_2)] = 0 with tempfile.TemporaryDirectory() as tmpdirname: enc_dec_model.save_pretrained(tmpdirname) enc_dec_model = SpeechEncoderDecoderModel.from_pretrained(tmpdirname) enc_dec_model.to(torch_device) after_outputs = enc_dec_model( input_values=input_values, input_features=input_features, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, ) out_1 = after_outputs[0].cpu().numpy() out_1[np.isnan(out_1)] = 0 max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) def check_save_and_load_encoder_decoder_model( self, config, attention_mask, decoder_config, decoder_input_ids, decoder_attention_mask, input_values=None, input_features=None, **kwargs, ): encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config) enc_dec_model = SpeechEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model) enc_dec_model.to(torch_device) enc_dec_model.eval() with torch.no_grad(): outputs = enc_dec_model( input_values=input_values, input_features=input_features, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, ) out_2 = outputs[0].cpu().numpy() out_2[np.isnan(out_2)] = 0 with tempfile.TemporaryDirectory() as encoder_tmp_dirname, tempfile.TemporaryDirectory() as decoder_tmp_dirname: enc_dec_model.encoder.save_pretrained(encoder_tmp_dirname) enc_dec_model.decoder.save_pretrained(decoder_tmp_dirname) SpeechEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=encoder_tmp_dirname, decoder_pretrained_model_name_or_path=decoder_tmp_dirname, ) after_outputs = enc_dec_model( input_values=input_values, input_features=input_features, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, ) out_1 = after_outputs[0].cpu().numpy() out_1[np.isnan(out_1)] = 0 max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) def check_encoder_decoder_model_output_attentions( self, config, attention_mask, decoder_config, decoder_input_ids, decoder_attention_mask, labels=None, input_values=None, input_features=None, **kwargs, ): # make the decoder inputs a different shape from the encoder inputs to harden the test decoder_input_ids = decoder_input_ids[:, :-1] decoder_attention_mask = decoder_attention_mask[:, :-1] encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config) enc_dec_model = SpeechEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model) enc_dec_model.to(torch_device) outputs_encoder_decoder = enc_dec_model( input_values=input_values, input_features=input_features, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, output_attentions=True, ) inputs = input_values if input_features is None else input_features encoder_attentions = outputs_encoder_decoder["encoder_attentions"] self.assertEqual(len(encoder_attentions), config.num_hidden_layers) seq_len = enc_dec_model.encoder._get_feat_extract_output_lengths(inputs.shape[1]) self.assertEqual(encoder_attentions[0].shape[-3:], (config.num_attention_heads, seq_len, seq_len)) decoder_attentions = outputs_encoder_decoder["decoder_attentions"] num_decoder_layers = ( decoder_config.num_decoder_layers if hasattr(decoder_config, "num_decoder_layers") else decoder_config.num_hidden_layers ) self.assertEqual(len(decoder_attentions), num_decoder_layers) self.assertEqual( decoder_attentions[0].shape[-3:], (decoder_config.num_attention_heads, decoder_input_ids.shape[-1], decoder_input_ids.shape[-1]), ) cross_attentions = outputs_encoder_decoder["cross_attentions"] self.assertEqual(len(cross_attentions), num_decoder_layers) cross_attention_input_seq_len = decoder_input_ids.shape[-1] self.assertEqual( cross_attentions[0].shape[-3:], (decoder_config.num_attention_heads, cross_attention_input_seq_len, seq_len), ) def check_encoder_decoder_model_generate( self, config, decoder_config, input_values=None, input_features=None, **kwargs ): encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config) enc_dec_model = SpeechEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model) enc_dec_model.to(torch_device) # make sure EOS token is set to None to prevent early stopping of generation if hasattr(enc_dec_model.config, "eos_token_id"): enc_dec_model.config.eos_token_id = None if hasattr(enc_dec_model.config, "decoder") and hasattr(enc_dec_model.config.decoder, "eos_token_id"): enc_dec_model.config.decoder.eos_token_id = None if hasattr(enc_dec_model.generation_config, "eos_token_id"): enc_dec_model.generation_config.eos_token_id = None inputs = input_values if input_features is None else input_features # Bert does not have a bos token id, so use pad_token_id instead generated_output = enc_dec_model.generate( inputs, decoder_start_token_id=enc_dec_model.config.decoder.pad_token_id, max_length=decoder_config.max_length, ) self.assertEqual(generated_output.shape, (inputs.shape[0],) + (decoder_config.max_length,)) def test_encoder_decoder_model(self): input_ids_dict = self.prepare_config_and_inputs() self.check_encoder_decoder_model(**input_ids_dict) def test_encoder_decoder_model_with_inputs(self): input_ids_dict = self.prepare_config_and_inputs() self.check_encoder_decoder_model_with_inputs(**input_ids_dict) def test_encoder_decoder_model_from_pretrained_configs(self): input_ids_dict = self.prepare_config_and_inputs() self.check_encoder_decoder_model_from_pretrained_configs(**input_ids_dict) def test_encoder_decoder_model_from_pretrained(self): input_ids_dict = self.prepare_config_and_inputs() self.check_encoder_decoder_model_from_pretrained(**input_ids_dict, return_dict=False) def test_encoder_decoder_model_from_pretrained_return_dict(self): input_ids_dict = self.prepare_config_and_inputs() self.check_encoder_decoder_model_from_pretrained(**input_ids_dict, return_dict=True) def test_save_and_load_from_pretrained(self): input_ids_dict = self.prepare_config_and_inputs() self.check_save_and_load(**input_ids_dict) def test_save_and_load_from_encoder_decoder_pretrained(self): input_ids_dict = self.prepare_config_and_inputs() self.check_save_and_load_encoder_decoder_model(**input_ids_dict) def test_encoder_decoder_model_output_attentions(self): input_ids_dict = self.prepare_config_and_inputs() self.check_encoder_decoder_model_output_attentions(**input_ids_dict) def test_encoder_decoder_model_generate(self): input_ids_dict = self.prepare_config_and_inputs() self.check_encoder_decoder_model_generate(**input_ids_dict) def test_training_gradient_checkpointing(self): inputs_dict = self.prepare_config_and_inputs() encoder_model, decoder_model = self.get_encoder_decoder_model( inputs_dict["config"], inputs_dict["decoder_config"] ) model = SpeechEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model) model.to(torch_device) model.train() model.gradient_checkpointing_enable() model.config.decoder_start_token_id = 0 model.config.pad_token_id = 0 model_inputs = { "attention_mask": inputs_dict["attention_mask"], "labels": inputs_dict["labels"], "decoder_input_ids": inputs_dict["decoder_input_ids"], } inputs = inputs_dict["input_features"] if "input_features" in inputs_dict else inputs_dict["input_values"] loss = model(inputs, **model_inputs).loss loss.backward() @slow @require_deterministic_for_xpu def test_real_model_save_load_from_pretrained(self): model_2, inputs = self.get_pretrained_model_and_inputs() model_2.to(torch_device) with torch.no_grad(): outputs = model_2(**inputs) out_2 = outputs[0].cpu().numpy() out_2[np.isnan(out_2)] = 0 with tempfile.TemporaryDirectory() as tmp_dirname: model_2.save_pretrained(tmp_dirname) model_1 = SpeechEncoderDecoderModel.from_pretrained(tmp_dirname) model_1.to(torch_device) after_outputs = model_1(**inputs) out_1 = after_outputs[0].cpu().numpy() out_1[np.isnan(out_1)] = 0 max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) @require_torch_sdpa def test_sdpa_can_dispatch_composite_models(self): inputs_dict = self.prepare_config_and_inputs() encoder_config, decoder_config = inputs_dict["config"], inputs_dict["decoder_config"] config = SpeechEncoderDecoderConfig.from_encoder_decoder_configs( encoder_config=encoder_config, decoder_config=decoder_config ) model = SpeechEncoderDecoderModel(config=config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model_sdpa = SpeechEncoderDecoderModel.from_pretrained(tmpdirname) model_sdpa = model_sdpa.eval().to(torch_device) # see https://github.com/huggingface/transformers/pull/32238 # Sub-model will dispatch to SDPA if it can (checked below that `SDPA` layers are present) encoder_attn = "sdpa" if model.encoder._supports_sdpa else "eager" decoder_attn = "sdpa" if model.decoder._supports_sdpa else "eager" self.assertTrue(model_sdpa.config._attn_implementation == "sdpa") self.assertTrue(model_sdpa.encoder.config._attn_implementation == encoder_attn) self.assertTrue(model_sdpa.decoder.config._attn_implementation == decoder_attn) # Also test that nothing break if we request SDPA explicitly, when both sub-parts support it. # If the model supports sdpa (i.e. all of sub-models supports it) we'll dispatch safely # Otherwise we should raise error that SDPA is not supported, as some of the sub-models doesn't support if encoder_attn == "sdpa" and decoder_attn == "sdpa": model_sdpa_explicit = SpeechEncoderDecoderModel.from_pretrained(tmpdirname, attn_implementation="sdpa") model_sdpa_explicit = model_sdpa_explicit.eval().to(torch_device) self.assertTrue(model_sdpa_explicit.config._attn_implementation == "sdpa") else: with self.assertRaises(ValueError): model_sdpa_explicit = SpeechEncoderDecoderModel.from_pretrained( tmpdirname, attn_implementation="sdpa" ) model_eager = SpeechEncoderDecoderModel.from_pretrained( tmpdirname, attn_implementation="eager", ) model_eager = model_eager.eval().to(torch_device) self.assertTrue(model_eager.config._attn_implementation == "eager") self.assertTrue(model_eager.encoder.config._attn_implementation == "eager") self.assertTrue(model_eager.decoder.config._attn_implementation == "eager") for name, submodule in model_eager.named_modules(): class_name = submodule.__class__.__name__ if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name: raise ValueError("The eager model should not have SDPA attention layers") @require_torch class Wav2Vec2BertModelTest(EncoderDecoderMixin, unittest.TestCase): def get_pretrained_model_and_inputs(self): model = SpeechEncoderDecoderModel.from_encoder_decoder_pretrained( "facebook/wav2vec2-base-960h", "google-bert/bert-base-cased" ) batch_size = 13 input_values = floats_tensor([batch_size, 512], scale=1.0) attention_mask = random_attention_mask([batch_size, 512]) decoder_input_ids = ids_tensor([batch_size, 4], model.decoder.config.vocab_size) decoder_attention_mask = random_attention_mask([batch_size, 4]) inputs = { "input_values": input_values, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, } return model, inputs def get_encoder_decoder_model(self, config, decoder_config): encoder_model = Wav2Vec2Model(config).eval() decoder_model = BertLMHeadModel(decoder_config).eval() return encoder_model, decoder_model def prepare_config_and_inputs(self): bert_model_tester = BertModelTester(self) wav2vec2_model_tester = Wav2Vec2ModelTester(self) encoder_config_and_inputs = wav2vec2_model_tester.prepare_config_and_inputs() decoder_config_and_inputs = bert_model_tester.prepare_config_and_inputs_for_decoder() ( config, input_values, input_mask, ) = encoder_config_and_inputs ( decoder_config, decoder_input_ids, decoder_token_type_ids, decoder_input_mask, decoder_sequence_labels, decoder_token_labels, decoder_choice_labels, encoder_attention_mask, _, ) = decoder_config_and_inputs # make sure that cross attention layers are added decoder_config.add_cross_attention = True return { "config": config, "input_values": input_values, "attention_mask": input_mask, "decoder_config": decoder_config, "decoder_input_ids": decoder_input_ids, "decoder_token_type_ids": decoder_token_type_ids, "decoder_attention_mask": decoder_input_mask, "decoder_sequence_labels": decoder_sequence_labels, "decoder_token_labels": decoder_token_labels, "decoder_choice_labels": decoder_choice_labels, "labels": decoder_token_labels, } @require_torch class Speech2TextBertModelTest(EncoderDecoderMixin, unittest.TestCase): def get_pretrained_model_and_inputs(self): model = SpeechEncoderDecoderModel.from_encoder_decoder_pretrained( "facebook/s2t-small-librispeech-asr", "google-bert/bert-base-cased" ) batch_size = 13 input_features = floats_tensor([batch_size, 7, 80], scale=1.0) attention_mask = random_attention_mask([batch_size, 7]) decoder_input_ids = ids_tensor([batch_size, 4], model.decoder.config.vocab_size) decoder_attention_mask = random_attention_mask([batch_size, 4]) inputs = { "input_features": input_features, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, } return model, inputs def get_encoder_decoder_model(self, config, decoder_config): encoder_model = Speech2TextEncoder(config).eval() decoder_model = BertLMHeadModel(decoder_config).eval() return encoder_model, decoder_model def prepare_config_and_inputs(self): bert_model_tester = BertModelTester(self) speech2text_model_tester = Speech2TextModelTester(self) encoder_config_and_inputs = speech2text_model_tester.prepare_config_and_inputs() decoder_config_and_inputs = bert_model_tester.prepare_config_and_inputs_for_decoder() config, inputs = encoder_config_and_inputs input_features = inputs["input_features"] input_mask = inputs["attention_mask"] ( decoder_config, decoder_input_ids, decoder_token_type_ids, decoder_input_mask, decoder_sequence_labels, decoder_token_labels, decoder_choice_labels, encoder_attention_mask, _, ) = decoder_config_and_inputs # make sure that cross attention layers are added decoder_config.add_cross_attention = True return { "config": config, "input_features": input_features, "attention_mask": input_mask, "decoder_config": decoder_config, "decoder_input_ids": decoder_input_ids, "decoder_token_type_ids": decoder_token_type_ids, "decoder_attention_mask": decoder_input_mask, "decoder_sequence_labels": decoder_sequence_labels, "decoder_token_labels": decoder_token_labels, "decoder_choice_labels": decoder_choice_labels, "labels": decoder_token_labels, } @unittest.skip(reason="Cannot save full model as Speech2TextModel != Speech2TextEncoder") def test_encoder_decoder_model_from_pretrained_configs(self): pass @unittest.skip(reason="Cannot save full model as Speech2TextModel != Speech2TextEncoder") def test_save_and_load_from_pretrained(self): pass @require_deterministic_for_xpu @unittest.skip(reason="Cannot save full model as Speech2TextModel != Speech2TextEncoder") def test_real_model_save_load_from_pretrained(self): pass
transformers/tests/models/speech_encoder_decoder/test_modeling_speech_encoder_decoder.py/0
{ "file_path": "transformers/tests/models/speech_encoder_decoder/test_modeling_speech_encoder_decoder.py", "repo_id": "transformers", "token_count": 12435 }
193
# coding=utf-8 # Copyright 2020 The SqueezeBert authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class SqueezeBertModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=False, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=64, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, q_groups=2, k_groups=2, v_groups=2, post_attention_groups=2, intermediate_groups=4, output_groups=1, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope self.q_groups = q_groups self.k_groups = k_groups self.v_groups = v_groups self.post_attention_groups = post_attention_groups self.intermediate_groups = intermediate_groups self.output_groups = output_groups def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return SqueezeBertConfig( embedding_size=self.hidden_size, vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, attention_probs_dropout_prob=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, q_groups=self.q_groups, k_groups=self.k_groups, v_groups=self.v_groups, post_attention_groups=self.post_attention_groups, intermediate_groups=self.intermediate_groups, output_groups=self.output_groups, ) def create_and_check_squeezebert_model( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = SqueezeBertModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_squeezebert_for_masked_lm( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = SqueezeBertForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_squeezebert_for_question_answering( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = SqueezeBertForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, start_positions=sequence_labels, end_positions=sequence_labels ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_squeezebert_for_sequence_classification( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = SqueezeBertForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_squeezebert_for_token_classification( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = SqueezeBertForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_squeezebert_for_multiple_choice( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = SqueezeBertForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() (config, input_ids, input_mask, sequence_labels, token_labels, choice_labels) = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class SqueezeBertModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) pipeline_model_mapping = ( { "feature-extraction": SqueezeBertModel, "fill-mask": SqueezeBertForMaskedLM, "question-answering": SqueezeBertForQuestionAnswering, "text-classification": SqueezeBertForSequenceClassification, "token-classification": SqueezeBertForTokenClassification, "zero-shot": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) test_pruning = False test_resize_embeddings = True test_head_masking = False def setUp(self): self.model_tester = SqueezeBertModelTester(self) self.config_tester = ConfigTester(self, config_class=SqueezeBertConfig, dim=37) def test_config(self): self.config_tester.run_common_tests() def test_squeezebert_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*config_and_inputs) @slow def test_model_from_pretrained(self): model_name = "squeezebert/squeezebert-uncased" model = SqueezeBertModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_sentencepiece @require_tokenizers @require_torch class SqueezeBertModelIntegrationTest(unittest.TestCase): @slow def test_inference_classification_head(self): model = SqueezeBertForSequenceClassification.from_pretrained("squeezebert/squeezebert-mnli") input_ids = torch.tensor([[1, 29414, 232, 328, 740, 1140, 12695, 69, 13, 1588, 2]]) output = model(input_ids)[0] expected_shape = torch.Size((1, 3)) self.assertEqual(output.shape, expected_shape) expected_tensor = torch.tensor([[0.6401, -0.0349, -0.6041]]) torch.testing.assert_close(output, expected_tensor, rtol=1e-4, atol=1e-4)
transformers/tests/models/squeezebert/test_modeling_squeezebert.py/0
{ "file_path": "transformers/tests/models/squeezebert/test_modeling_squeezebert.py", "repo_id": "transformers", "token_count": 5272 }
194
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch ViT model.""" import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_accelerator, require_torch_fp16, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class ViTModelTester: def __init__( self, parent, batch_size=13, image_size=30, patch_size=2, num_channels=3, is_training=True, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, type_sequence_label_size=10, initializer_range=0.02, scope=None, encoder_stride=2, mask_ratio=0.5, attn_implementation="eager", ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.scope = scope self.encoder_stride = encoder_stride self.attn_implementation = attn_implementation # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = num_patches + 1 self.mask_ratio = mask_ratio self.num_masks = int(mask_ratio * self.seq_length) self.mask_length = num_patches def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.type_sequence_label_size) config = self.get_config() return config, pixel_values, labels def get_config(self): return ViTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=False, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, attn_implementation=self.attn_implementation, ) def create_and_check_model(self, config, pixel_values, labels): model = ViTModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_masked_image_modeling(self, config, pixel_values, labels): model = ViTForMaskedImageModeling(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual( result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images config.num_channels = 1 model = ViTForMaskedImageModeling(config) model.to(torch_device) model.eval() pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) result = model(pixel_values) self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size)) def create_and_check_for_image_classification(self, config, pixel_values, labels): config.num_labels = self.type_sequence_label_size model = ViTForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) # test greyscale images config.num_channels = 1 model = ViTForImageClassification(config) model.to(torch_device) model.eval() pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) result = model(pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, pixel_values, labels, ) = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class ViTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as ViT does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) pipeline_model_mapping = ( {"image-feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) fx_compatible = True test_pruning = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = ViTModelTester(self) self.config_tester = ConfigTester(self, config_class=ViTConfig, has_text_modality=False, hidden_size=37) @unittest.skip( "Since `torch==2.3+cu121`, although this test passes, many subsequent tests have `CUDA error: misaligned address`." "If `nvidia-xxx-cu118` are also installed, no failure (even with `torch==2.3+cu121`)." ) def test_multi_gpu_data_parallel_forward(self): super().test_multi_gpu_data_parallel_forward() def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds") def test_inputs_embeds(self): pass def test_model_get_set_embeddings(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_masked_image_modeling(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*config_and_inputs) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): model_name = "google/vit-base-patch16-224" model = ViTModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class ViTModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224") if is_vision_available() else None @slow def test_inference_image_classification_head(self): model = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224").to(torch_device) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([-0.2744, 0.8215, -0.0836]).to(torch_device) torch.testing.assert_close(outputs.logits[0, :3], expected_slice, rtol=1e-4, atol=1e-4) @slow def test_inference_interpolate_pos_encoding(self): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. model = ViTModel.from_pretrained("facebook/dino-vits8").to(torch_device) image_processor = ViTImageProcessor.from_pretrained("facebook/dino-vits8", size=480) image = prepare_img() inputs = image_processor(images=image, return_tensors="pt") pixel_values = inputs.pixel_values.to(torch_device) # forward pass with torch.no_grad(): outputs = model(pixel_values, interpolate_pos_encoding=True) # verify the logits expected_shape = torch.Size((1, 3601, 384)) self.assertEqual(outputs.last_hidden_state.shape, expected_shape) expected_slice = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(torch_device) torch.testing.assert_close(outputs.last_hidden_state[0, :3, :3], expected_slice, rtol=1e-4, atol=1e-4) @slow @require_accelerate @require_torch_accelerator @require_torch_fp16 def test_inference_fp16(self): r""" A small test to make sure that inference work in half precision without any problem. """ model = ViTModel.from_pretrained("facebook/dino-vits8", torch_dtype=torch.float16, device_map="auto") image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt") pixel_values = inputs.pixel_values.to(torch_device) # forward pass to make sure inference works in fp16 with torch.no_grad(): _ = model(pixel_values)
transformers/tests/models/vit/test_modeling_vit.py/0
{ "file_path": "transformers/tests/models/vit/test_modeling_vit.py", "repo_id": "transformers", "token_count": 5230 }
195
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch XCLIP model.""" import inspect import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor, random_attention_mask, ) from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import XCLIPModel, XCLIPTextModel, XCLIPVisionModel if is_vision_available(): from transformers import XCLIPProcessor class XCLIPVisionModelTester: def __init__( self, parent, batch_size=8, image_size=30, patch_size=2, num_channels=3, num_frames=8, # important; the batch size * time must be divisible by the number of frames is_training=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, mit_hidden_size=64, dropout=0.1, attention_dropout=0.1, initializer_range=0.02, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_frames = num_frames self.is_training = is_training self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.mit_hidden_size = mit_hidden_size self.dropout = dropout self.attention_dropout = attention_dropout self.initializer_range = initializer_range self.scope = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = num_patches + 1 def prepare_config_and_inputs(self): pixel_values = floats_tensor( [self.batch_size * self.num_frames, self.num_channels, self.image_size, self.image_size] ) config = self.get_config() return config, pixel_values def get_config(self): return XCLIPVisionConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, num_frames=self.num_frames, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, mit_hidden_size=self.mit_hidden_size, dropout=self.dropout, attention_dropout=self.attention_dropout, initializer_range=self.initializer_range, ) def create_and_check_model(self, config, pixel_values): model = XCLIPVisionModel(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model(pixel_values) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) image_size = (self.image_size, self.image_size) patch_size = (self.patch_size, self.patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size * self.num_frames, num_patches + 1, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size * self.num_frames, self.hidden_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class XCLIPVisionModelTest(ModelTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as X-CLIP does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (XCLIPVisionModel,) if is_torch_available() else () fx_compatible = False test_pruning = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = XCLIPVisionModelTester(self) self.config_tester = ConfigTester( self, config_class=XCLIPVisionConfig, has_text_modality=False, hidden_size=37 ) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="X-CLIP does not use inputs_embeds") def test_inputs_embeds(self): pass def test_model_get_set_embeddings(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip def test_training(self): pass @unittest.skip def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @unittest.skip(reason="XCLIPVisionModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="XCLIPVisionModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_to_base(self): pass @slow def test_model_from_pretrained(self): model_name = "microsoft/xclip-base-patch32" model = XCLIPVisionModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_gradient_checkpointing_backward_compatibility(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: if not model_class.supports_gradient_checkpointing: continue print("Model class:", model_class) config.gradient_checkpointing = True model = model_class(config) self.assertTrue(model.is_gradient_checkpointing) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True # we add 1 here due to the special message token in X-CLIP's vision encoder seq_len = getattr(self.model_tester, "seq_length", None) + 1 encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len) for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(len(outputs.attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(len(outputs.attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(outputs.attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_seq_length], ) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(out_len + 1, len(outputs)) self_attentions = outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_seq_length], ) @require_torch_multi_gpu def test_multi_gpu_data_parallel_forward(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # some params shouldn't be scattered by nn.DataParallel # so just remove them if they are present. blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"] for k in blacklist_non_batched_params: inputs_dict.pop(k, None) # move input tensors to cuda:O for k, v in inputs_dict.items(): if torch.is_tensor(v): inputs_dict[k] = v.to(0) for model_class in self.all_model_classes: model = model_class(config=config) model.to(0) model.eval() # Wrap model in nn.DataParallel model = nn.DataParallel(model) with torch.no_grad(): test = self._prepare_for_class(inputs_dict, model_class) for k, v in test.items(): if isinstance(v, torch.Tensor): print(k, v.shape) else: print(k, v) _ = model(**self._prepare_for_class(inputs_dict, model_class)) class XCLIPTextModelTester: def __init__( self, parent, batch_size=8, seq_length=7, is_training=True, use_input_mask=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, dropout=0.1, attention_dropout=0.1, max_position_embeddings=512, initializer_range=0.02, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) if input_mask is not None: batch_size, seq_length = input_mask.shape rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,)) for batch_idx, start_index in enumerate(rnd_start_indices): input_mask[batch_idx, :start_index] = 1 input_mask[batch_idx, start_index:] = 0 config = self.get_config() return config, input_ids, input_mask def get_config(self): return XCLIPTextConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, ) def create_and_check_model(self, config, input_ids, input_mask): model = XCLIPTextModel(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, input_mask = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class XCLIPTextModelTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (XCLIPTextModel,) if is_torch_available() else () fx_compatible = False test_pruning = False test_head_masking = False def setUp(self): self.model_tester = XCLIPTextModelTester(self) self.config_tester = ConfigTester(self, config_class=XCLIPTextConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip def test_training(self): pass @unittest.skip def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @unittest.skip(reason="X-CLIP does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="XCLIPTextModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="XCLIPTextModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_to_base(self): pass @slow def test_model_from_pretrained(self): model_name = "microsoft/xclip-base-patch32" model = XCLIPTextModel.from_pretrained(model_name) self.assertIsNotNone(model) class XCLIPModelTester: def __init__( self, parent, text_kwargs=None, vision_kwargs=None, projection_dim=64, mit_hidden_size=64, is_training=True, ): if text_kwargs is None: text_kwargs = {} if vision_kwargs is None: vision_kwargs = {} self.parent = parent self.projection_dim = projection_dim self.mit_hidden_size = mit_hidden_size self.text_model_tester = XCLIPTextModelTester(parent, **text_kwargs) self.vision_model_tester = XCLIPVisionModelTester(parent, **vision_kwargs) self.batch_size = self.text_model_tester.batch_size # need bs for batching_equivalence test self.is_training = is_training def prepare_config_and_inputs(self): text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() vision_config, _ = self.vision_model_tester.prepare_config_and_inputs() pixel_values = floats_tensor( [ self.vision_model_tester.batch_size, self.vision_model_tester.num_frames, self.vision_model_tester.num_channels, self.vision_model_tester.image_size, self.vision_model_tester.image_size, ] ) config = self.get_config() return config, input_ids, attention_mask, pixel_values def get_config(self): return XCLIPConfig.from_text_vision_configs( self.text_model_tester.get_config(), self.vision_model_tester.get_config(), projection_dim=self.projection_dim, ) def create_and_check_model(self, config, input_ids, attention_mask, pixel_values): model = XCLIPModel(config).to(torch_device).eval() with torch.no_grad(): result = model(input_ids, pixel_values, attention_mask) self.parent.assertEqual( result.logits_per_video.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size), ) self.parent.assertEqual( result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size), ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, attention_mask, pixel_values = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, "pixel_values": pixel_values, "return_loss": True, } return config, inputs_dict @require_torch class XCLIPModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (XCLIPModel,) if is_torch_available() else () pipeline_model_mapping = {"feature-extraction": XCLIPModel} if is_torch_available() else {} fx_compatible = False test_head_masking = False test_pruning = False test_resize_embeddings = False test_attention_outputs = False test_torchscript = False maxdiff = None def setUp(self): self.model_tester = XCLIPModelTester(self) common_properties = ["projection_dim", "prompt_layers", "prompt_num_attention_heads"] self.config_tester = ConfigTester( self, config_class=XCLIPConfig, has_text_modality=False, common_properties=common_properties ) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip(reason="Hidden_states is tested in individual model tests") def test_hidden_states_output(self): pass @unittest.skip(reason="Inputs_embeds is tested in individual model tests") def test_inputs_embeds(self): pass @unittest.skip(reason="Retain_grad is tested in individual model tests") def test_retain_grad_hidden_states_attentions(self): pass @unittest.skip(reason="XCLIPModel does not have input/output embeddings") def test_model_get_set_embeddings(self): pass @unittest.skip(reason="XCLIPModel does not support feedforward chunking") def test_feed_forward_chunking(self): pass # override as the `logit_scale`, `prompts_generator.alpha` parameters require special treatment def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if param.requires_grad: # check if `logit_scale` is initilized as per the original implementation if name == "logit_scale": self.assertAlmostEqual( param.data.item(), np.log(1 / 0.07), delta=1e-3, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) elif name == "prompts_generator.alpha": self.assertAlmostEqual(param.data.mean().item(), model.config.prompt_alpha) else: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) def _create_and_check_torchscript(self, config, inputs_dict): if not self.test_torchscript: self.skipTest(reason="test_torchscript is set to False") configs_no_init = _config_zero_init(config) # To be sure we have no Nan configs_no_init.torchscript = True configs_no_init.return_dict = False for model_class in self.all_model_classes: model = model_class(config=configs_no_init) model.to(torch_device) model.eval() try: input_ids = inputs_dict["input_ids"] pixel_values = inputs_dict["pixel_values"] # X-CLIP needs pixel_values traced_model = torch.jit.trace(model, (input_ids, pixel_values)) except RuntimeError: self.fail("Couldn't trace module.") with tempfile.TemporaryDirectory() as tmp_dir_name: pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") try: torch.jit.save(traced_model, pt_file_name) except Exception: self.fail("Couldn't save module.") try: loaded_model = torch.jit.load(pt_file_name) except Exception: self.fail("Couldn't load module.") model.to(torch_device) model.eval() loaded_model.to(torch_device) loaded_model.eval() model_state_dict = model.state_dict() loaded_model_state_dict = loaded_model.state_dict() non_persistent_buffers = {} for key in loaded_model_state_dict.keys(): if key not in model_state_dict.keys(): non_persistent_buffers[key] = loaded_model_state_dict[key] loaded_model_state_dict = { key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers } self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) model_buffers = list(model.buffers()) for non_persistent_buffer in non_persistent_buffers.values(): found_buffer = False for i, model_buffer in enumerate(model_buffers): if torch.equal(non_persistent_buffer, model_buffer): found_buffer = True break self.assertTrue(found_buffer) model_buffers.pop(i) models_equal = True for layer_name, p1 in model_state_dict.items(): p2 = loaded_model_state_dict[layer_name] if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) def test_load_vision_text_config(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # Save XCLIPConfig and check if we can load XCLIPVisionConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) vision_config = XCLIPVisionConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict()) # Save XCLIPConfig and check if we can load XCLIPTextConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) text_config = XCLIPTextConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict()) @slow def test_model_from_pretrained(self): model_name = "microsoft/xclip-base-patch32" model = XCLIPModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on a spaghetti video def prepare_video(): file = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video", filename="eating_spaghetti_8_frames.npy", repo_type="dataset" ) video = np.load(file) return list(video) @require_vision @require_torch class XCLIPModelIntegrationTest(unittest.TestCase): @slow def test_inference(self): model_name = "microsoft/xclip-base-patch32" model = XCLIPModel.from_pretrained(model_name).to(torch_device) processor = XCLIPProcessor.from_pretrained(model_name) video = prepare_video() inputs = processor( text=["playing sports", "eating spaghetti", "go shopping"], videos=video, return_tensors="pt", padding=True ).to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits self.assertEqual( outputs.logits_per_video.shape, torch.Size((inputs.pixel_values.shape[0], inputs.input_ids.shape[0])), ) self.assertEqual( outputs.logits_per_text.shape, torch.Size((inputs.input_ids.shape[0], inputs.pixel_values.shape[0])), ) expected_logits = torch.tensor([[14.0181, 20.2771, 14.4776]], device=torch_device) torch.testing.assert_close(outputs.logits_per_video, expected_logits, rtol=1e-3, atol=1e-3) @slow def test_inference_interpolate_pos_encoding(self): # XCLIP models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. model = XCLIPModel.from_pretrained("microsoft/xclip-base-patch32").to(torch_device) processor = XCLIPProcessor.from_pretrained( "microsoft/xclip-base-patch32", size=180, crop_size={"height": 180, "width": 180} ) video = prepare_video() inputs = processor(text="what's in the video", videos=video, return_tensors="pt").to(torch_device) # interpolate_pos_encodiung false should return value error with self.assertRaises(ValueError, msg="doesn't match model"): with torch.no_grad(): model(**inputs, interpolate_pos_encoding=False) # forward pass with torch.no_grad(): outputs = model(**inputs, interpolate_pos_encoding=True) # verify the logits expected_shape = torch.Size((8, 26, 768)) self.assertEqual(outputs.vision_model_output.last_hidden_state.shape, expected_shape) expected_slice = torch.tensor( [[0.0126, 0.2109, 0.0609], [0.0448, 0.5862, -0.1688], [-0.0881, 0.8525, -0.3044]] ).to(torch_device) torch.testing.assert_close( outputs.vision_model_output.last_hidden_state[0, :3, :3], expected_slice, rtol=1e-4, atol=1e-4 )
transformers/tests/models/x_clip/test_modeling_x_clip.py/0
{ "file_path": "transformers/tests/models/x_clip/test_modeling_x_clip.py", "repo_id": "transformers", "token_count": 13440 }
196
# coding=utf-8 # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import XLMRobertaXLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, ) from transformers.models.xlm_roberta_xl.modeling_xlm_roberta_xl import ( XLMRobertaXLEmbeddings, create_position_ids_from_input_ids, ) class XLMRobertaXLModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return XLMRobertaXLConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() config.is_decoder = True encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = XLMRobertaXLModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = XLMRobertaXLModel(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = XLMRobertaXLForCausalLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.is_decoder = True config.add_cross_attention = True model = XLMRobertaXLForCausalLM(config=config).to(torch_device).eval() # make sure that ids don't start with pad token mask = input_ids.ne(config.pad_token_id).long() input_ids = input_ids * mask # first forward pass outputs = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) # make sure that ids don't start with pad token mask = next_tokens.ne(config.pad_token_id).long() next_tokens = next_tokens * mask next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, )["hidden_states"][0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = XLMRobertaXLForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = XLMRobertaXLForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = XLMRobertaXLForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = XLMRobertaXLForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class XLMRobertaXLModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLModel, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, ) if is_torch_available() else () ) all_generative_model_classes = (XLMRobertaXLForCausalLM,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": XLMRobertaXLModel, "fill-mask": XLMRobertaXLForMaskedLM, "question-answering": XLMRobertaXLForQuestionAnswering, "text-classification": XLMRobertaXLForSequenceClassification, "text-generation": XLMRobertaXLForCausalLM, "token-classification": XLMRobertaXLForTokenClassification, "zero-shot": XLMRobertaXLForSequenceClassification, } if is_torch_available() else {} ) model_split_percents = [0.5, 0.85, 0.95] # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_case_name, config_class, model_architecture, tokenizer_name, image_processor_name, feature_extractor_name, processor_name, ): if pipeline_test_case_name == "QAPipelineTests" and not tokenizer_name.endswith("Fast"): return True return False def setUp(self): self.model_tester = XLMRobertaXLModelTester(self) self.config_tester = ConfigTester(self, config_class=XLMRobertaXLConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_model_as_decoder(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*config_and_inputs) def test_model_as_decoder_with_default_input_mask(self): # This regression test was failing with PyTorch < 1.3 ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) = self.model_tester.prepare_config_and_inputs_for_decoder() input_mask = None self.model_tester.create_and_check_model_as_decoder( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def test_for_causal_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*config_and_inputs) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_decoder_model_past_with_large_inputs_relative_pos_emb(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() config_and_inputs[0].position_embedding_type = "relative_key" self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_create_position_ids_respects_padding_index(self): """This is a regression test for https://github.com/huggingface/transformers/issues/1761 The position ids should be masked with the embedding object's padding index. Therefore, the first available non-padding position index is XLMRobertaXLEmbeddings.padding_idx + 1 """ config = self.model_tester.prepare_config_and_inputs()[0] model = XLMRobertaXLEmbeddings(config=config) input_ids = torch.as_tensor([[12, 31, 13, model.padding_idx]]) expected_positions = torch.as_tensor( [[0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx]] ) position_ids = create_position_ids_from_input_ids(input_ids, model.padding_idx) self.assertEqual(position_ids.shape, expected_positions.shape) self.assertTrue(torch.all(torch.eq(position_ids, expected_positions))) def test_create_position_ids_from_inputs_embeds(self): """This is a regression test for https://github.com/huggingface/transformers/issues/1761 The position ids should be masked with the embedding object's padding index. Therefore, the first available non-padding position index is XLMRobertaXLEmbeddings.padding_idx + 1 """ config = self.model_tester.prepare_config_and_inputs()[0] embeddings = XLMRobertaXLEmbeddings(config=config) inputs_embeds = torch.empty(2, 4, 30) expected_single_positions = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] expected_positions = torch.as_tensor([expected_single_positions, expected_single_positions]) position_ids = embeddings.create_position_ids_from_inputs_embeds(inputs_embeds) self.assertEqual(position_ids.shape, expected_positions.shape) self.assertTrue(torch.all(torch.eq(position_ids, expected_positions))) @require_torch class XLMRobertaModelXLIntegrationTest(unittest.TestCase): @slow def test_xlm_roberta_xl(self): model = XLMRobertaXLModel.from_pretrained("facebook/xlm-roberta-xl").to(torch_device) input_ids = torch.tensor( [[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]], device=torch_device ) # The dog is cute and lives in the garden house expected_output_shape = torch.Size((1, 12, 2560)) # batch_size, sequence_length, embedding_vector_dim expected_output_values_last_dim = torch.tensor( [[0.0110, 0.0605, 0.0354, 0.0689, 0.0066, 0.0691, 0.0302, 0.0412, 0.0860, 0.0036, 0.0405, 0.0170]], device=torch_device, ) output = model(input_ids)["last_hidden_state"].detach() self.assertEqual(output.shape, expected_output_shape) # compare the actual values for a slice of last dim torch.testing.assert_close(output[:, :, -1], expected_output_values_last_dim, rtol=1e-3, atol=1e-3) @unittest.skip(reason="Model is too large to be tested on the CI") def test_xlm_roberta_xxl(self): model = XLMRobertaXLModel.from_pretrained("facebook/xlm-roberta-xxl").to(torch_device) input_ids = torch.tensor( [[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]], device=torch_device ) # The dog is cute and lives in the garden house expected_output_shape = torch.Size((1, 12, 4096)) # batch_size, sequence_length, embedding_vector_dim expected_output_values_last_dim = torch.tensor( [[0.0046, 0.0146, 0.0227, 0.0126, 0.0219, 0.0175, -0.0101, 0.0006, 0.0124, 0.0209, -0.0063, 0.0096]], device=torch_device, ) output = model(input_ids)["last_hidden_state"].detach() self.assertEqual(output.shape, expected_output_shape) # compare the actual values for a slice of last dim torch.testing.assert_close(output[:, :, -1], expected_output_values_last_dim, rtol=1e-3, atol=1e-3)
transformers/tests/models/xlm_roberta_xl/test_modeling_xlm_roberta_xl.py/0
{ "file_path": "transformers/tests/models/xlm_roberta_xl/test_modeling_xlm_roberta_xl.py", "repo_id": "transformers", "token_count": 10405 }
197
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import pytest from transformers import ( MODEL_MAPPING, TF_MODEL_MAPPING, TOKENIZER_MAPPING, ImageFeatureExtractionPipeline, is_tf_available, is_torch_available, is_vision_available, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf if is_vision_available(): from PIL import Image # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @is_pipeline_test class ImageFeatureExtractionPipelineTests(unittest.TestCase): model_mapping = MODEL_MAPPING tf_model_mapping = TF_MODEL_MAPPING @require_torch def test_small_model_pt(self): feature_extractor = pipeline( task="image-feature-extraction", model="hf-internal-testing/tiny-random-vit", framework="pt" ) img = prepare_img() outputs = feature_extractor(img) self.assertEqual( nested_simplify(outputs[0][0]), [-1.417, -0.392, -1.264, -1.196, 1.648, 0.885, 0.56, -0.606, -1.175, 0.823, 1.912, 0.081, -0.053, 1.119, -0.062, -1.757, -0.571, 0.075, 0.959, 0.118, 1.201, -0.672, -0.498, 0.364, 0.937, -1.623, 0.228, 0.19, 1.697, -1.115, 0.583, -0.981]) # fmt: skip @require_torch def test_small_model_w_pooler_pt(self): feature_extractor = pipeline( task="image-feature-extraction", model="hf-internal-testing/tiny-random-vit-w-pooler", framework="pt" ) img = prepare_img() outputs = feature_extractor(img, pool=True) self.assertEqual( nested_simplify(outputs[0]), [-0.056, 0.083, 0.021, 0.038, 0.242, -0.279, -0.033, -0.003, 0.200, -0.192, 0.045, -0.095, -0.077, 0.017, -0.058, -0.063, -0.029, -0.204, 0.014, 0.042, 0.305, -0.205, -0.099, 0.146, -0.287, 0.020, 0.168, -0.052, 0.046, 0.048, -0.156, 0.093]) # fmt: skip @require_tf def test_small_model_tf(self): feature_extractor = pipeline( task="image-feature-extraction", model="hf-internal-testing/tiny-random-vit-w-pooler", framework="tf" ) img = prepare_img() outputs = feature_extractor(img) self.assertEqual( nested_simplify(outputs[0][0]), [-1.417, -0.392, -1.264, -1.196, 1.648, 0.885, 0.56, -0.606, -1.175, 0.823, 1.912, 0.081, -0.053, 1.119, -0.062, -1.757, -0.571, 0.075, 0.959, 0.118, 1.201, -0.672, -0.498, 0.364, 0.937, -1.623, 0.228, 0.19, 1.697, -1.115, 0.583, -0.981]) # fmt: skip @require_tf def test_small_model_w_pooler_tf(self): feature_extractor = pipeline( task="image-feature-extraction", model="hf-internal-testing/tiny-random-vit-w-pooler", framework="tf" ) img = prepare_img() outputs = feature_extractor(img, pool=True) self.assertEqual( nested_simplify(outputs[0]), [-0.056, 0.083, 0.021, 0.038, 0.242, -0.279, -0.033, -0.003, 0.200, -0.192, 0.045, -0.095, -0.077, 0.017, -0.058, -0.063, -0.029, -0.204, 0.014, 0.042, 0.305, -0.205, -0.099, 0.146, -0.287, 0.020, 0.168, -0.052, 0.046, 0.048, -0.156, 0.093]) # fmt: skip @require_torch def test_image_processing_small_model_pt(self): feature_extractor = pipeline( task="image-feature-extraction", model="hf-internal-testing/tiny-random-vit", framework="pt" ) # test with image processor parameters image_processor_kwargs = {"size": {"height": 300, "width": 300}} img = prepare_img() with pytest.raises(ValueError): # Image doesn't match model input size feature_extractor(img, image_processor_kwargs=image_processor_kwargs) image_processor_kwargs = {"image_mean": [0, 0, 0], "image_std": [1, 1, 1]} img = prepare_img() outputs = feature_extractor(img, image_processor_kwargs=image_processor_kwargs) self.assertEqual(np.squeeze(outputs).shape, (226, 32)) # Test pooling option outputs = feature_extractor(img, pool=True) self.assertEqual(np.squeeze(outputs).shape, (32,)) @require_tf def test_image_processing_small_model_tf(self): feature_extractor = pipeline( task="image-feature-extraction", model="hf-internal-testing/tiny-random-vit", framework="tf" ) # test with image processor parameters image_processor_kwargs = {"size": {"height": 300, "width": 300}} img = prepare_img() with pytest.raises(ValueError): # Image doesn't match model input size feature_extractor(img, image_processor_kwargs=image_processor_kwargs) image_processor_kwargs = {"image_mean": [0, 0, 0], "image_std": [1, 1, 1]} img = prepare_img() outputs = feature_extractor(img, image_processor_kwargs=image_processor_kwargs) self.assertEqual(np.squeeze(outputs).shape, (226, 32)) # Test pooling option outputs = feature_extractor(img, pool=True) self.assertEqual(np.squeeze(outputs).shape, (32,)) @require_torch def test_return_tensors_pt(self): feature_extractor = pipeline( task="image-feature-extraction", model="hf-internal-testing/tiny-random-vit", framework="pt" ) img = prepare_img() outputs = feature_extractor(img, return_tensors=True) self.assertTrue(torch.is_tensor(outputs)) @require_tf def test_return_tensors_tf(self): feature_extractor = pipeline( task="image-feature-extraction", model="hf-internal-testing/tiny-random-vit", framework="tf" ) img = prepare_img() outputs = feature_extractor(img, return_tensors=True) self.assertTrue(tf.is_tensor(outputs)) def get_test_pipeline( self, model, tokenizer=None, image_processor=None, feature_extractor=None, processor=None, torch_dtype="float32", ): if image_processor is None: self.skipTest(reason="No image processor") elif type(model.config) in TOKENIZER_MAPPING: self.skipTest( reason="This is a bimodal model, we need to find a more consistent way to switch on those models." ) elif model.config.is_encoder_decoder: self.skipTest( """encoder_decoder models are trickier for this pipeline. Do we want encoder + decoder inputs to get some featues? Do we want encoder only features ? For now ignore those. """ ) feature_extractor_pipeline = ImageFeatureExtractionPipeline( model=model, tokenizer=tokenizer, feature_extractor=feature_extractor, image_processor=image_processor, processor=processor, torch_dtype=torch_dtype, ) img = prepare_img() return feature_extractor_pipeline, [img, img] def run_pipeline_test(self, feature_extractor, examples): imgs = examples outputs = feature_extractor(imgs[0]) self.assertEqual(len(outputs), 1) outputs = feature_extractor(imgs) self.assertEqual(len(outputs), 2)
transformers/tests/pipelines/test_pipelines_image_feature_extraction.py/0
{ "file_path": "transformers/tests/pipelines/test_pipelines_image_feature_extraction.py", "repo_id": "transformers", "token_count": 3659 }
198
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from huggingface_hub import VideoClassificationOutputElement, hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( compare_pipeline_output_to_hub_spec, is_pipeline_test, nested_simplify, require_av, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_av class VideoClassificationPipelineTests(unittest.TestCase): model_mapping = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def get_test_pipeline( self, model, tokenizer=None, image_processor=None, feature_extractor=None, processor=None, torch_dtype="float32", ): example_video_filepath = hf_hub_download( repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" ) video_classifier = VideoClassificationPipeline( model=model, tokenizer=tokenizer, feature_extractor=feature_extractor, image_processor=image_processor, processor=processor, torch_dtype=torch_dtype, top_k=2, ) examples = [ example_video_filepath, "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", ] return video_classifier, examples def run_pipeline_test(self, video_classifier, examples): for example in examples: outputs = video_classifier(example) self.assertEqual( outputs, [ {"score": ANY(float), "label": ANY(str)}, {"score": ANY(float), "label": ANY(str)}, ], ) for element in outputs: compare_pipeline_output_to_hub_spec(element, VideoClassificationOutputElement) @require_torch def test_small_model_pt(self): small_model = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" small_feature_extractor = VideoMAEFeatureExtractor( size={"shortest_edge": 10}, crop_size={"height": 10, "width": 10} ) video_classifier = pipeline( "video-classification", model=small_model, feature_extractor=small_feature_extractor, frame_sampling_rate=4 ) video_file_path = hf_hub_download(repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset") output = video_classifier(video_file_path, top_k=2) self.assertEqual( nested_simplify(output, decimals=4), [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}], ) for element in output: compare_pipeline_output_to_hub_spec(element, VideoClassificationOutputElement) outputs = video_classifier( [ video_file_path, video_file_path, ], top_k=2, ) self.assertEqual( nested_simplify(outputs, decimals=4), [ [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}], [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}], ], ) for output in outputs: for element in output: compare_pipeline_output_to_hub_spec(element, VideoClassificationOutputElement) @require_tf @unittest.skip def test_small_model_tf(self): pass
transformers/tests/pipelines/test_pipelines_video_classification.py/0
{ "file_path": "transformers/tests/pipelines/test_pipelines_video_classification.py", "repo_id": "transformers", "token_count": 1929 }
199
# coding=utf-8 # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import unittest from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, QuantoConfig from transformers.testing_utils import ( require_accelerate, require_optimum_quanto, require_read_token, require_torch_accelerator, require_torch_gpu, slow, torch_device, ) from transformers.utils import is_accelerate_available, is_optimum_quanto_available, is_torch_available if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaTokenizer if is_accelerate_available(): from accelerate import init_empty_weights if is_optimum_quanto_available(): from optimum.quanto import QLayerNorm, QLinear from transformers.integrations.quanto import replace_with_quanto_layers class QuantoConfigTest(unittest.TestCase): def test_attributes(self): pass @require_optimum_quanto @require_accelerate class QuantoTestIntegration(unittest.TestCase): model_id = "facebook/opt-350m" def setUp(self): config = AutoConfig.from_pretrained(self.model_id) with init_empty_weights(): self.model = AutoModelForCausalLM.from_config(config) self.nb_linear = 0 self.nb_layernorm = 0 for module in self.model.modules(): if isinstance(module, torch.nn.Linear): self.nb_linear += 1 elif isinstance(module, torch.nn.LayerNorm): self.nb_layernorm += 1 def test_weight_only_quantization_conversion(self): """ Simple test that checks if the quantized model has been converted properly when using weight only quantization """ # Try with weight only quantization quantization_config = QuantoConfig(weights="int8", activations=None) self.model, _ = replace_with_quanto_layers(self.model, quantization_config=quantization_config) nb_qlinear = 0 for module in self.model.modules(): if isinstance(module, QLinear): nb_qlinear += 1 self.assertEqual(self.nb_linear, nb_qlinear) def test_weight_and_activation_quantization_conversion(self): """ Simple test that checks if the quantized model has been converted properly when using weight + activation quantization """ # Try with weight + activation quantization quantization_config = QuantoConfig(weights="int8", activations="int8") self.model, _ = replace_with_quanto_layers(self.model, quantization_config=quantization_config) nb_qlinear = 0 nb_qlayernorm = 0 for module in self.model.modules(): if isinstance(module, QLinear): nb_qlinear += 1 if isinstance(module, QLayerNorm): nb_qlayernorm += 1 self.assertEqual(self.nb_linear, nb_qlinear) self.assertEqual(self.nb_layernorm, nb_qlayernorm) def test_conversion_with_modules_to_not_convert(self): """ Simple test that checks if the quantized model has been converted properly when specifying modules_to_not_convert argument """ # Try with weight + activatioin quantization quantization_config = QuantoConfig(weights="int8", activations="int8") self.model, _ = replace_with_quanto_layers( self.model, quantization_config=quantization_config, modules_to_not_convert=["lm_head"] ) nb_qlinear = 0 nb_qlayernorm = 0 for module in self.model.modules(): if isinstance(module, QLinear): nb_qlinear += 1 if isinstance(module, QLayerNorm): nb_qlayernorm += 1 self.assertEqual(self.nb_linear - 1, nb_qlinear) @slow @require_torch_accelerator @require_optimum_quanto @require_accelerate class QuantoQuantizationTest(unittest.TestCase): """ Test 8-bit weights only quantization """ model_name = "bigscience/bloom-560m" weights = "int8" activations = None device_map = "cpu" input_text = "Hello my name is" EXPECTED_OUTPUTS = "Hello my name is John, I am a professional photographer and I" def setUp(self): """ Setup quantized model """ quantization_config = QuantoConfig( weights=self.weights, activations=self.activations, ) self.quantized_model = AutoModelForCausalLM.from_pretrained( self.model_name, device_map=self.device_map, quantization_config=quantization_config, torch_dtype=torch.float32, ) self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) self.have_accelerate_hooks = ( getattr(self.quantized_model, "hf_device_map", False) and len(self.quantized_model.hf_device_map) > 1 ) def check_inference_correctness(self, model, device): r""" Test the generation quality of the quantized model and see that we are matching the expected output. Given that we are operating on small numbers + the testing model is relatively small, we might not get the same output across GPUs. So we'll generate few tokens (5-10) and check their output. """ if not self.have_accelerate_hooks: model.to(device) encoded_input = self.tokenizer(self.input_text, return_tensors="pt") output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(device), max_new_tokens=10) self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS) def test_generate_quality_cpu(self): """ Simple test to check the quality of the model on cpu by comparing the generated tokens with the expected tokens """ self.check_inference_correctness(self.quantized_model, "cpu") def test_generate_quality_cuda(self): """ Simple test to check the quality of the model on cuda by comparing the generated tokens with the expected tokens """ self.check_inference_correctness(self.quantized_model, "cuda") def test_quantized_model_layers(self): from optimum.quanto import QBitsTensor, QModuleMixin, QTensor """ Suite of simple test to check if the layers are quantized and are working properly """ # Test the type of the quantized layer self.assertTrue(isinstance(self.quantized_model.transformer.h[0].self_attention.query_key_value, QModuleMixin)) self.assertTrue( isinstance(self.quantized_model.transformer.h[0].self_attention.query_key_value.weight, QTensor) ) if self.weights == "int4": self.assertTrue( isinstance(self.quantized_model.transformer.h[0].self_attention.query_key_value.weight, QBitsTensor) ) # check that the lm_head was indeed not quantized, just like bnb self.assertTrue( isinstance(self.quantized_model.lm_head, torch.nn.Linear) and not isinstance(self.quantized_model.lm_head, QModuleMixin) ) if self.device_map in ["cpu", "cuda"]: self.assertEqual( self.quantized_model.transformer.h[0].self_attention.query_key_value.weight._data.device.type, self.device_map, ) self.quantized_model.to(0) self.assertEqual( self.quantized_model.transformer.h[0].self_attention.query_key_value.weight._data.device.type, "cuda" ) def test_serialization_bin(self): """ Test the serialization, the loading and the inference of the quantized weights """ with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(ValueError) as e: self.quantized_model.save_pretrained(tmpdirname, safe_serialization=False) self.assertIn("The model is quantized with quanto and is not serializable", str(e.exception)) # TODO: replace by the following when it works # quantized_model_from_saved = AutoModelForCausalLM.from_pretrained( # tmpdirname, torch_dtype=torch.float32, device_map="cpu" # ) # self.check_inference_correctness(quantized_model_from_saved, device="cuda") def test_serialization_safetensors(self): """ Test the serialization, the loading and the inference of the quantized weights """ with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(ValueError) as e: self.quantized_model.save_pretrained(tmpdirname) self.assertIn("The model is quantized with quanto and is not serializable", str(e.exception)) # quantized_model_from_saved = AutoModelForCausalLM.from_pretrained( # tmpdirname, torch_dtype=torch.float32, device_map="cpu" # ) # self.check_inference_correctness(quantized_model_from_saved, device="cuda") def check_same_model(self, model1, model2): d0 = dict(model1.named_parameters()) d1 = dict(model2.named_parameters()) self.assertTrue(d0.keys() == d1.keys()) for k in d0.keys(): self.assertTrue(d0[k].shape == d1[k].shape) self.assertTrue(d0[k].device.type == d1[k].device.type) self.assertTrue(d0[k].device == d1[k].device) self.assertTrue(d0[k].dtype == d1[k].dtype) self.assertTrue(torch.equal(d0[k], d1[k].to(d0[k].device))) def test_compare_with_quanto(self): from optimum.quanto import freeze, qint4, qint8, quantize w_mapping = {"int8": qint8, "int4": qint4} model = AutoModelForCausalLM.from_pretrained( self.model_name, device_map=self.device_map, torch_dtype=torch.float32, ) # we do not quantize the lm_head since we don't do that in transformers quantize(model.transformer, weights=w_mapping[self.weights]) freeze(model.transformer) self.check_same_model(model, self.quantized_model) self.check_inference_correctness(model, device=torch_device) @unittest.skip def test_load_from_quanto_saved(self): from optimum.quanto import freeze, qint4, qint8, quantize from transformers import QuantoConfig w_mapping = {"int8": qint8, "int4": qint4} model = AutoModelForCausalLM.from_pretrained( self.model_name, device_map=self.device_map, torch_dtype=torch.float32, ) # we do not quantize the lm_head since we don't do that in transformers quantize(model.transformer, weights=w_mapping[self.weights]) freeze(model.transformer) with tempfile.TemporaryDirectory() as tmpdirname: model.config.quantization_config = QuantoConfig( weights=self.weights, activations=self.activations, modules_to_not_convert=["lm_head"] ) model.save_pretrained(tmpdirname, safe_serialization=False) quantized_model_from_saved = AutoModelForCausalLM.from_pretrained( tmpdirname, device_map=self.device_map, torch_dtype=torch.float32, ) self.check_same_model(model, quantized_model_from_saved) self.check_inference_correctness(quantized_model_from_saved, device="cuda") class QuantoQuantizationOffloadTest(QuantoQuantizationTest): device_map = { "transformer.word_embeddings": 0, "transformer.word_embeddings_layernorm": 0, "transformer.ln_f": 0, "transformer.h.0": 0, "transformer.h.1": 0, "transformer.h.2": 0, "transformer.h.3": 0, "transformer.h.4": 0, "transformer.h.5": 0, "transformer.h.6": 0, "transformer.h.7": 0, "transformer.h.8": 0, "transformer.h.9": 0, "transformer.h.10": 0, "transformer.h.11": 0, "transformer.h.12": 0, "transformer.h.13": 0, "transformer.h.14": 0, "transformer.h.15": 0, "transformer.h.16": 0, "transformer.h.17": 0, "transformer.h.18": 0, "transformer.h.19": 0, "transformer.h.20": 0, "transformer.h.21": 0, "transformer.h.22": "cpu", "transformer.h.23": "disk", "lm_head": 0, } @unittest.skip(reason="The execution device is a gpu") def test_generate_quality_cpu(self): pass @unittest.skip(reason="We can't save offloaded values") def test_serialization_bin(self): pass @unittest.skip def test_serialization_safetensors(self): pass @unittest.skip def test_compare_with_quanto(self): pass @unittest.skip def test_load_from_quanto_saved(self): pass def test_check_offload_quantized(self): """ We check that we have unquantized value in the cpu and in the disk """ from optimum.quanto import QBitsTensor, QTensor cpu_weights = self.quantized_model.transformer.h[22].self_attention.query_key_value._hf_hook.weights_map[ "weight" ] disk_weights = self.quantized_model.transformer.h[23].self_attention.query_key_value._hf_hook.weights_map[ "weight" ] self.assertTrue(isinstance(cpu_weights, torch.Tensor) and not isinstance(cpu_weights, QTensor)) self.assertTrue(isinstance(disk_weights, torch.Tensor) and not isinstance(disk_weights, QTensor)) if self.weights == "int4": self.assertTrue(isinstance(cpu_weights, torch.Tensor) and not isinstance(disk_weights, QBitsTensor)) self.assertTrue(isinstance(disk_weights, torch.Tensor) and not isinstance(disk_weights, QBitsTensor)) @unittest.skip(reason="Skipping test class because serialization is not supported yet") class QuantoQuantizationSerializationTest(QuantoQuantizationTest): """ Perform the same tests as in QuantoQuantizationTest but with a serialized model. """ def setUp(self): """ Setup quantized model """ quantization_config = QuantoConfig( weights=self.weights, activations=self.activations, ) quantized_model = AutoModelForCausalLM.from_pretrained( self.model_name, device_map=self.device_map, quantization_config=quantization_config, torch_dtype=torch.float32, ) with tempfile.TemporaryDirectory() as tmpdirname: quantized_model.save_pretrained(tmpdirname, safe_serialization=False) self.quantized_model = AutoModelForCausalLM.from_pretrained( tmpdirname, torch_dtype=torch.float32, device_map=self.device_map ) self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) self.have_accelerate_hooks = ( getattr(self.quantized_model, "hf_device_map", False) and len(self.quantized_model.hf_device_map) > 1 ) @unittest.skip(reason="Skipping test class because serialization is not supported yet") class QuantoQuantizationSerializationCudaTest(QuantoQuantizationTest): """ Perform the same tests as in QuantoQuantizationTest but with model on cuda """ device_map = "cuda:0" class QuantoQuantizationQBitsTensorTest(QuantoQuantizationTest): EXPECTED_OUTPUTS = "Hello my name is John, I am a professional photographer, I" weights = "int4" class QuantoQuantizationQBitsTensorOffloadTest(QuantoQuantizationOffloadTest): EXPECTED_OUTPUTS = "Hello my name is John, I am a professional photographer, I" weights = "int4" @unittest.skip(reason="Skipping test class because serialization is not supported yet") class QuantoQuantizationQBitsTensorSerializationTest(QuantoQuantizationSerializationTest): EXPECTED_OUTPUTS = "Hello my name is John, I am a professional photographer, I" weights = "int4" @require_torch_gpu class QuantoQuantizationActivationTest(unittest.TestCase): def test_quantize_activation(self): quantization_config = QuantoConfig( weights="int8", activations="int8", ) with self.assertRaises(ValueError) as e: AutoModelForCausalLM.from_pretrained("bigscience/bloom-560m", quantization_config=quantization_config) self.assertIn("We don't support quantizing the activations with transformers library", str(e.exception)) @require_optimum_quanto @require_torch_gpu class QuantoKVCacheQuantizationTest(unittest.TestCase): @slow @require_read_token def test_quantized_cache(self): EXPECTED_TEXT_COMPLETION = [ "Simply put, the theory of relativity states that 1) the speed of light is the same for all observers, and 2) the laws of physics are the same for all observers.\nThe first part of the theory is the most", "My favorite all time favorite condiment is ketchup. I love it on everything. I love it on my eggs, my fries, my chicken, my burgers, my hot dogs, my sandwiches, my salads, my p", ] prompts = [ "Simply put, the theory of relativity states that ", "My favorite all time favorite condiment is ketchup.", ] tokenizer = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf", pad_token="</s>", padding_side="left") model = LlamaForCausalLM.from_pretrained( "meta-llama/Llama-2-7b-hf", device_map="sequential", torch_dtype=torch.float16 ) inputs = tokenizer(prompts, return_tensors="pt", padding=True).to(torch_device) generated_ids = model.generate(**inputs, max_new_tokens=40, do_sample=False, cache_implementation="quantized") text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
transformers/tests/quantization/quanto_integration/test_quanto.py/0
{ "file_path": "transformers/tests/quantization/quanto_integration/test_quanto.py", "repo_id": "transformers", "token_count": 7781 }
200
#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Finetuning the library models for sequence classification on GLUE.""" # You can also adapt this script on your own text classification task. Pointers for this are left as comments. import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import numpy as np from datasets import load_dataset, load_metric import transformers from transformers import ( # Trainer,; TrainingArguments, AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, PretrainedConfig, default_data_collator, set_seed, ) # Will import SageMaker Model parallelism specific Trainer from transformers.sagemaker import SageMakerTrainer as Trainer from transformers.sagemaker import SageMakerTrainingArguments as TrainingArguments from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.4.2") task_to_keys = { "cola": ("sentence", None), "mnli": ("premise", "hypothesis"), "mrpc": ("sentence1", "sentence2"), "qnli": ("question", "sentence"), "qqp": ("question1", "question2"), "rte": ("sentence1", "sentence2"), "sst2": ("sentence", None), "stsb": ("sentence1", "sentence2"), "wnli": ("sentence1", "sentence2"), } logger = logging.getLogger(__name__) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify them on the command line. """ task_name: Optional[str] = field( default=None, metadata={"help": "The name of the task to train on: " + ", ".join(task_to_keys.keys())}, ) max_seq_length: int = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) pad_to_max_length: bool = field( default=True, metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) }, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_val_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) }, ) max_test_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of test examples to this " "value if set." ) }, ) train_file: Optional[str] = field( default=None, metadata={"help": "A csv or a json file containing the training data."} ) validation_file: Optional[str] = field( default=None, metadata={"help": "A csv or a json file containing the validation data."} ) test_file: Optional[str] = field(default=None, metadata={"help": "A csv or a json file containing the test data."}) def __post_init__(self): if self.task_name is not None: self.task_name = self.task_name.lower() if self.task_name not in task_to_keys.keys(): raise ValueError("Unknown task, you should pick one in " + ",".join(task_to_keys.keys())) elif self.train_file is None or self.validation_file is None: raise ValueError("Need either a GLUE task or a training/validation file.") else: train_extension = self.train_file.split(".")[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." validation_extension = self.validation_file.split(".")[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) use_auth_token: bool = field( default=False, metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) }, ) def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() # Detecting last checkpoint. last_checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) logger.setLevel(logging.INFO if training_args.should_log else logging.WARN) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) # Set the verbosity to info of the Transformers logger (on main process only): if training_args.should_log: transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info(f"Training/evaluation parameters {training_args}") # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the # sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named # label if at least two columns are provided. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.task_name is not None: # Downloading and loading a dataset from the hub. datasets = load_dataset("nyu-mll/glue", data_args.task_name) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. data_files = {"train": data_args.train_file, "validation": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: train_extension = data_args.train_file.split(".")[-1] test_extension = data_args.test_file.split(".")[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." data_files["test"] = data_args.test_file else: raise ValueError("Need either a GLUE task or a test file for `do_predict`.") for key in data_files.keys(): logger.info(f"load a local file for {key}: {data_files[key]}") if data_args.train_file.endswith(".csv"): # Loading a dataset from local csv files datasets = load_dataset("csv", data_files=data_files) else: # Loading a dataset from local json files datasets = load_dataset("json", data_files=data_files) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets. # Labels if data_args.task_name is not None: is_regression = data_args.task_name == "stsb" if not is_regression: label_list = datasets["train"].features["label"].names num_labels = len(label_list) else: num_labels = 1 else: # Trying to have good defaults here, don't hesitate to tweak to your needs. is_regression = datasets["train"].features["label"].dtype in ["float32", "float64"] if is_regression: num_labels = 1 else: # A useful fast method: # https://huggingface.co/docs/datasets/package_reference/main_classes#datasets.Dataset.unique label_list = datasets["train"].unique("label") label_list.sort() # Let's sort it for determinism num_labels = len(label_list) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=num_labels, finetuning_task=data_args.task_name, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=True if model_args.use_auth_token else None, ) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, token=True if model_args.use_auth_token else None, ) model = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=True if model_args.use_auth_token else None, ) # Preprocessing the datasets if data_args.task_name is not None: sentence1_key, sentence2_key = task_to_keys[data_args.task_name] else: # Again, we try to have some nice defaults but don't hesitate to tweak to your use case. non_label_column_names = [name for name in datasets["train"].column_names if name != "label"] if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names: sentence1_key, sentence2_key = "sentence1", "sentence2" else: if len(non_label_column_names) >= 2: sentence1_key, sentence2_key = non_label_column_names[:2] else: sentence1_key, sentence2_key = non_label_column_names[0], None # Padding strategy if data_args.pad_to_max_length: padding = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch padding = False # Some models have set the order of the labels to use, so let's make sure we do use it. label_to_id = None if ( model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id and data_args.task_name is not None and not is_regression ): # Some have all caps in their config, some don't. label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()} if sorted(label_name_to_id.keys()) == sorted(label_list): label_to_id = {i: int(label_name_to_id[label_list[i]]) for i in range(num_labels)} else: logger.warning( "Your model seems to have been trained with labels, but they don't match the dataset: " f"model labels: {sorted(label_name_to_id.keys())}, dataset labels: {sorted(label_list)}." "\nIgnoring the model labels as a result.", ) elif data_args.task_name is None and not is_regression: label_to_id = {v: i for i, v in enumerate(label_list)} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the " f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) def preprocess_function(examples): # Tokenize the texts args = ( (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key]) ) result = tokenizer(*args, padding=padding, max_length=max_seq_length, truncation=True) # Map labels to IDs (not necessary for GLUE tasks) if label_to_id is not None and "label" in examples: result["label"] = [(label_to_id[l] if l != -1 else -1) for l in examples["label"]] return result datasets = datasets.map(preprocess_function, batched=True, load_from_cache_file=not data_args.overwrite_cache) if training_args.do_train: if "train" not in datasets: raise ValueError("--do_train requires a train dataset") train_dataset = datasets["train"] if data_args.max_train_samples is not None: train_dataset = train_dataset.select(range(data_args.max_train_samples)) if training_args.do_eval: if "validation" not in datasets and "validation_matched" not in datasets: raise ValueError("--do_eval requires a validation dataset") eval_dataset = datasets["validation_matched" if data_args.task_name == "mnli" else "validation"] if data_args.max_val_samples is not None: eval_dataset = eval_dataset.select(range(data_args.max_val_samples)) if training_args.do_predict or data_args.task_name is not None or data_args.test_file is not None: if "test" not in datasets and "test_matched" not in datasets: raise ValueError("--do_predict requires a test dataset") test_dataset = datasets["test_matched" if data_args.task_name == "mnli" else "test"] if data_args.max_test_samples is not None: test_dataset = test_dataset.select(range(data_args.max_test_samples)) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(train_dataset)), 3): logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") # Get the metric function if data_args.task_name is not None: metric = load_metric("glue", data_args.task_name) # TODO: When datasets metrics include regular accuracy, make an else here and remove special branch from # compute_metrics # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(p: EvalPrediction): preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions preds = np.squeeze(preds) if is_regression else np.argmax(preds, axis=1) if data_args.task_name is not None: result = metric.compute(predictions=preds, references=p.label_ids) if len(result) > 1: result["combined_score"] = np.mean(list(result.values())).item() return result elif is_regression: return {"mse": ((preds - p.label_ids) ** 2).mean().item()} else: return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: data_collator = default_data_collator elif training_args.fp16: data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8) else: data_collator = None # Initialize our Trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, compute_metrics=compute_metrics, processing_class=tokenizer, data_collator=data_collator, ) # Training if training_args.do_train: checkpoint = None if last_checkpoint is not None: checkpoint = last_checkpoint elif os.path.isdir(model_args.model_name_or_path): # Check the config from that potential checkpoint has the right number of labels before using it as a # checkpoint. if AutoConfig.from_pretrained(model_args.model_name_or_path).num_labels == num_labels: checkpoint = model_args.model_name_or_path train_result = trainer.train(resume_from_checkpoint=checkpoint) metrics = train_result.metrics max_train_samples = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) ) metrics["train_samples"] = min(max_train_samples, len(train_dataset)) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***") # Loop to handle MNLI double evaluation (matched, mis-matched) tasks = [data_args.task_name] eval_datasets = [eval_dataset] if data_args.task_name == "mnli": tasks.append("mnli-mm") eval_datasets.append(datasets["validation_mismatched"]) for eval_dataset, task in zip(eval_datasets, tasks): metrics = trainer.evaluate(eval_dataset=eval_dataset) max_val_samples = data_args.max_val_samples if data_args.max_val_samples is not None else len(eval_dataset) metrics["eval_samples"] = min(max_val_samples, len(eval_dataset)) trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) if training_args.do_predict: logger.info("*** Test ***") # Loop to handle MNLI double evaluation (matched, mis-matched) tasks = [data_args.task_name] test_datasets = [test_dataset] if data_args.task_name == "mnli": tasks.append("mnli-mm") test_datasets.append(datasets["test_mismatched"]) for test_dataset, task in zip(test_datasets, tasks): # Removing the `label` columns because it contains -1 and Trainer won't like that. test_dataset = test_dataset.remove_columns("label") predictions = trainer.predict(test_dataset=test_dataset).predictions predictions = np.squeeze(predictions) if is_regression else np.argmax(predictions, axis=1) output_test_file = os.path.join(training_args.output_dir, f"test_results_{task}.txt") if trainer.is_world_process_zero(): with open(output_test_file, "w") as writer: logger.info(f"***** Test results {task} *****") writer.write("index\tprediction\n") for index, item in enumerate(predictions): if is_regression: writer.write(f"{index}\t{item:3.3f}\n") else: item = label_list[item] writer.write(f"{index}\t{item}\n") def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
transformers/tests/sagemaker/scripts/pytorch/run_glue_model_parallelism.py/0
{ "file_path": "transformers/tests/sagemaker/scripts/pytorch/run_glue_model_parallelism.py", "repo_id": "transformers", "token_count": 9578 }
201
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import json import random import tempfile from pathlib import Path from typing import Optional import numpy as np from transformers.models.auto.processing_auto import processor_class_from_name from transformers.processing_utils import Unpack from transformers.testing_utils import ( check_json_file_has_correct_format, require_torch, require_vision, ) from transformers.utils import is_vision_available global_rng = random.Random() if is_vision_available(): from PIL import Image def prepare_image_inputs(): """This function prepares a list of PIL images""" image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)] image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs] return image_inputs # Copied from tests.models.whisper.test_feature_extraction_whisper.floats_list def floats_list(shape, scale=1.0, rng=None, name=None): """Creates a random float32 tensor""" if rng is None: rng = global_rng values = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values @require_torch @require_vision class ProcessorTesterMixin: processor_class = None text_input_name = "input_ids" images_input_name = "pixel_values" videos_input_name = "pixel_values_videos" def prepare_processor_dict(self): return {} def get_component(self, attribute, **kwargs): assert attribute in self.processor_class.attributes component_class_name = getattr(self.processor_class, f"{attribute}_class") if isinstance(component_class_name, tuple): component_class_name = component_class_name[0] component_class = processor_class_from_name(component_class_name) component = component_class.from_pretrained(self.tmpdirname, **kwargs) # noqa if "tokenizer" in attribute and not component.pad_token: component.pad_token = "[TEST_PAD]" if component.pad_token_id is None: component.pad_token_id = 0 return component def prepare_components(self): components = {} for attribute in self.processor_class.attributes: component = self.get_component(attribute) components[attribute] = component return components def get_processor(self): components = self.prepare_components() processor = self.processor_class(**components, **self.prepare_processor_dict()) return processor def prepare_text_inputs(self, batch_size: Optional[int] = None): if batch_size is None: return "lower newer" if batch_size < 1: raise ValueError("batch_size must be greater than 0") if batch_size == 1: return ["lower newer"] return ["lower newer", "upper older longer string"] + ["lower newer"] * (batch_size - 2) @require_vision def prepare_image_inputs(self, batch_size: Optional[int] = None): """This function prepares a list of PIL images for testing""" if batch_size is None: return prepare_image_inputs()[0] if batch_size < 1: raise ValueError("batch_size must be greater than 0") return prepare_image_inputs() * batch_size @require_vision def prepare_video_inputs(self): """This function prepares a list of numpy videos.""" video_input = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)] * 8 image_inputs = [video_input] * 3 # batch-size=3 return image_inputs def test_processor_to_json_string(self): processor = self.get_processor() obj = json.loads(processor.to_json_string()) for key, value in self.prepare_processor_dict().items(): self.assertEqual(obj[key], value) self.assertEqual(getattr(processor, key, None), value) def test_processor_from_and_save_pretrained(self): processor_first = self.get_processor() with tempfile.TemporaryDirectory() as tmpdirname: saved_files = processor_first.save_pretrained(tmpdirname) if len(saved_files) > 0: check_json_file_has_correct_format(saved_files[0]) processor_second = self.processor_class.from_pretrained(tmpdirname) self.assertEqual(processor_second.to_dict(), processor_first.to_dict()) for attribute in processor_first.attributes: attribute_first = getattr(processor_first, attribute) attribute_second = getattr(processor_second, attribute) # tokenizer repr contains model-path from where we loaded if "tokenizer" not in attribute: self.assertEqual(repr(attribute_first), repr(attribute_second)) # These kwargs-related tests ensure that processors are correctly instantiated. # they need to be applied only if an image_processor exists. def skip_processor_without_typed_kwargs(self, processor): # TODO this signature check is to test only uniformized processors. # Once all are updated, remove it. is_kwargs_typed_dict = False call_signature = inspect.signature(processor.__call__) for param in call_signature.parameters.values(): if param.kind == param.VAR_KEYWORD and param.annotation != param.empty: is_kwargs_typed_dict = ( hasattr(param.annotation, "__origin__") and param.annotation.__origin__ == Unpack ) if not is_kwargs_typed_dict: self.skipTest(f"{self.processor_class} doesn't have typed kwargs.") def test_tokenizer_defaults_preserved_by_kwargs(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") processor_components = self.prepare_components() processor_components["tokenizer"] = self.get_component("tokenizer", max_length=117, padding="max_length") processor_kwargs = self.prepare_processor_dict() processor = self.processor_class(**processor_components, **processor_kwargs) self.skip_processor_without_typed_kwargs(processor) input_str = self.prepare_text_inputs() image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input, return_tensors="pt") self.assertEqual(inputs[self.text_input_name].shape[-1], 117) def test_image_processor_defaults_preserved_by_image_kwargs(self): """ We use do_rescale=True, rescale_factor=-1 to ensure that image_processor kwargs are preserved in the processor. We then check that the mean of the pixel_values is less than or equal to 0 after processing. Since the original pixel_values are in [0, 255], this is a good indicator that the rescale_factor is indeed applied. """ if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") processor_components = self.prepare_components() processor_components["image_processor"] = self.get_component( "image_processor", do_rescale=True, rescale_factor=-1 ) processor_components["tokenizer"] = self.get_component("tokenizer", max_length=117, padding="max_length") processor_kwargs = self.prepare_processor_dict() processor = self.processor_class(**processor_components, **processor_kwargs) self.skip_processor_without_typed_kwargs(processor) input_str = self.prepare_text_inputs() image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input, return_tensors="pt") self.assertLessEqual(inputs[self.images_input_name][0][0].mean(), 0) def test_kwargs_overrides_default_tokenizer_kwargs(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") processor_components = self.prepare_components() processor_components["tokenizer"] = self.get_component("tokenizer", padding="longest") processor_kwargs = self.prepare_processor_dict() processor = self.processor_class(**processor_components, **processor_kwargs) self.skip_processor_without_typed_kwargs(processor) input_str = self.prepare_text_inputs() image_input = self.prepare_image_inputs() inputs = processor( text=input_str, images=image_input, return_tensors="pt", max_length=112, padding="max_length" ) self.assertEqual(inputs[self.text_input_name].shape[-1], 112) def test_kwargs_overrides_default_image_processor_kwargs(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") processor_components = self.prepare_components() processor_components["image_processor"] = self.get_component( "image_processor", do_rescale=True, rescale_factor=1 ) processor_components["tokenizer"] = self.get_component("tokenizer", max_length=117, padding="max_length") processor_kwargs = self.prepare_processor_dict() processor = self.processor_class(**processor_components, **processor_kwargs) self.skip_processor_without_typed_kwargs(processor) input_str = self.prepare_text_inputs() image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input, do_rescale=True, rescale_factor=-1, return_tensors="pt") self.assertLessEqual(inputs[self.images_input_name][0][0].mean(), 0) def test_unstructured_kwargs(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") processor_components = self.prepare_components() processor_kwargs = self.prepare_processor_dict() processor = self.processor_class(**processor_components, **processor_kwargs) self.skip_processor_without_typed_kwargs(processor) input_str = self.prepare_text_inputs() image_input = self.prepare_image_inputs() inputs = processor( text=input_str, images=image_input, return_tensors="pt", do_rescale=True, rescale_factor=-1, padding="max_length", max_length=76, ) self.assertLessEqual(inputs[self.images_input_name][0][0].mean(), 0) self.assertEqual(inputs[self.text_input_name].shape[-1], 76) def test_unstructured_kwargs_batched(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") processor_components = self.prepare_components() processor_kwargs = self.prepare_processor_dict() processor = self.processor_class(**processor_components, **processor_kwargs) self.skip_processor_without_typed_kwargs(processor) input_str = self.prepare_text_inputs(batch_size=2) image_input = self.prepare_image_inputs(batch_size=2) inputs = processor( text=input_str, images=image_input, return_tensors="pt", do_rescale=True, rescale_factor=-1, padding="longest", max_length=76, ) self.assertLessEqual(inputs[self.images_input_name][0][0].mean(), 0) self.assertTrue( len(inputs[self.text_input_name][0]) == len(inputs[self.text_input_name][1]) and len(inputs[self.text_input_name][1]) < 76 ) def test_doubly_passed_kwargs(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") processor_components = self.prepare_components() processor_kwargs = self.prepare_processor_dict() processor = self.processor_class(**processor_components, **processor_kwargs) self.skip_processor_without_typed_kwargs(processor) input_str = [self.prepare_text_inputs()] image_input = self.prepare_image_inputs() with self.assertRaises(ValueError): _ = processor( text=input_str, images=image_input, images_kwargs={"do_rescale": True, "rescale_factor": -1}, do_rescale=True, return_tensors="pt", ) def test_structured_kwargs_nested(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") processor_components = self.prepare_components() processor_kwargs = self.prepare_processor_dict() processor = self.processor_class(**processor_components, **processor_kwargs) self.skip_processor_without_typed_kwargs(processor) input_str = self.prepare_text_inputs() image_input = self.prepare_image_inputs() # Define the kwargs for each modality all_kwargs = { "common_kwargs": {"return_tensors": "pt"}, "images_kwargs": {"do_rescale": True, "rescale_factor": -1}, "text_kwargs": {"padding": "max_length", "max_length": 76}, } inputs = processor(text=input_str, images=image_input, **all_kwargs) self.skip_processor_without_typed_kwargs(processor) self.assertLessEqual(inputs[self.images_input_name][0][0].mean(), 0) self.assertEqual(inputs[self.text_input_name].shape[-1], 76) def test_structured_kwargs_nested_from_dict(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") processor_components = self.prepare_components() processor_kwargs = self.prepare_processor_dict() processor = self.processor_class(**processor_components, **processor_kwargs) self.skip_processor_without_typed_kwargs(processor) input_str = self.prepare_text_inputs() image_input = self.prepare_image_inputs() # Define the kwargs for each modality all_kwargs = { "common_kwargs": {"return_tensors": "pt"}, "images_kwargs": {"do_rescale": True, "rescale_factor": -1}, "text_kwargs": {"padding": "max_length", "max_length": 76}, } inputs = processor(text=input_str, images=image_input, **all_kwargs) self.assertLessEqual(inputs[self.images_input_name][0][0].mean(), 0) self.assertEqual(inputs[self.text_input_name].shape[-1], 76) # text + audio kwargs testing @require_torch def test_tokenizer_defaults_preserved_by_kwargs_audio(self): if "feature_extractor" not in self.processor_class.attributes: self.skipTest(f"feature_extractor attribute not present in {self.processor_class}") feature_extractor = self.get_component("feature_extractor") if hasattr(self, "get_tokenizer"): tokenizer = self.get_tokenizer(max_length=117, padding="max_length") elif hasattr(self, "get_component"): tokenizer = self.get_component("tokenizer", max_length=117, padding="max_length") else: self.assertTrue(False, "Processor doesn't have get_tokenizer or get_component defined") if not tokenizer.pad_token: tokenizer.pad_token = "[TEST_PAD]" processor = self.processor_class(tokenizer=tokenizer, feature_extractor=feature_extractor) self.skip_processor_without_typed_kwargs(processor) input_str = "lower newer" raw_speech = floats_list((3, 1000)) inputs = processor(text=input_str, audio=raw_speech, return_tensors="pt") if "input_ids" in inputs: self.assertEqual(len(inputs["input_ids"][0]), 117) elif "labels" in inputs: self.assertEqual(len(inputs["labels"][0]), 117) @require_torch def test_kwargs_overrides_default_tokenizer_kwargs_audio(self): if "feature_extractor" not in self.processor_class.attributes: self.skipTest(f"feature_extractor attribute not present in {self.processor_class}") feature_extractor = self.get_component("feature_extractor") if hasattr(self, "get_tokenizer"): tokenizer = self.get_tokenizer(max_length=117) elif hasattr(self, "get_component"): tokenizer = self.get_component("tokenizer", max_length=117) if not tokenizer.pad_token: tokenizer.pad_token = "[TEST_PAD]" processor = self.processor_class(tokenizer=tokenizer, feature_extractor=feature_extractor) self.skip_processor_without_typed_kwargs(processor) input_str = "lower newer" raw_speech = floats_list((3, 1000)) inputs = processor(text=input_str, audio=raw_speech, return_tensors="pt", max_length=112, padding="max_length") if "input_ids" in inputs: self.assertEqual(len(inputs["input_ids"][0]), 112) elif "labels" in inputs: self.assertEqual(len(inputs["labels"][0]), 112) @require_torch def test_unstructured_kwargs_audio(self): if "feature_extractor" not in self.processor_class.attributes: self.skipTest(f"feature_extractor attribute not present in {self.processor_class}") feature_extractor = self.get_component("feature_extractor") if hasattr(self, "get_tokenizer"): tokenizer = self.get_tokenizer(max_length=117) elif hasattr(self, "get_component"): tokenizer = self.get_component("tokenizer", max_length=117) if not tokenizer.pad_token: tokenizer.pad_token = "[TEST_PAD]" processor = self.processor_class(tokenizer=tokenizer, feature_extractor=feature_extractor) self.skip_processor_without_typed_kwargs(processor) input_str = "lower newer" raw_speech = floats_list((3, 1000)) inputs = processor( text=input_str, audio=raw_speech, return_tensors="pt", padding="max_length", max_length=76, ) if "input_ids" in inputs: self.assertEqual(len(inputs["input_ids"][0]), 76) elif "labels" in inputs: self.assertEqual(len(inputs["labels"][0]), 76) @require_torch def test_doubly_passed_kwargs_audio(self): if "feature_extractor" not in self.processor_class.attributes: self.skipTest(f"feature_extractor attribute not present in {self.processor_class}") feature_extractor = self.get_component("feature_extractor") if hasattr(self, "get_tokenizer"): tokenizer = self.get_tokenizer() elif hasattr(self, "get_component"): tokenizer = self.get_component("tokenizer") if not tokenizer.pad_token: tokenizer.pad_token = "[TEST_PAD]" processor = self.processor_class(tokenizer=tokenizer, feature_extractor=feature_extractor) self.skip_processor_without_typed_kwargs(processor) input_str = ["lower newer"] raw_speech = floats_list((3, 1000)) with self.assertRaises(ValueError): _ = processor( text=input_str, audio=raw_speech, audio_kwargs={"padding": "max_length"}, padding="max_length", ) @require_torch @require_vision def test_structured_kwargs_audio_nested(self): if "feature_extractor" not in self.processor_class.attributes: self.skipTest(f"feature_extractor attribute not present in {self.processor_class}") feature_extractor = self.get_component("feature_extractor") if hasattr(self, "get_tokenizer"): tokenizer = self.get_tokenizer() elif hasattr(self, "get_component"): tokenizer = self.get_component("tokenizer") if not tokenizer.pad_token: tokenizer.pad_token = "[TEST_PAD]" processor = self.processor_class(tokenizer=tokenizer, feature_extractor=feature_extractor) self.skip_processor_without_typed_kwargs(processor) input_str = ["lower newer"] raw_speech = floats_list((3, 1000)) # Define the kwargs for each modality all_kwargs = { "common_kwargs": {"return_tensors": "pt"}, "text_kwargs": {"padding": "max_length", "max_length": 76}, "audio_kwargs": {"padding": "max_length", "max_length": 66}, } inputs = processor(text=input_str, audio=raw_speech, **all_kwargs) if "input_ids" in inputs: self.assertEqual(len(inputs["input_ids"][0]), 76) elif "labels" in inputs: self.assertEqual(len(inputs["labels"][0]), 76) # TODO: the same test, but for audio + text processors that have strong overlap in kwargs # TODO (molbap) use the same structure of attribute kwargs for other tests to avoid duplication def test_overlapping_text_kwargs_handling(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") processor_components = self.prepare_components() processor = self.processor_class(**processor_components) self.skip_processor_without_typed_kwargs(processor) input_str = self.prepare_text_inputs() image_input = self.prepare_image_inputs() with self.assertRaises(ValueError): _ = processor( text=input_str, images=image_input, return_tensors="pt", padding="max_length", text_kwargs={"padding": "do_not_pad"}, ) def test_prepare_and_validate_optional_call_args(self): processor = self.get_processor() optional_call_args_name = getattr(processor, "optional_call_args", []) num_optional_call_args = len(optional_call_args_name) if num_optional_call_args == 0: self.skipTest("No optional call args") # test all optional call args are given optional_call_args = processor.prepare_and_validate_optional_call_args( *(f"optional_{i}" for i in range(num_optional_call_args)) ) self.assertEqual( optional_call_args, {arg_name: f"optional_{i}" for i, arg_name in enumerate(optional_call_args_name)} ) # test only one optional call arg is given optional_call_args = processor.prepare_and_validate_optional_call_args("optional_1") self.assertEqual(optional_call_args, {optional_call_args_name[0]: "optional_1"}) # test no optional call arg is given optional_call_args = processor.prepare_and_validate_optional_call_args() self.assertEqual(optional_call_args, {}) # test too many optional call args are given with self.assertRaises(ValueError): processor.prepare_and_validate_optional_call_args( *(f"optional_{i}" for i in range(num_optional_call_args + 1)) ) def test_chat_template_save_loading(self): processor = self.get_processor() existing_tokenizer_template = getattr(processor.tokenizer, "chat_template", None) processor.chat_template = "test template" with tempfile.TemporaryDirectory() as tmpdirname: processor.save_pretrained(tmpdirname) self.assertTrue(Path(tmpdirname, "chat_template.json").is_file()) self.assertFalse(Path(tmpdirname, "chat_template.jinja").is_file()) reloaded_processor = self.processor_class.from_pretrained(tmpdirname) self.assertEqual(processor.chat_template, reloaded_processor.chat_template) # When we don't use single-file chat template saving, processor and tokenizer chat templates # should remain separate self.assertEqual(getattr(reloaded_processor.tokenizer, "chat_template", None), existing_tokenizer_template) with tempfile.TemporaryDirectory() as tmpdirname: processor.save_pretrained(tmpdirname, save_raw_chat_template=True) self.assertTrue(Path(tmpdirname, "chat_template.jinja").is_file()) self.assertFalse(Path(tmpdirname, "chat_template.json").is_file()) reloaded_processor = self.processor_class.from_pretrained(tmpdirname) self.assertEqual(processor.chat_template, reloaded_processor.chat_template) # When we save as single files, tokenizers and processors share a chat template, which means # the reloaded tokenizer should get the chat template as well self.assertEqual(reloaded_processor.chat_template, reloaded_processor.tokenizer.chat_template)
transformers/tests/test_processing_common.py/0
{ "file_path": "transformers/tests/test_processing_common.py", "repo_id": "transformers", "token_count": 10613 }
202
# coding=utf-8 # Copyright 2019-present, the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow logger = logging.getLogger() @unittest.skip(reason="Temporarily disable the doc tests.") @require_torch @require_tf @slow class TestCodeExamples(unittest.TestCase): def analyze_directory( self, directory: Path, identifier: Union[str, None] = None, ignore_files: Union[List[str], None] = None, n_identifier: Union[str, List[str], None] = None, only_modules: bool = True, ): """ Runs through the specific directory, looking for the files identified with `identifier`. Executes the doctests in those files Args: directory (`Path`): Directory containing the files identifier (`str`): Will parse files containing this ignore_files (`List[str]`): List of files to skip n_identifier (`str` or `List[str]`): Will not parse files containing this/these identifiers. only_modules (`bool`): Whether to only analyze modules """ files = [file for file in os.listdir(directory) if os.path.isfile(os.path.join(directory, file))] if identifier is not None: files = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(n_identifier, List): for n_ in n_identifier: files = [file for file in files if n_ not in file] else: files = [file for file in files if n_identifier not in file] ignore_files = ignore_files or [] ignore_files.append("__init__.py") files = [file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing", file) if only_modules: module_identifier = file.split(".")[0] try: module_identifier = getattr(transformers, module_identifier) suite = doctest.DocTestSuite(module_identifier) result = unittest.TextTestRunner().run(suite) self.assertIs(len(result.failures), 0) except AttributeError: logger.info(f"{module_identifier} is not a module.") else: result = doctest.testfile(str(".." / directory / file), optionflags=doctest.ELLIPSIS) self.assertIs(result.failed, 0) def test_modeling_examples(self): transformers_directory = Path("src/transformers") files = "modeling" ignore_files = [ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(transformers_directory, identifier=files, ignore_files=ignore_files) def test_tokenization_examples(self): transformers_directory = Path("src/transformers") files = "tokenization" self.analyze_directory(transformers_directory, identifier=files) def test_configuration_examples(self): transformers_directory = Path("src/transformers") files = "configuration" self.analyze_directory(transformers_directory, identifier=files) def test_remaining_examples(self): transformers_directory = Path("src/transformers") n_identifiers = ["configuration", "modeling", "tokenization"] self.analyze_directory(transformers_directory, n_identifier=n_identifiers) def test_doc_sources(self): doc_source_directory = Path("docs/source") ignore_files = ["favicon.ico"] self.analyze_directory(doc_source_directory, ignore_files=ignore_files, only_modules=False)
transformers/tests/utils/test_doc_samples.py/0
{ "file_path": "transformers/tests/utils/test_doc_samples.py", "repo_id": "transformers", "token_count": 1749 }
203
# coding=utf-8 # Copyright 2019 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import inspect import json import os import random import tempfile import unittest import unittest.mock as mock from huggingface_hub import HfFolder, Repository, snapshot_download from requests.exceptions import HTTPError from transformers import is_tf_available, is_torch_available from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import ( # noqa: F401 TOKEN, USER, CaptureLogger, TemporaryHubRepo, _tf_gpu_memory_limit, is_pt_tf_cross_test, is_staging_test, require_safetensors, require_tf, require_torch, slow, ) from transformers.utils import ( SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, TF2_WEIGHTS_INDEX_NAME, TF2_WEIGHTS_NAME, logging, ) logger = logging.get_logger(__name__) if is_tf_available(): import h5py import numpy as np import tensorflow as tf from transformers import ( BertConfig, PreTrainedModel, PushToHubCallback, RagRetriever, TFAutoModel, TFBertForMaskedLM, TFBertForSequenceClassification, TFBertModel, TFPreTrainedModel, TFRagModel, ) from transformers.modeling_tf_utils import keras, tf_shard_checkpoint, unpack_inputs from transformers.tf_utils import stable_softmax tf.config.experimental.enable_tensor_float_32_execution(False) if _tf_gpu_memory_limit is not None: gpus = tf.config.list_physical_devices("GPU") for gpu in gpus: # Restrict TensorFlow to only allocate x GB of memory on the GPUs try: tf.config.set_logical_device_configuration( gpu, [tf.config.LogicalDeviceConfiguration(memory_limit=_tf_gpu_memory_limit)] ) logical_gpus = tf.config.list_logical_devices("GPU") print("Logical GPUs", logical_gpus) except RuntimeError as e: # Virtual devices must be set before GPUs have been initialized print(e) if is_torch_available(): from transformers import BertModel @require_tf class TFModelUtilsTest(unittest.TestCase): def test_cached_files_are_used_when_internet_is_down(self): # A mock response for an HTTP head request to emulate server down response_mock = mock.Mock() response_mock.status_code = 500 response_mock.headers = {} response_mock.raise_for_status.side_effect = HTTPError response_mock.json.return_value = {} # Download this model to make sure it's in the cache. _ = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request", return_value=response_mock) as mock_head: _ = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") # This check we did call the fake head request mock_head.assert_called() # tests whether the unpack_inputs function behaves as expected def test_unpack_inputs(self): class DummyModel: def __init__(self): config_kwargs = {"output_attentions": False, "output_hidden_states": False, "return_dict": False} self.config = PretrainedConfig(**config_kwargs) self.main_input_name = "input_ids" @unpack_inputs def call( self, input_ids=None, past_key_values=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): return input_ids, past_key_values, output_attentions, output_hidden_states, return_dict @unpack_inputs def foo(self, pixel_values, output_attentions=None, output_hidden_states=None, return_dict=None): return pixel_values, output_attentions, output_hidden_states, return_dict dummy_model = DummyModel() input_ids = tf.constant([0, 1, 2, 3], dtype=tf.int32) past_key_values = tf.constant([4, 5, 6, 7], dtype=tf.int32) pixel_values = tf.constant([8, 9, 10, 11], dtype=tf.int32) # test case 1: Pass inputs as keyword arguments; Booleans are inherited from the config. output = dummy_model.call(input_ids=input_ids, past_key_values=past_key_values) tf.debugging.assert_equal(output[0], input_ids) tf.debugging.assert_equal(output[1], past_key_values) self.assertFalse(output[2]) self.assertFalse(output[3]) self.assertFalse(output[4]) # test case 2: Same as above, but with positional arguments. output = dummy_model.call(input_ids, past_key_values) tf.debugging.assert_equal(output[0], input_ids) tf.debugging.assert_equal(output[1], past_key_values) self.assertFalse(output[2]) self.assertFalse(output[3]) self.assertFalse(output[4]) # test case 3: We can also pack everything in the first input. output = dummy_model.call(input_ids={"input_ids": input_ids, "past_key_values": past_key_values}) tf.debugging.assert_equal(output[0], input_ids) tf.debugging.assert_equal(output[1], past_key_values) self.assertFalse(output[2]) self.assertFalse(output[3]) self.assertFalse(output[4]) # test case 4: Explicit boolean arguments should override the config. output = dummy_model.call( input_ids=input_ids, past_key_values=past_key_values, output_attentions=False, return_dict=True ) tf.debugging.assert_equal(output[0], input_ids) tf.debugging.assert_equal(output[1], past_key_values) self.assertFalse(output[2]) self.assertFalse(output[3]) self.assertTrue(output[4]) # test case 5: Unexpected arguments should raise an exception. with self.assertRaises(ValueError): output = dummy_model.call(input_ids=input_ids, past_key_values=past_key_values, foo="bar") # test case 6: the decorator is independent from `main_input_name` -- it treats the first argument of the # decorated function as its main input. output = dummy_model.foo(pixel_values=pixel_values) tf.debugging.assert_equal(output[0], pixel_values) self.assertFalse(output[1]) self.assertFalse(output[2]) self.assertFalse(output[3]) # Tests whether the stable softmax is stable on CPU, with and without XLA def test_xla_stable_softmax(self): large_penalty = -1e9 n_tokens = 10 batch_size = 8 def masked_softmax(x, boolean_mask): numerical_mask = (1.0 - tf.cast(boolean_mask, dtype=tf.float32)) * large_penalty masked_x = x + numerical_mask return stable_softmax(masked_x) xla_masked_softmax = tf.function(masked_softmax, jit_compile=True) xla_stable_softmax = tf.function(stable_softmax, jit_compile=True) x = tf.random.normal((batch_size, n_tokens)) # Same outcome regardless of the boolean mask here masked_tokens = random.randint(0, n_tokens) boolean_mask = tf.convert_to_tensor([[1] * (n_tokens - masked_tokens) + [0] * masked_tokens], dtype=tf.int32) # We can randomly mask a random numerical input OUTSIDE XLA numerical_mask = (1.0 - tf.cast(boolean_mask, dtype=tf.float32)) * large_penalty masked_x = x + numerical_mask xla_out = xla_stable_softmax(masked_x) out = stable_softmax(masked_x) assert tf.experimental.numpy.allclose(xla_out, out) # The stable softmax has the same output as the original softmax unstable_out = tf.nn.softmax(masked_x) assert tf.experimental.numpy.allclose(unstable_out, out) # We can randomly mask a random numerical input INSIDE XLA xla_out = xla_masked_softmax(x, boolean_mask) out = masked_softmax(x, boolean_mask) assert tf.experimental.numpy.allclose(xla_out, out) def test_checkpoint_sharding_from_hub(self): model = TFBertModel.from_pretrained("ArthurZ/tiny-random-bert-sharded") # the model above is the same as the model below, just a sharded version. ref_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") for p1, p2 in zip(model.weights, ref_model.weights): assert np.allclose(p1.numpy(), p2.numpy()) def test_sharded_checkpoint_with_prefix(self): model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert", load_weight_prefix="a/b") sharded_model = TFBertModel.from_pretrained("ArthurZ/tiny-random-bert-sharded", load_weight_prefix="a/b") for p1, p2 in zip(model.weights, sharded_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) self.assertTrue(p1.name.startswith("a/b/")) self.assertTrue(p2.name.startswith("a/b/")) def test_sharded_checkpoint_transfer(self): # If this doesn't throw an error then the test passes TFBertForSequenceClassification.from_pretrained("ArthurZ/tiny-random-bert-sharded") @is_pt_tf_cross_test def test_checkpoint_sharding_local_from_pt(self): with tempfile.TemporaryDirectory() as tmp_dir: _ = Repository(local_dir=tmp_dir, clone_from="hf-internal-testing/tiny-random-bert-sharded") model = TFBertModel.from_pretrained(tmp_dir, from_pt=True) # the model above is the same as the model below, just a sharded pytorch version. ref_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") for p1, p2 in zip(model.weights, ref_model.weights): assert np.allclose(p1.numpy(), p2.numpy()) @is_pt_tf_cross_test def test_checkpoint_loading_with_prefix_from_pt(self): model = TFBertModel.from_pretrained( "hf-internal-testing/tiny-random-bert", from_pt=True, load_weight_prefix="a/b" ) ref_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert", from_pt=True) for p1, p2 in zip(model.weights, ref_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) self.assertTrue(p1.name.startswith("a/b/")) @is_pt_tf_cross_test def test_checkpoint_sharding_hub_from_pt(self): model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded", from_pt=True) # the model above is the same as the model below, just a sharded pytorch version. ref_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") for p1, p2 in zip(model.weights, ref_model.weights): assert np.allclose(p1.numpy(), p2.numpy()) def test_shard_checkpoint(self): # This is the model we will use, total size 340,000 bytes. model = keras.Sequential( [ keras.layers.Dense(200, use_bias=False), # size 80,000 keras.layers.Dense(200, use_bias=False), # size 160,000 keras.layers.Dense(100, use_bias=False), # size 80,000 keras.layers.Dense(50, use_bias=False), # size 20,000 ] ) inputs = tf.zeros((1, 100), dtype=tf.float32) model(inputs) weights = model.weights weights_dict = {w.name: w for w in weights} with self.subTest("No shard when max size is bigger than model size"): shards, index = tf_shard_checkpoint(weights) self.assertIsNone(index) self.assertDictEqual(shards, {TF2_WEIGHTS_NAME: weights}) with self.subTest("Test sharding, no weights bigger than max size"): shards, index = tf_shard_checkpoint(weights, max_shard_size="300kB") # Split is first two layers then last two. self.assertDictEqual( index, { "metadata": {"total_size": 340000}, "weight_map": { "dense/kernel:0": "tf_model-00001-of-00002.h5", "dense_1/kernel:0": "tf_model-00001-of-00002.h5", "dense_2/kernel:0": "tf_model-00002-of-00002.h5", "dense_3/kernel:0": "tf_model-00002-of-00002.h5", }, }, ) shard1 = [weights_dict["dense/kernel:0"], weights_dict["dense_1/kernel:0"]] shard2 = [weights_dict["dense_2/kernel:0"], weights_dict["dense_3/kernel:0"]] self.assertDictEqual(shards, {"tf_model-00001-of-00002.h5": shard1, "tf_model-00002-of-00002.h5": shard2}) with self.subTest("Test sharding with weights bigger than max size"): shards, index = tf_shard_checkpoint(weights, max_shard_size="100kB") # Split is first layer, second layer then last 2. self.assertDictEqual( index, { "metadata": {"total_size": 340000}, "weight_map": { "dense/kernel:0": "tf_model-00001-of-00003.h5", "dense_1/kernel:0": "tf_model-00002-of-00003.h5", "dense_2/kernel:0": "tf_model-00003-of-00003.h5", "dense_3/kernel:0": "tf_model-00003-of-00003.h5", }, }, ) shard1 = [weights_dict["dense/kernel:0"]] shard2 = [weights_dict["dense_1/kernel:0"]] shard3 = [weights_dict["dense_2/kernel:0"], weights_dict["dense_3/kernel:0"]] self.assertDictEqual( shards, { "tf_model-00001-of-00003.h5": shard1, "tf_model-00002-of-00003.h5": shard2, "tf_model-00003-of-00003.h5": shard3, }, ) @slow def test_special_layer_name_sharding(self): retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True) model = TFRagModel.from_pretrained("facebook/rag-token-nq", retriever=retriever) with tempfile.TemporaryDirectory() as tmp_dir: for max_size in ["150kB", "150kiB", "200kB", "200kiB"]: model.save_pretrained(tmp_dir, max_shard_size=max_size) ref_model = TFRagModel.from_pretrained(tmp_dir, retriever=retriever) for p1, p2 in zip(model.weights, ref_model.weights): assert np.allclose(p1.numpy(), p2.numpy()) @require_safetensors def test_checkpoint_sharding_local(self): model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") with tempfile.TemporaryDirectory() as tmp_dir: # We use the same folder for various sizes to make sure a new save erases the old checkpoint. for max_size in ["150kB", "150kiB", "200kB", "200kiB"]: model.save_pretrained(tmp_dir, max_shard_size=max_size) # Get each shard file and its size shard_to_size = {} for shard in os.listdir(tmp_dir): if shard.endswith(".h5"): shard_file = os.path.join(tmp_dir, shard) shard_to_size[shard_file] = os.path.getsize(shard_file) index_file = os.path.join(tmp_dir, TF2_WEIGHTS_INDEX_NAME) # Check there is an index but no regular weight file self.assertTrue(os.path.isfile(index_file)) self.assertFalse(os.path.isfile(os.path.join(tmp_dir, TF2_WEIGHTS_NAME))) # Check a file is bigger than max_size only when it has a single weight for shard_file, size in shard_to_size.items(): if max_size.endswith("kiB"): max_size_int = int(max_size[:-3]) * 2**10 else: max_size_int = int(max_size[:-2]) * 10**3 # Note: pickle adds some junk so the weight of the file can end up being slightly bigger than # the size asked for (since we count parameters) if size >= max_size_int + 50000: with h5py.File(shard_file, "r") as state_file: self.assertEqual(len(state_file), 1) # Check the index and the shard files found match with open(index_file, "r", encoding="utf-8") as f: index = json.loads(f.read()) all_shards = set(index["weight_map"].values()) shards_found = {f for f in os.listdir(tmp_dir) if f.endswith(".h5")} self.assertSetEqual(all_shards, shards_found) # Finally, check the model can be reloaded new_model = TFBertModel.from_pretrained(tmp_dir) model.build_in_name_scope() new_model.build_in_name_scope() for p1, p2 in zip(model.weights, new_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) def test_safetensors_checkpoint_sharding_local(self): model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") with tempfile.TemporaryDirectory() as tmp_dir: # We use the same folder for various sizes to make sure a new save erases the old checkpoint. for max_size in ["150kB", "150kiB", "200kB", "200kiB"]: model.save_pretrained(tmp_dir, max_shard_size=max_size, safe_serialization=True) # Get each shard file and its size shard_to_size = {} for shard in os.listdir(tmp_dir): if shard.endswith(".h5"): shard_file = os.path.join(tmp_dir, shard) shard_to_size[shard_file] = os.path.getsize(shard_file) index_file = os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME) # Check there is an index but no regular weight file self.assertTrue(os.path.isfile(index_file)) self.assertFalse(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME))) self.assertFalse(os.path.isfile(os.path.join(tmp_dir, TF2_WEIGHTS_NAME))) self.assertFalse(os.path.isfile(os.path.join(tmp_dir, TF2_WEIGHTS_INDEX_NAME))) # Check the index and the shard files found match with open(index_file, "r", encoding="utf-8") as f: index = json.loads(f.read()) all_shards = set(index["weight_map"].values()) shards_found = {f for f in os.listdir(tmp_dir) if f.endswith(".safetensors")} self.assertSetEqual(all_shards, shards_found) # Finally, check the model can be reloaded new_model = TFBertModel.from_pretrained(tmp_dir) model.build_in_name_scope() new_model.build_in_name_scope() for p1, p2 in zip(model.weights, new_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) @is_pt_tf_cross_test @require_safetensors def test_bfloat16_torch_loading(self): # Assert that neither of these raise an error - both repos contain bfloat16 tensors model1 = TFAutoModel.from_pretrained("Rocketknight1/tiny-random-gpt2-bfloat16-pt", from_pt=True) model2 = TFAutoModel.from_pretrained("Rocketknight1/tiny-random-gpt2-bfloat16") # PT-format safetensors # Check that PT and safetensors loading paths end up with the same values for weight1, weight2 in zip(model1.weights, model2.weights): self.assertTrue(tf.reduce_all(weight1 == weight2)) @slow def test_save_pretrained_signatures(self): model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") # Short custom TF signature function. # `input_signature` is specific to BERT. @tf.function( input_signature=[ [ tf.TensorSpec([None, None], tf.int32, name="input_ids"), tf.TensorSpec([None, None], tf.int32, name="token_type_ids"), tf.TensorSpec([None, None], tf.int32, name="attention_mask"), ] ] ) def serving_fn(input): return model(input) # Using default signature (default behavior) overrides 'serving_default' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir, saved_model=True, signatures=None) model_loaded = keras.models.load_model(f"{tmp_dir}/saved_model/1") self.assertTrue("serving_default" in list(model_loaded.signatures.keys())) # Providing custom signature function with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir, saved_model=True, signatures={"custom_signature": serving_fn}) model_loaded = keras.models.load_model(f"{tmp_dir}/saved_model/1") self.assertTrue("custom_signature" in list(model_loaded.signatures.keys())) # Providing multiple custom signature function with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( tmp_dir, saved_model=True, signatures={"custom_signature_1": serving_fn, "custom_signature_2": serving_fn}, ) model_loaded = keras.models.load_model(f"{tmp_dir}/saved_model/1") self.assertTrue("custom_signature_1" in list(model_loaded.signatures.keys())) self.assertTrue("custom_signature_2" in list(model_loaded.signatures.keys())) @require_safetensors def test_safetensors_save_and_load(self): model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir, safe_serialization=True) # No tf_model.h5 file, only a model.safetensors self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME))) self.assertFalse(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME))) self.assertFalse(os.path.isfile(os.path.join(tmp_dir, TF2_WEIGHTS_NAME))) self.assertFalse(os.path.isfile(os.path.join(tmp_dir, TF2_WEIGHTS_INDEX_NAME))) new_model = TFBertModel.from_pretrained(tmp_dir) # Check models are equal for p1, p2 in zip(model.weights, new_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) @require_safetensors def test_safetensors_sharded_save_and_load(self): model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir, safe_serialization=True, max_shard_size="150kB") # No tf weights or index file, only a safetensors index self.assertFalse(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME))) self.assertFalse(os.path.isfile(os.path.join(tmp_dir, TF2_WEIGHTS_NAME))) self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME))) self.assertFalse(os.path.isfile(os.path.join(tmp_dir, TF2_WEIGHTS_INDEX_NAME))) new_model = TFBertModel.from_pretrained(tmp_dir) # Check models are equal for p1, p2 in zip(model.weights, new_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) @is_pt_tf_cross_test def test_safetensors_save_and_load_pt_to_tf(self): model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") pt_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert") with tempfile.TemporaryDirectory() as tmp_dir: pt_model.save_pretrained(tmp_dir, safe_serialization=True) # Check we have a model.safetensors file self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME))) new_model = TFBertModel.from_pretrained(tmp_dir) # Check models are equal for p1, p2 in zip(model.weights, new_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) @is_pt_tf_cross_test def test_sharded_safetensors_save_and_load_pt_to_tf(self): model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") pt_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert") with tempfile.TemporaryDirectory() as tmp_dir: pt_model.save_pretrained(tmp_dir, safe_serialization=True, max_shard_size="150kB") # Check we have a safetensors shard index file self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME))) new_model = TFBertModel.from_pretrained(tmp_dir) # Check models are equal for p1, p2 in zip(model.weights, new_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) @require_safetensors def test_safetensors_load_from_hub(self): tf_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") # Can load from the TF-formatted checkpoint safetensors_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert-safetensors-tf") # Check models are equal for p1, p2 in zip(safetensors_model.weights, tf_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) # Can load from the PyTorch-formatted checkpoint safetensors_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert-safetensors") # Check models are equal for p1, p2 in zip(safetensors_model.weights, tf_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) @require_safetensors def test_safetensors_tf_from_tf(self): model = TFBertModel.from_pretrained("hf-internal-testing/tiny-bert-tf-only") with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir, safe_serialization=True) new_model = TFBertModel.from_pretrained(tmp_dir) for p1, p2 in zip(model.weights, new_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) @require_safetensors @is_pt_tf_cross_test def test_safetensors_tf_from_torch(self): hub_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-bert-tf-only") model = BertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only") with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir, safe_serialization=True) new_model = TFBertModel.from_pretrained(tmp_dir) for p1, p2 in zip(hub_model.weights, new_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) @require_safetensors def test_safetensors_tf_from_sharded_h5_with_sharded_safetensors_local(self): with tempfile.TemporaryDirectory() as tmp_dir: path = snapshot_download("hf-internal-testing/tiny-bert-tf-safetensors-h5-sharded", cache_dir=tmp_dir) # This should not raise even if there are two types of sharded weights TFBertModel.from_pretrained(path) @require_safetensors def test_safetensors_tf_from_sharded_h5_with_sharded_safetensors_hub(self): # Confirm that we can correctly load the safetensors weights from a sharded hub repo even when TF weights present TFBertModel.from_pretrained("hf-internal-testing/tiny-bert-tf-safetensors-h5-sharded", use_safetensors=True) # Confirm that we can access the TF weights too TFBertModel.from_pretrained("hf-internal-testing/tiny-bert-tf-safetensors-h5-sharded", use_safetensors=False) @require_safetensors def test_safetensors_load_from_local(self): """ This test checks that we can load safetensors from a checkpoint that only has those on the Hub """ with tempfile.TemporaryDirectory() as tmp: location = snapshot_download("hf-internal-testing/tiny-bert-tf-only", cache_dir=tmp) tf_model = TFBertModel.from_pretrained(location) with tempfile.TemporaryDirectory() as tmp: location = snapshot_download("hf-internal-testing/tiny-bert-tf-safetensors-only", cache_dir=tmp) safetensors_model = TFBertModel.from_pretrained(location) for p1, p2 in zip(tf_model.weights, safetensors_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) @require_safetensors def test_safetensors_load_from_hub_from_safetensors_pt(self): """ This test checks that we can load safetensors from a checkpoint that only has those on the Hub. saved in the "pt" format. """ tf_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-bert-h5") # Can load from the PyTorch-formatted checkpoint safetensors_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-safetensors") for p1, p2 in zip(tf_model.weights, safetensors_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) @require_safetensors def test_safetensors_load_from_local_from_safetensors_pt(self): """ This test checks that we can load safetensors from a local checkpoint that only has those saved in the "pt" format. """ with tempfile.TemporaryDirectory() as tmp: location = snapshot_download("hf-internal-testing/tiny-bert-h5", cache_dir=tmp) tf_model = TFBertModel.from_pretrained(location) # Can load from the PyTorch-formatted checkpoint with tempfile.TemporaryDirectory() as tmp: location = snapshot_download("hf-internal-testing/tiny-bert-pt-safetensors", cache_dir=tmp) safetensors_model = TFBertModel.from_pretrained(location) for p1, p2 in zip(tf_model.weights, safetensors_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) @require_safetensors def test_safetensors_load_from_hub_h5_before_safetensors(self): """ This test checks that we'll first download h5 weights before safetensors The safetensors file on that repo is a pt safetensors and therefore cannot be loaded without PyTorch """ TFBertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-safetensors-msgpack") @require_safetensors def test_safetensors_load_from_local_h5_before_safetensors(self): """ This test checks that we'll first download h5 weights before safetensors The safetensors file on that repo is a pt safetensors and therefore cannot be loaded without PyTorch """ with tempfile.TemporaryDirectory() as tmp: location = snapshot_download("hf-internal-testing/tiny-bert-pt-safetensors-msgpack", cache_dir=tmp) TFBertModel.from_pretrained(location) @require_tf @is_staging_test class TFModelPushToHubTester(unittest.TestCase): @classmethod def setUpClass(cls): cls._token = TOKEN HfFolder.save_token(TOKEN) def test_push_to_hub(self): with TemporaryHubRepo(token=self._token) as tmp_repo: config = BertConfig( vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 ) model = TFBertModel(config) # Make sure model is properly initialized model.build_in_name_scope() logging.set_verbosity_info() logger = logging.get_logger("transformers.utils.hub") with CaptureLogger(logger) as cl: model.push_to_hub(tmp_repo.repo_id, token=self._token) logging.set_verbosity_warning() # Check the model card was created and uploaded. self.assertIn("Uploading the following files to __DUMMY_TRANSFORMERS_USER__/test-model-tf", cl.out) new_model = TFBertModel.from_pretrained(tmp_repo.repo_id) models_equal = True for p1, p2 in zip(model.weights, new_model.weights): if not tf.math.reduce_all(p1 == p2): models_equal = False break self.assertTrue(models_equal) def test_push_to_hub_via_save_pretrained(self): with TemporaryHubRepo(token=self._token) as tmp_repo: config = BertConfig( vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 ) model = TFBertModel(config) # Make sure model is properly initialized model.build_in_name_scope() # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir, repo_id=tmp_repo.repo_id, push_to_hub=True, token=self._token) new_model = TFBertModel.from_pretrained(tmp_repo.repo_id) models_equal = True for p1, p2 in zip(model.weights, new_model.weights): if not tf.math.reduce_all(p1 == p2): models_equal = False break self.assertTrue(models_equal) @is_pt_tf_cross_test def test_push_to_hub_callback(self): with TemporaryHubRepo(token=self._token) as tmp_repo: config = BertConfig( vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 ) model = TFBertForMaskedLM(config) model.compile() with tempfile.TemporaryDirectory() as tmp_dir: push_to_hub_callback = PushToHubCallback( output_dir=tmp_dir, hub_model_id=tmp_repo.repo_id, hub_token=self._token, ) model.fit(model.dummy_inputs, model.dummy_inputs, epochs=1, callbacks=[push_to_hub_callback]) new_model = TFBertForMaskedLM.from_pretrained(tmp_repo.repo_id) models_equal = True for p1, p2 in zip(model.weights, new_model.weights): if not tf.math.reduce_all(p1 == p2): models_equal = False break self.assertTrue(models_equal) tf_push_to_hub_params = dict(inspect.signature(TFPreTrainedModel.push_to_hub).parameters) tf_push_to_hub_params.pop("base_model_card_args") pt_push_to_hub_params = dict(inspect.signature(PreTrainedModel.push_to_hub).parameters) pt_push_to_hub_params.pop("deprecated_kwargs") self.assertDictEaual(tf_push_to_hub_params, pt_push_to_hub_params) def test_push_to_hub_in_organization(self): with TemporaryHubRepo(namespace="valid_org", token=self._token) as tmp_repo: config = BertConfig( vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 ) model = TFBertModel(config) # Make sure model is properly initialized model.build_in_name_scope() model.push_to_hub(tmp_repo.repo_id, token=self._token) new_model = TFBertModel.from_pretrained(tmp_repo.repo_id) models_equal = True for p1, p2 in zip(model.weights, new_model.weights): if not tf.math.reduce_all(p1 == p2): models_equal = False break self.assertTrue(models_equal) def test_push_to_hub_in_organization_via_save_pretrained(self): with TemporaryHubRepo(namespace="valid_org", token=self._token) as tmp_repo: config = BertConfig( vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 ) model = TFBertModel(config) # Make sure model is properly initialized model.build_in_name_scope() # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir, push_to_hub=True, token=self._token, repo_id=tmp_repo.repo_id) new_model = TFBertModel.from_pretrained(tmp_repo.repo_id) models_equal = True for p1, p2 in zip(model.weights, new_model.weights): if not tf.math.reduce_all(p1 == p2): models_equal = False break self.assertTrue(models_equal)
transformers/tests/utils/test_modeling_tf_utils.py/0
{ "file_path": "transformers/tests/utils/test_modeling_tf_utils.py", "repo_id": "transformers", "token_count": 17334 }
204
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script is responsible for cleaning the list of doctests by making sure the entries all exist and are in alphabetical order. Usage (from the root of the repo): Check that the doctest list is properly sorted and all files exist (used in `make repo-consistency`): ```bash python utils/check_doctest_list.py ``` Auto-sort the doctest list if it is not properly sorted (used in `make fix-copies`): ```bash python utils/check_doctest_list.py --fix_and_overwrite ``` """ import argparse import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py REPO_PATH = "." DOCTEST_FILE_PATHS = ["not_doctested.txt", "slow_documentation_tests.txt"] def clean_doctest_list(doctest_file: str, overwrite: bool = False): """ Cleans the doctest in a given file. Args: doctest_file (`str`): The path to the doctest file to check or clean. overwrite (`bool`, *optional*, defaults to `False`): Whether or not to fix problems. If `False`, will error when the file is not clean. """ non_existent_paths = [] all_paths = [] with open(doctest_file, "r", encoding="utf-8") as f: for line in f: line = line.strip().split(" ")[0] path = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(line) if len(non_existent_paths) > 0: non_existent_paths = "\n".join([f"- {f}" for f in non_existent_paths]) raise ValueError(f"`{doctest_file}` contains non-existent paths:\n{non_existent_paths}") sorted_paths = sorted(all_paths) if all_paths != sorted_paths: if not overwrite: raise ValueError( f"Files in `{doctest_file}` are not in alphabetical order, run `make fix-copies` to fix " "this automatically." ) with open(doctest_file, "w", encoding="utf-8") as f: f.write("\n".join(sorted_paths) + "\n") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") args = parser.parse_args() for doctest_file in DOCTEST_FILE_PATHS: doctest_file = os.path.join(REPO_PATH, "utils", doctest_file) clean_doctest_list(doctest_file, args.fix_and_overwrite)
transformers/utils/check_doctest_list.py/0
{ "file_path": "transformers/utils/check_doctest_list.py", "repo_id": "transformers", "token_count": 1180 }
205
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def get_jobs(workflow_run_id, token=None): """Extract jobs in a GitHub Actions workflow run""" headers = None if token is not None: headers = {"Accept": "application/vnd.github+json", "Authorization": f"Bearer {token}"} url = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" result = requests.get(url, headers=headers).json() jobs = [] try: jobs.extend(result["jobs"]) pages_to_iterate_over = math.ceil((result["total_count"] - 100) / 100) for i in range(pages_to_iterate_over): result = requests.get(url + f"&page={i + 2}", headers=headers).json() jobs.extend(result["jobs"]) return jobs except Exception: print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}") return [] def get_job_links(workflow_run_id, token=None): """Extract job names and their job links in a GitHub Actions workflow run""" headers = None if token is not None: headers = {"Accept": "application/vnd.github+json", "Authorization": f"Bearer {token}"} url = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" result = requests.get(url, headers=headers).json() job_links = {} try: job_links.update({job["name"]: job["html_url"] for job in result["jobs"]}) pages_to_iterate_over = math.ceil((result["total_count"] - 100) / 100) for i in range(pages_to_iterate_over): result = requests.get(url + f"&page={i + 2}", headers=headers).json() job_links.update({job["name"]: job["html_url"] for job in result["jobs"]}) return job_links except Exception: print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}") return {} def get_artifacts_links(worflow_run_id, token=None): """Get all artifact links from a workflow run""" headers = None if token is not None: headers = {"Accept": "application/vnd.github+json", "Authorization": f"Bearer {token}"} url = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100" result = requests.get(url, headers=headers).json() artifacts = {} try: artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]}) pages_to_iterate_over = math.ceil((result["total_count"] - 100) / 100) for i in range(pages_to_iterate_over): result = requests.get(url + f"&page={i + 2}", headers=headers).json() artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]}) return artifacts except Exception: print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}") return {} def download_artifact(artifact_name, artifact_url, output_dir, token): """Download a GitHub Action artifact from a URL. The URL is of the form `https://api.github.com/repos/huggingface/transformers/actions/artifacts/{ARTIFACT_ID}/zip`, but it can't be used to download directly. We need to get a redirect URL first. See https://docs.github.com/en/rest/actions/artifacts#download-an-artifact """ headers = None if token is not None: headers = {"Accept": "application/vnd.github+json", "Authorization": f"Bearer {token}"} result = requests.get(artifact_url, headers=headers, allow_redirects=False) download_url = result.headers["Location"] response = requests.get(download_url, allow_redirects=True) file_path = os.path.join(output_dir, f"{artifact_name}.zip") with open(file_path, "wb") as fp: fp.write(response.content) def get_errors_from_single_artifact(artifact_zip_path, job_links=None): """Extract errors from a downloaded artifact (in .zip format)""" errors = [] failed_tests = [] job_name = None with zipfile.ZipFile(artifact_zip_path) as z: for filename in z.namelist(): if not os.path.isdir(filename): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(filename) as f: for line in f: line = line.decode("UTF-8").strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs error_line = line[: line.index(": ")] error = line[line.index(": ") + len(": ") :] errors.append([error_line, error]) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("FAILED "): # `test` is the test method that failed test = line[len("FAILED ") :] failed_tests.append(test) elif filename == "job_name.txt": job_name = line if len(errors) != len(failed_tests): raise ValueError( f"`errors` and `failed_tests` should have the same number of elements. Got {len(errors)} for `errors` " f"and {len(failed_tests)} for `failed_tests` instead. The test reports in {artifact_zip_path} have some" " problem." ) job_link = None if job_name and job_links: job_link = job_links.get(job_name, None) # A list with elements of the form (line of error, error, failed test) result = [x + [y] + [job_link] for x, y in zip(errors, failed_tests)] return result def get_all_errors(artifact_dir, job_links=None): """Extract errors from all artifact files""" errors = [] paths = [os.path.join(artifact_dir, p) for p in os.listdir(artifact_dir) if p.endswith(".zip")] for p in paths: errors.extend(get_errors_from_single_artifact(p, job_links=job_links)) return errors def reduce_by_error(logs, error_filter=None): """count each error""" counter = Counter() counter.update([x[1] for x in logs]) counts = counter.most_common() r = {} for error, count in counts: if error_filter is None or error not in error_filter: r[error] = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]} r = dict(sorted(r.items(), key=lambda item: item[1]["count"], reverse=True)) return r def get_model(test): """Get the model name from a test method""" test = test.split("::")[0] if test.startswith("tests/models/"): test = test.split("/")[2] else: test = None return test def reduce_by_model(logs, error_filter=None): """count each error per model""" logs = [(x[0], x[1], get_model(x[2])) for x in logs] logs = [x for x in logs if x[2] is not None] tests = {x[2] for x in logs} r = {} for test in tests: counter = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test]) counts = counter.most_common() error_counts = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} n_errors = sum(error_counts.values()) if n_errors > 0: r[test] = {"count": n_errors, "errors": error_counts} r = dict(sorted(r.items(), key=lambda item: item[1]["count"], reverse=True)) return r def make_github_table(reduced_by_error): header = "| no. | error | status |" sep = "|-:|:-|:-|" lines = [header, sep] for error in reduced_by_error: count = reduced_by_error[error]["count"] line = f"| {count} | {error[:100]} | |" lines.append(line) return "\n".join(lines) def make_github_table_per_model(reduced_by_model): header = "| model | no. of errors | major error | count |" sep = "|-:|-:|-:|-:|" lines = [header, sep] for model in reduced_by_model: count = reduced_by_model[model]["count"] error, _count = list(reduced_by_model[model]["errors"].items())[0] line = f"| {model} | {count} | {error[:60]} | {_count} |" lines.append(line) return "\n".join(lines) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") args = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _job_links = get_job_links(args.workflow_run_id, token=args.token) job_links = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: index = k.find(" / ") k = k[index + len(" / ") :] job_links[k] = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) artifacts = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) errors = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error counter = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors most_common = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) reduced_by_error = reduce_by_error(errors) reduced_by_model = reduce_by_model(errors) s1 = make_github_table(reduced_by_error) s2 = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(s1) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(s2)
transformers/utils/get_ci_error_statistics.py/0
{ "file_path": "transformers/utils/get_ci_error_statistics.py", "repo_id": "transformers", "token_count": 4815 }
206
"""An internal script to process `new_model_failures_with_bad_commit.json` produced by `utils/check_bad_commit.py`. This is used by `.github/workflows/check_failed_model_tests.yml` to produce a slack report of the following form ``` <{url}|New failed tests> { "GH_ydshieh": { "vit": 1 } } ``` """ import datetime import json import os from collections import Counter from copy import deepcopy from huggingface_hub import HfApi if __name__ == "__main__": api = HfApi() with open("new_model_failures_with_bad_commit.json") as fp: data = json.load(fp) # TODO: extend team_members = [ "ydshieh", "zucchini-nlp", "ArthurZucker", "gante", "LysandreJik", "molbap", "qubvel", "Rocketknight1", "muellerzr", "SunMarc", ] # Counting the number of failures grouped by authors new_data = {} for model, model_result in data.items(): for device, failed_tests in model_result.items(): for failed_test in failed_tests: author = failed_test["author"] if author not in team_members: author = failed_test["merged_by"] if author not in new_data: new_data[author] = Counter() new_data[author].update([model]) for author in new_data: new_data[author] = dict(new_data[author]) # Group by author new_data_full = {author: deepcopy(data) for author in new_data} for author, _data in new_data_full.items(): for model, model_result in _data.items(): for device, failed_tests in model_result.items(): failed_tests = [x for x in failed_tests if x["author"] == author or x["merged_by"] == author] model_result[device] = failed_tests _data[model] = {k: v for k, v in model_result.items() if len(v) > 0} new_data_full[author] = {k: v for k, v in _data.items() if len(v) > 0} # Upload to Hub and get the url with open("new_model_failures_with_bad_commit_grouped_by_authors.json", "w") as fp: json.dump(new_data_full, fp, ensure_ascii=False, indent=4) commit_info = api.upload_file( path_or_fileobj="new_model_failures_with_bad_commit_grouped_by_authors.json", path_in_repo=f"{datetime.datetime.today().strftime('%Y-%m-%d')}/ci_results_run_models_gpu/new_model_failures_with_bad_commit_grouped_by_authors.json", repo_id="hf-internal-testing/transformers_daily_ci", repo_type="dataset", token=os.environ.get("TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN", None), ) url = f"https://huggingface.co/datasets/hf-internal-testing/transformers_daily_ci/raw/{commit_info.oid}/{datetime.datetime.today().strftime('%Y-%m-%d')}/ci_results_run_models_gpu/new_model_failures_with_bad_commit_grouped_by_authors.json" # Add `GH_` prefix as keyword mention output = {} for author, item in new_data.items(): author = f"GH_{author}" output[author] = item report = f"<{url}|New failed tests>\\n\\n" report += json.dumps(output, indent=4).replace('"', '\\"').replace("\n", "\\n") print(report)
transformers/utils/process_bad_commit_report.py/0
{ "file_path": "transformers/utils/process_bad_commit_report.py", "repo_id": "transformers", "token_count": 1414 }
207
from transformers import BertTokenizer class CustomTokenizer(BertTokenizer): pass
transformers/utils/test_module/custom_tokenization.py/0
{ "file_path": "transformers/utils/test_module/custom_tokenization.py", "repo_id": "transformers", "token_count": 25 }
208