Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
10K - 100K
ArXiv:
Tags:
question-generation
License:
File size: 6,605 Bytes
d22f92b a8807ea d22f92b c32e7dd d22f92b c32e7dd d22f92b f8e6d3e d22f92b f8e6d3e d22f92b f8e6d3e d22f92b f8e6d3e 1589ced f8e6d3e 93add4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
""" Script to process raw SQuADshift file for Question Generation format
cd data/processed
gsplit -l 1500 -d --additional-suffix=.jsonl new_wiki.test.jsonl new_wiki.test
gsplit -l 1500 -d --additional-suffix=.jsonl nyt.test.jsonl nyt.test
gsplit -l 1500 -d --additional-suffix=.jsonl reddit.test.jsonl reddit.test
gsplit -l 1500 -d --additional-suffix=.jsonl amazon.test.jsonl amazon.test
gsplit -l 1500 -d --additional-suffix=.jsonl new_wiki.train.jsonl new_wiki.train
gsplit -l 1500 -d --additional-suffix=.jsonl nyt.train.jsonl nyt.train
gsplit -l 1500 -d --additional-suffix=.jsonl reddit.train.jsonl reddit.train
gsplit -l 1500 -d --additional-suffix=.jsonl amazon.train.jsonl amazon.train
gsplit -l 1500 -d --additional-suffix=.jsonl new_wiki.validation.jsonl new_wiki.validation
gsplit -l 1500 -d --additional-suffix=.jsonl nyt.validation.jsonl nyt.validation
gsplit -l 1500 -d --additional-suffix=.jsonl reddit.validation.jsonl reddit.validation
gsplit -l 1500 -d --additional-suffix=.jsonl amazon.validation.jsonl amazon.validation
rm -rf new_wiki.test.jsonl
rm -rf nyt.test.jsonl
rm -rf reddit.test.jsonl
rm -rf amazon.test.jsonl
rm -rf new_wiki.train.jsonl
rm -rf nyt.train.jsonl
rm -rf reddit.train.jsonl
rm -rf amazon.train.jsonl
rm -rf new_wiki.validation.jsonl
rm -rf nyt.validation.jsonl
rm -rf reddit.validation.jsonl
rm -rf amazon.validation.jsonl
"""
import json
import os
import re
from random import shuffle, seed
from tqdm import tqdm
import spacy
from datasets import load_dataset
DATASET_NAME = "squadshifts"
DATASET_TYPES = ['new_wiki', 'nyt', 'reddit', 'amazon']
HIGHLIGHT_TOKEN = '<hl>'
GENERATE_TEST_SPLIT = True
SPLITTER = spacy.load('en_core_web_sm')
def get_sentence(document: str): return [str(sent) for sent in SPLITTER(document).sents]
def process_single_data(question: str, paragraph: str, answer: str):
""" Convert single raw json data into QG format """
example = {'question': question, 'paragraph': paragraph, 'answer': answer}
start = example['paragraph'].find(example['answer'])
end = start + len(answer)
assert paragraph[start:end] == answer
# get sentence
before_tmp = get_sentence(example['paragraph'][:start])
if len(before_tmp) == 0:
before = ''
before_sentence = ''
else:
if before_tmp[-1].endswith('.'):
before = ' '.join(before_tmp)
before_sentence = ''
else:
before = ' '.join(before_tmp[:-1])
before_sentence = before_tmp[-1]
before_sentence = before_sentence if before_sentence.endswith(' ') else f'{before_sentence} '
after_tmp = get_sentence(example['paragraph'][start + len(example['answer']):])
if len(after_tmp) == 0:
after = ''
after_sentence = ''
else:
after = ' '.join(after_tmp[1:])
after_sentence = after_tmp[0]
after_sentence = after_sentence if after_sentence.startswith(' ') else f' {after_sentence}'
example['sentence'] = f"{before_sentence}{example['answer']}{after_sentence}"
# get paragraph_sentence
before = '' if before == '' else f'{before} '
after = '' if after == '' else f' {after}'
source_text = '{0}{1} {2} {1}{3}'.format(before, HIGHLIGHT_TOKEN, example['sentence'], after)
example['paragraph_sentence'] = re.sub(r'\s+', ' ', source_text)
# get paragraph_answer
source_text = '{0}{1} {2} {1}{3}'.format(
example['paragraph'][:start], HIGHLIGHT_TOKEN, example['answer'],
example['paragraph'][start + len(example['answer']):])
example['paragraph_answer'] = re.sub(r'\s+', ' ', source_text)
# get sentence_answer
if len(before_tmp) == 0 or before_tmp[-1].endswith('.'):
before = ''
else:
before = before_tmp[-1] if before_tmp[-1].endswith(' ') else f'{before_tmp[-1]} '
if len(after_tmp) == 0:
after = ''
else:
after = after_tmp[0] if after_tmp[0].startswith(' ') else f' {after_tmp[0]}'
source_text = '{0}{1} {2} {1}{3}'.format(before, HIGHLIGHT_TOKEN, example['answer'], after)
example['sentence_answer'] = re.sub(r'\s+', ' ', source_text)
return example
if __name__ == '__main__':
output = './data/processed'
os.makedirs(output, exist_ok=True)
for data_type in DATASET_TYPES:
dataset = load_dataset(DATASET_NAME, data_type)
_split = 'test'
tmp_dataset = dataset[_split]
full_data = []
for single_data in tqdm(tmp_dataset):
question_str = single_data['question'] #.replace("\n", ".").replace('"', "'")
paragraph_str = single_data['context'] #.replace("\n", ".").replace('"', "'")
answer_str = single_data['answers']['text']
if type(answer_str) == list:
answer_str = answer_str[0]
assert type(answer_str) is str, answer_str
assert type(question_str) is str, question_str
assert type(paragraph_str) is str, paragraph_str
tmp_data = process_single_data(question=question_str, paragraph=paragraph_str, answer=answer_str)
tmp_data['paragraph_id'] = single_data['id']
full_data.append(tmp_data)
# split test into train/valid/test
test_size = int(len(full_data)/2)
train_size = int((len(full_data) - test_size) * 2/3)
# train_size = 2500
valid_size = len(full_data) - train_size - test_size
assert train_size + test_size + valid_size == len(full_data), f"{train_size}, {test_size}, {valid_size}"
paragraph_ids = list(set([i['paragraph_id'] for i in full_data]))
data_dict = {p: [i for i in full_data if i['paragraph_id'] == p] for p in paragraph_ids}
seed(0)
shuffle(paragraph_ids)
lines_train = []
lines_test = []
lines_valid = []
for i in paragraph_ids:
if len(lines_test) < test_size:
lines_test += data_dict[i]
elif len(lines_train) < train_size:
lines_train += data_dict[i]
else:
lines_valid += data_dict[i]
print(f'STATS(train/valid/test): {data_type}| {len(lines_train)}/{len(lines_valid)}/{len(lines_test)}')
with open(f'{output}/{data_type}.test.jsonl', 'w') as f:
f.write('\n'.join([json.dumps(i) for i in lines_test]))
with open(f'{output}/{data_type}.train.jsonl', 'w') as f:
f.write('\n'.join([json.dumps(i) for i in lines_train]))
with open(f'{output}/{data_type}.validation.jsonl', 'w') as f:
f.write('\n'.join([json.dumps(i) for i in lines_valid]))
|