File size: 13,860 Bytes
2df65c7
 
 
c3cdfca
2df65c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3cdfca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2df65c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3cdfca
2df65c7
 
 
 
 
 
 
 
 
 
 
 
 
 
c3cdfca
 
 
 
 
 
 
 
2df65c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b14a0f3
2df65c7
 
 
 
 
 
 
 
c3cdfca
2df65c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3cdfca
2df65c7
 
c3cdfca
2df65c7
 
 
 
 
 
 
 
 
 
 
c3cdfca
2df65c7
 
c3cdfca
2df65c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import os
import tempfile
from pathlib import Path
from typing import Iterable, Tuple, List
import datasets

logger = datasets.logging.get_logger(__name__)

_CITATION = """@article{10.1162/tacl_a_00404,
    author = {Bareket, Dan and Tsarfaty, Reut},
    title = "{Neural Modeling for Named Entities and Morphology (NEMO2)}",
    journal = {Transactions of the Association for Computational Linguistics},
    volume = {9},
    pages = {909-928},
    year = {2021},
    month = {09},
    abstract = "{Named Entity Recognition (NER) is a fundamental NLP task, commonly formulated as classification over a sequence of tokens. Morphologically rich languages (MRLs) pose a challenge to this basic formulation, as the boundaries of named entities do not necessarily coincide with token boundaries, rather, they respect morphological boundaries. To address NER in MRLs we then need to answer two fundamental questions, namely, what are the basic units to be labeled, and how can these units be detected and classified in realistic settings (i.e., where no gold morphology is available). We empirically investigate these questions on a novel NER benchmark, with parallel token- level and morpheme-level NER annotations, which we develop for Modern Hebrew, a morphologically rich-and-ambiguous language. Our results show that explicitly modeling morphological boundaries leads to improved NER performance, and that a novel hybrid architecture, in which NER precedes and prunes morphological decomposition, greatly outperforms the standard pipeline, where morphological decomposition strictly precedes NER, setting a new performance bar for both Hebrew NER and Hebrew morphological decomposition tasks.}",
    issn = {2307-387X},
    doi = {10.1162/tacl_a_00404},
    url = {https://doi.org/10.1162/tacl\_a\_00404},
    eprint = {https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl\_a\_00404/1962472/tacl\_a\_00404.pdf},
}
"""

_DESCRIPTION = """\
"""

URL = "https://github.com/OnlpLab/NEMO-Corpus"


def tokens_with_tags_to_spans(tags: Iterable[str], tokens: Iterable[str]) -> List[
    Tuple[str, int, int]]:
    """
    Convert a list of tokens and tags to a list of spans for BIOSE/BIOLU schemes tags.
    Args:
        tags: list of entities tags
        tokens: list of tokens
    Note that the end index returned by this function is exclusive.
    No, need to increment the end by 1.
    Returns:
        list of {span, start, end, entity, start_char, end_char}
        where span is a phrase/tokens, start and end are the indices of the span,
        entity is the entity type, and start_char and end_char are the start
        and end characters of the span.
    """
    entities = []
    start = None
    start_char = None
    words = []
    curr_pos = 0
    for i, (tag, token) in enumerate(zip(tags, tokens)):
        if tag is None or tag.startswith("-"):
            if start is not None:
                start = None
                start_char = None
                words = []
            else:
                end_pos = curr_pos + len(token)
                words.append(token)
                entities.append({
                    "entity": "",
                    "span": " ".join(words),
                    "start": i,
                    "end": i + 1,
                    "start_char": curr_pos,
                    "end_char": end_pos
                })
        elif tag.startswith("O"):
            pass
        elif tag.startswith("I"):
            words.append(token)
            if start is None:
                raise ValueError(
                    "Invalid BILUO tag sequence: Got a tag starting with {start} "
                    "without a preceding 'B' (beginning of an entity). "
                    "Tag sequence:\n{tags}".format(start="I", tags=list(tags)[: i + 1])
                )
        elif tag.startswith("U") or tag.startswith("S"):
            end_pos = curr_pos + len(token)
            entities.append({
                "entity": tag[2:],
                "span": token,
                "start": i,
                "end": i + 1,
                "start_char": curr_pos,
                "end_char": end_pos
            })
        elif tag.startswith("B"):
            start = i
            start_char = curr_pos
            words.append(token)
        elif tag.startswith("L") or tag.startswith("E"):
            if start is None:
                raise ValueError(
                    "Invalid BILUO tag sequence: Got a tag starting with {start} "
                    "without a preceding 'B' (beginning of an entity). "
                    "Tag sequence:\n{tags}".format(start="L", tags=list(tags)[: i + 1])
                )
            end_pos = curr_pos + len(token)
            words.append(token)
            entities.append({
                "entity": tag[2:],
                "span": " ".join(words),
                "start": start,
                "end": i + 1,
                "start_char": start_char,
                "end_char": end_pos
            })
            start = None
            start_char = None
            words = []
        else:
            raise ValueError("Invalid BILUO tag: '{}'.".format(tag))
        curr_pos += len(token) + len(" ")
    return entities


class NemoCorpusConfig(datasets.BuilderConfig):
    """BuilderConfig for NemoCorpus"""

    def __init__(self):
        """BuilderConfig for flat Nemo corpus.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        version = datasets.Version("1.0.0")
        description = "Nemo corpus dataset"
        name = "flat"
        super(NemoCorpusConfig, self).__init__(version=version, description=description,
                                               name=name)
        self.features = datasets.Features(
            {
                "id": datasets.Value("string"),
                "tokens": datasets.Sequence(datasets.Value("string")),
                "sentence": datasets.Value("string"),
                "ner_tags": datasets.Sequence(
                    datasets.features.ClassLabel(
                        names=['S-ANG', 'B-ANG', 'I-ANG', 'E-ANG',
                               'S-DUC', 'B-DUC', 'I-DUC', 'E-DUC',
                               'B-EVE', 'E-EVE', 'S-EVE', 'I-EVE',
                               'S-FAC', 'B-FAC', 'E-FAC', 'I-FAC',
                               'S-GPE', 'B-GPE', 'E-GPE', 'I-GPE',
                               'S-LOC', 'B-LOC', 'E-LOC', 'I-LOC',
                               'O',
                               'S-ORG', 'B-ORG', 'E-ORG', 'I-ORG',
                               'B-PER', 'I-PER', 'E-PER', 'S-PER',
                               'B-WOA', 'E-WOA', 'I-WOA', 'S-WOA']
                    )
                ),
                "spans": datasets.Sequence({
                    "span": datasets.Value("string"),
                    "start": datasets.Value("int32"),
                    "end": datasets.Value("int32"),
                    "entity": datasets.Value("string"),
                    "start_char": datasets.Value("int32"),
                    "end_char": datasets.Value("int32"),
                })
            }
        )


class NemoCorpusNestedConfig(datasets.BuilderConfig):
    """BuilderConfig for NemoCorpus"""

    def __init__(self):
        """BuilderConfig for nested NemoCorpus.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        version = datasets.Version("1.0.0")
        description = "Nemo corpus dataset"
        name = "nested"
        super(NemoCorpusNestedConfig, self).__init__(version=version,
                                                     description=description,
                                                     name=name)
        self.classes = ['S-ANG', 'B-ANG', 'I-ANG', 'E-ANG',
                        'S-DUC', 'B-DUC', 'I-DUC', 'E-DUC',
                        'B-EVE', 'E-EVE', 'S-EVE', 'I-EVE',
                        'S-FAC', 'B-FAC', 'E-FAC', 'I-FAC',
                        'S-GPE', 'B-GPE', 'E-GPE', 'I-GPE',
                        'S-LOC', 'B-LOC', 'E-LOC', 'I-LOC',
                        'O',
                        'S-ORG', 'B-ORG', 'E-ORG', 'I-ORG',
                        'B-PER', 'I-PER', 'E-PER', 'S-PER',
                        'B-WOA', 'E-WOA', 'I-WOA', 'S-WOA']
        self.features = datasets.Features(
            {
                "id": datasets.Value("string"),
                "tokens": datasets.Sequence(datasets.Value("string")),
                "ner_tags": datasets.Sequence(
                    datasets.features.ClassLabel(names=self.classes)),
                "ner_tags_2": datasets.Sequence(
                    datasets.features.ClassLabel(names=self.classes)),
                "ner_tags_3": datasets.Sequence(
                    datasets.features.ClassLabel(names=self.classes)),
                "ner_tags_4": datasets.Sequence(
                    datasets.features.ClassLabel(names=self.classes)),
            }
        )


class NemoCorpus(datasets.GeneratorBasedBuilder):
    """NemoCorpus dataset."""

    DEFAULT_CONFIG_NAME = "flat"

    BUILDER_CONFIGS = [
        NemoCorpusConfig(),
        NemoCorpusNestedConfig()
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=self.config.features,
            supervised_keys=None,
            homepage="https://www.cs.bgu.ac.il/~elhadad/nlpproj/naama/",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        dirname = tempfile.TemporaryDirectory().name
        os.makedirs(dirname, exist_ok=True)
        os.system(f"cd {dirname} && git clone --depth=1 {URL}")
        folder = Path(dirname) / "NEMO-Corpus" / "data" / "spmrl" / "gold"
        if self.config.name == "nested":
            folder = folder / "nested"
        data_files = {
            "train": dl_manager.download(folder / "morph_gold_train.bmes"),
            "validation": dl_manager.download(folder / "morph_gold_dev.bmes"),
            "test": dl_manager.download(folder / "morph_gold_test.bmes"),
        }

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN,
                                    gen_kwargs={"filepath": data_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION,
                                    gen_kwargs={"filepath": data_files["validation"]}),
            datasets.SplitGenerator(name=datasets.Split.TEST,
                                    gen_kwargs={"filepath": data_files["test"]}),
        ]

    def _generate_examples(self, filepath, sep=" "):
        if self.config.name == "nested":
            yield from self._generate_examples_nested(filepath, sep)
        else:
            yield from self._generate_examples_flat(filepath, sep)

    def _generate_examples_flat(self, filepath, sep=" "):
        logger.info("⏳ Generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as f:
            guid = 0
            tokens = []
            ner_tags = []
            for line in f:
                if line.startswith("-DOCSTART-") or line == "" or line == "\n":
                    if tokens:
                        yield guid, {
                            "id": str(guid),
                            "sentence": " ".join(tokens),
                            "tokens": tokens,
                            "ner_tags": ner_tags,
                            "spans": tokens_with_tags_to_spans(ner_tags, tokens)
                        }
                        guid += 1
                        tokens = []
                        ner_tags = []
                else:
                    splits = line.split(sep)
                    tokens.append(splits[0])
                    ner_tags.append(splits[1].rstrip())
            # last example
            yield guid, {
                "id": str(guid),
                "sentence": " ".join(tokens),
                "tokens": tokens,
                "ner_tags": ner_tags,
                "spans": tokens_with_tags_to_spans(ner_tags, tokens)
            }

    def _generate_examples_nested(self, filepath, sep=" "):
        logger.info("⏳ Generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as f:
            guid = 0
            tokens = []
            ner_tags = []
            ner_tags_2 = []
            ner_tags_3 = []
            ner_tags_4 = []
            for line in f:
                if line.startswith("-DOCSTART-") or line == "" or line == "\n":
                    if tokens:
                        yield guid, {
                            "id": str(guid),
                            "tokens": tokens,
                            "ner_tags": ner_tags,
                            "ner_tags_2": ner_tags_2,
                            "ner_tags_3": ner_tags_3,
                            "ner_tags_4": ner_tags_4,
                        }
                        guid += 1
                        tokens = []
                        ner_tags = []
                        ner_tags_2 = []
                        ner_tags_3 = []
                        ner_tags_4 = []
                else:
                    splits = line.split(sep)
                    tokens.append(splits[0])
                    ner_tags.append(splits[1].rstrip())
                    ner_tags_2.append(splits[2].rstrip())
                    ner_tags_3.append(splits[3].rstrip())
                    ner_tags_4.append(splits[4].rstrip())
            # last example
            yield guid, {
                "id": str(guid),
                "tokens": tokens,
                "ner_tags": ner_tags,
                "ner_tags_2": ner_tags_2,
                "ner_tags_3": ner_tags_3,
                "ner_tags_4": ner_tags_4,
            }