imvladikon
commited on
Commit
•
c3cdfca
1
Parent(s):
b14a0f3
Update nemo_corpus.py
Browse files- nemo_corpus.py +102 -4
nemo_corpus.py
CHANGED
@@ -1,10 +1,7 @@
|
|
1 |
-
#!/usr/bin/env python3
|
2 |
-
# -*- coding: utf-8 -*-
|
3 |
-
|
4 |
import os
|
5 |
import tempfile
|
6 |
from pathlib import Path
|
7 |
-
|
8 |
import datasets
|
9 |
|
10 |
logger = datasets.logging.get_logger(__name__)
|
@@ -31,6 +28,93 @@ _DESCRIPTION = """\
|
|
31 |
URL = "https://github.com/OnlpLab/NEMO-Corpus"
|
32 |
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
class NemoCorpusConfig(datasets.BuilderConfig):
|
35 |
"""BuilderConfig for NemoCorpus"""
|
36 |
|
@@ -48,6 +132,7 @@ class NemoCorpusConfig(datasets.BuilderConfig):
|
|
48 |
{
|
49 |
"id": datasets.Value("string"),
|
50 |
"tokens": datasets.Sequence(datasets.Value("string")),
|
|
|
51 |
"ner_tags": datasets.Sequence(
|
52 |
datasets.features.ClassLabel(
|
53 |
names=['S-ANG', 'B-ANG', 'I-ANG', 'E-ANG',
|
@@ -62,6 +147,14 @@ class NemoCorpusConfig(datasets.BuilderConfig):
|
|
62 |
'B-WOA', 'E-WOA', 'I-WOA', 'S-WOA']
|
63 |
)
|
64 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
}
|
66 |
)
|
67 |
|
@@ -138,6 +231,7 @@ class NemoCorpus(datasets.GeneratorBasedBuilder):
|
|
138 |
"validation": dl_manager.download(folder / "morph_gold_dev.bmes"),
|
139 |
"test": dl_manager.download(folder / "morph_gold_test.bmes"),
|
140 |
}
|
|
|
141 |
return [
|
142 |
datasets.SplitGenerator(name=datasets.Split.TRAIN,
|
143 |
gen_kwargs={"filepath": data_files["train"]}),
|
@@ -164,8 +258,10 @@ class NemoCorpus(datasets.GeneratorBasedBuilder):
|
|
164 |
if tokens:
|
165 |
yield guid, {
|
166 |
"id": str(guid),
|
|
|
167 |
"tokens": tokens,
|
168 |
"ner_tags": ner_tags,
|
|
|
169 |
}
|
170 |
guid += 1
|
171 |
tokens = []
|
@@ -177,8 +273,10 @@ class NemoCorpus(datasets.GeneratorBasedBuilder):
|
|
177 |
# last example
|
178 |
yield guid, {
|
179 |
"id": str(guid),
|
|
|
180 |
"tokens": tokens,
|
181 |
"ner_tags": ner_tags,
|
|
|
182 |
}
|
183 |
|
184 |
def _generate_examples_nested(self, filepath, sep=" "):
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import tempfile
|
3 |
from pathlib import Path
|
4 |
+
from typing import Iterable, Tuple, List
|
5 |
import datasets
|
6 |
|
7 |
logger = datasets.logging.get_logger(__name__)
|
|
|
28 |
URL = "https://github.com/OnlpLab/NEMO-Corpus"
|
29 |
|
30 |
|
31 |
+
def tokens_with_tags_to_spans(tags: Iterable[str], tokens: Iterable[str]) -> List[
|
32 |
+
Tuple[str, int, int]]:
|
33 |
+
"""
|
34 |
+
Convert a list of tokens and tags to a list of spans for BIOSE/BIOLU schemes tags.
|
35 |
+
Args:
|
36 |
+
tags: list of entities tags
|
37 |
+
tokens: list of tokens
|
38 |
+
Note that the end index returned by this function is exclusive.
|
39 |
+
No, need to increment the end by 1.
|
40 |
+
Returns:
|
41 |
+
list of {span, start, end, entity, start_char, end_char}
|
42 |
+
where span is a phrase/tokens, start and end are the indices of the span,
|
43 |
+
entity is the entity type, and start_char and end_char are the start
|
44 |
+
and end characters of the span.
|
45 |
+
"""
|
46 |
+
entities = []
|
47 |
+
start = None
|
48 |
+
start_char = None
|
49 |
+
words = []
|
50 |
+
curr_pos = 0
|
51 |
+
for i, (tag, token) in enumerate(zip(tags, tokens)):
|
52 |
+
if tag is None or tag.startswith("-"):
|
53 |
+
if start is not None:
|
54 |
+
start = None
|
55 |
+
start_char = None
|
56 |
+
words = []
|
57 |
+
else:
|
58 |
+
end_pos = curr_pos + len(token)
|
59 |
+
words.append(token)
|
60 |
+
entities.append({
|
61 |
+
"entity": "",
|
62 |
+
"span": " ".join(words),
|
63 |
+
"start": i,
|
64 |
+
"end": i + 1,
|
65 |
+
"start_char": curr_pos,
|
66 |
+
"end_char": end_pos
|
67 |
+
})
|
68 |
+
elif tag.startswith("O"):
|
69 |
+
pass
|
70 |
+
elif tag.startswith("I"):
|
71 |
+
words.append(token)
|
72 |
+
if start is None:
|
73 |
+
raise ValueError(
|
74 |
+
"Invalid BILUO tag sequence: Got a tag starting with {start} "
|
75 |
+
"without a preceding 'B' (beginning of an entity). "
|
76 |
+
"Tag sequence:\n{tags}".format(start="I", tags=list(tags)[: i + 1])
|
77 |
+
)
|
78 |
+
elif tag.startswith("U") or tag.startswith("S"):
|
79 |
+
end_pos = curr_pos + len(token)
|
80 |
+
entities.append({
|
81 |
+
"entity": tag[2:],
|
82 |
+
"span": token,
|
83 |
+
"start": i,
|
84 |
+
"end": i + 1,
|
85 |
+
"start_char": curr_pos,
|
86 |
+
"end_char": end_pos
|
87 |
+
})
|
88 |
+
elif tag.startswith("B"):
|
89 |
+
start = i
|
90 |
+
start_char = curr_pos
|
91 |
+
words.append(token)
|
92 |
+
elif tag.startswith("L") or tag.startswith("E"):
|
93 |
+
if start is None:
|
94 |
+
raise ValueError(
|
95 |
+
"Invalid BILUO tag sequence: Got a tag starting with {start} "
|
96 |
+
"without a preceding 'B' (beginning of an entity). "
|
97 |
+
"Tag sequence:\n{tags}".format(start="L", tags=list(tags)[: i + 1])
|
98 |
+
)
|
99 |
+
end_pos = curr_pos + len(token)
|
100 |
+
words.append(token)
|
101 |
+
entities.append({
|
102 |
+
"entity": tag[2:],
|
103 |
+
"span": " ".join(words),
|
104 |
+
"start": start,
|
105 |
+
"end": i + 1,
|
106 |
+
"start_char": start_char,
|
107 |
+
"end_char": end_pos
|
108 |
+
})
|
109 |
+
start = None
|
110 |
+
start_char = None
|
111 |
+
words = []
|
112 |
+
else:
|
113 |
+
raise ValueError("Invalid BILUO tag: '{}'.".format(tag))
|
114 |
+
curr_pos += len(token) + len(" ")
|
115 |
+
return entities
|
116 |
+
|
117 |
+
|
118 |
class NemoCorpusConfig(datasets.BuilderConfig):
|
119 |
"""BuilderConfig for NemoCorpus"""
|
120 |
|
|
|
132 |
{
|
133 |
"id": datasets.Value("string"),
|
134 |
"tokens": datasets.Sequence(datasets.Value("string")),
|
135 |
+
"sentence": datasets.Value("string"),
|
136 |
"ner_tags": datasets.Sequence(
|
137 |
datasets.features.ClassLabel(
|
138 |
names=['S-ANG', 'B-ANG', 'I-ANG', 'E-ANG',
|
|
|
147 |
'B-WOA', 'E-WOA', 'I-WOA', 'S-WOA']
|
148 |
)
|
149 |
),
|
150 |
+
"spans": datasets.Sequence({
|
151 |
+
"span": datasets.Value("string"),
|
152 |
+
"start": datasets.Value("int32"),
|
153 |
+
"end": datasets.Value("int32"),
|
154 |
+
"entity": datasets.Value("string"),
|
155 |
+
"start_char": datasets.Value("int32"),
|
156 |
+
"end_char": datasets.Value("int32"),
|
157 |
+
})
|
158 |
}
|
159 |
)
|
160 |
|
|
|
231 |
"validation": dl_manager.download(folder / "morph_gold_dev.bmes"),
|
232 |
"test": dl_manager.download(folder / "morph_gold_test.bmes"),
|
233 |
}
|
234 |
+
|
235 |
return [
|
236 |
datasets.SplitGenerator(name=datasets.Split.TRAIN,
|
237 |
gen_kwargs={"filepath": data_files["train"]}),
|
|
|
258 |
if tokens:
|
259 |
yield guid, {
|
260 |
"id": str(guid),
|
261 |
+
"sentence": " ".join(tokens),
|
262 |
"tokens": tokens,
|
263 |
"ner_tags": ner_tags,
|
264 |
+
"spans": tokens_with_tags_to_spans(ner_tags, tokens)
|
265 |
}
|
266 |
guid += 1
|
267 |
tokens = []
|
|
|
273 |
# last example
|
274 |
yield guid, {
|
275 |
"id": str(guid),
|
276 |
+
"sentence": " ".join(tokens),
|
277 |
"tokens": tokens,
|
278 |
"ner_tags": ner_tags,
|
279 |
+
"spans": tokens_with_tags_to_spans(ner_tags, tokens)
|
280 |
}
|
281 |
|
282 |
def _generate_examples_nested(self, filepath, sep=" "):
|