Convert dataset to Parquet
#3
by
albertvillanova
HF staff
- opened
- README.md +16 -6
- amttl.py +0 -147
- amttl/test-00000-of-00001.parquet +3 -0
- amttl/train-00000-of-00001.parquet +3 -0
- amttl/validation-00000-of-00001.parquet +3 -0
- dataset_infos.json +0 -1
README.md
CHANGED
@@ -19,6 +19,7 @@ task_ids:
|
|
19 |
- parsing
|
20 |
pretty_name: AMTTL
|
21 |
dataset_info:
|
|
|
22 |
features:
|
23 |
- name: id
|
24 |
dtype: string
|
@@ -32,19 +33,28 @@ dataset_info:
|
|
32 |
'1': I
|
33 |
'2': E
|
34 |
'3': S
|
35 |
-
config_name: amttl
|
36 |
splits:
|
37 |
- name: train
|
38 |
-
num_bytes:
|
39 |
num_examples: 3063
|
40 |
- name: validation
|
41 |
-
num_bytes:
|
42 |
num_examples: 822
|
43 |
- name: test
|
44 |
-
num_bytes:
|
45 |
num_examples: 908
|
46 |
-
download_size:
|
47 |
-
dataset_size:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
---
|
49 |
|
50 |
# Dataset Card for AMTTL
|
|
|
19 |
- parsing
|
20 |
pretty_name: AMTTL
|
21 |
dataset_info:
|
22 |
+
config_name: amttl
|
23 |
features:
|
24 |
- name: id
|
25 |
dtype: string
|
|
|
33 |
'1': I
|
34 |
'2': E
|
35 |
'3': S
|
|
|
36 |
splits:
|
37 |
- name: train
|
38 |
+
num_bytes: 1132196
|
39 |
num_examples: 3063
|
40 |
- name: validation
|
41 |
+
num_bytes: 324358
|
42 |
num_examples: 822
|
43 |
- name: test
|
44 |
+
num_bytes: 328509
|
45 |
num_examples: 908
|
46 |
+
download_size: 274351
|
47 |
+
dataset_size: 1785063
|
48 |
+
configs:
|
49 |
+
- config_name: amttl
|
50 |
+
data_files:
|
51 |
+
- split: train
|
52 |
+
path: amttl/train-*
|
53 |
+
- split: validation
|
54 |
+
path: amttl/validation-*
|
55 |
+
- split: test
|
56 |
+
path: amttl/test-*
|
57 |
+
default: true
|
58 |
---
|
59 |
|
60 |
# Dataset Card for AMTTL
|
amttl.py
DELETED
@@ -1,147 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""Introduction to AMTTL CWS Dataset"""
|
18 |
-
|
19 |
-
import datasets
|
20 |
-
|
21 |
-
|
22 |
-
logger = datasets.logging.get_logger(__name__)
|
23 |
-
|
24 |
-
|
25 |
-
_CITATION = """\
|
26 |
-
@inproceedings{xing2018adaptive,
|
27 |
-
title={Adaptive multi-task transfer learning for Chinese word segmentation in medical text},
|
28 |
-
author={Xing, Junjie and Zhu, Kenny and Zhang, Shaodian},
|
29 |
-
booktitle={Proceedings of the 27th International Conference on Computational Linguistics},
|
30 |
-
pages={3619--3630},
|
31 |
-
year={2018}
|
32 |
-
}
|
33 |
-
"""
|
34 |
-
|
35 |
-
_DESCRIPTION = """\
|
36 |
-
Chinese word segmentation (CWS) trained from open source corpus faces dramatic performance drop
|
37 |
-
when dealing with domain text, especially for a domain with lots of special terms and diverse
|
38 |
-
writing styles, such as the biomedical domain. However, building domain-specific CWS requires
|
39 |
-
extremely high annotation cost. In this paper, we propose an approach by exploiting domain-invariant
|
40 |
-
knowledge from high resource to low resource domains. Extensive experiments show that our mode
|
41 |
-
achieves consistently higher accuracy than the single-task CWS and other transfer learning
|
42 |
-
baselines, especially when there is a large disparity between source and target domains.
|
43 |
-
|
44 |
-
This dataset is the accompanied medical Chinese word segmentation (CWS) dataset.
|
45 |
-
The tags are in BIES scheme.
|
46 |
-
|
47 |
-
For more details see https://www.aclweb.org/anthology/C18-1307/
|
48 |
-
"""
|
49 |
-
|
50 |
-
_URL = "https://raw.githubusercontent.com/adapt-sjtu/AMTTL/master/medical_data/"
|
51 |
-
_TRAINING_FILE = "forum_train.txt"
|
52 |
-
_DEV_FILE = "forum_dev.txt"
|
53 |
-
_TEST_FILE = "forum_test.txt"
|
54 |
-
|
55 |
-
|
56 |
-
class AmttlConfig(datasets.BuilderConfig):
|
57 |
-
"""BuilderConfig for AMTTL"""
|
58 |
-
|
59 |
-
def __init__(self, **kwargs):
|
60 |
-
"""BuilderConfig for AMTTL.
|
61 |
-
|
62 |
-
Args:
|
63 |
-
**kwargs: keyword arguments forwarded to super.
|
64 |
-
"""
|
65 |
-
super(AmttlConfig, self).__init__(**kwargs)
|
66 |
-
|
67 |
-
|
68 |
-
class Amttl(datasets.GeneratorBasedBuilder):
|
69 |
-
"""AMTTL Chinese Word Segmentation dataset."""
|
70 |
-
|
71 |
-
BUILDER_CONFIGS = [
|
72 |
-
AmttlConfig(
|
73 |
-
name="amttl",
|
74 |
-
version=datasets.Version("1.0.0"),
|
75 |
-
description="AMTTL medical Chinese word segmentation dataset",
|
76 |
-
),
|
77 |
-
]
|
78 |
-
|
79 |
-
def _info(self):
|
80 |
-
return datasets.DatasetInfo(
|
81 |
-
description=_DESCRIPTION,
|
82 |
-
features=datasets.Features(
|
83 |
-
{
|
84 |
-
"id": datasets.Value("string"),
|
85 |
-
"tokens": datasets.Sequence(datasets.Value("string")),
|
86 |
-
"tags": datasets.Sequence(
|
87 |
-
datasets.features.ClassLabel(
|
88 |
-
names=[
|
89 |
-
"B",
|
90 |
-
"I",
|
91 |
-
"E",
|
92 |
-
"S",
|
93 |
-
]
|
94 |
-
)
|
95 |
-
),
|
96 |
-
}
|
97 |
-
),
|
98 |
-
supervised_keys=None,
|
99 |
-
homepage="https://www.aclweb.org/anthology/C18-1307/",
|
100 |
-
citation=_CITATION,
|
101 |
-
)
|
102 |
-
|
103 |
-
def _split_generators(self, dl_manager):
|
104 |
-
"""Returns SplitGenerators."""
|
105 |
-
urls_to_download = {
|
106 |
-
"train": f"{_URL}{_TRAINING_FILE}",
|
107 |
-
"dev": f"{_URL}{_DEV_FILE}",
|
108 |
-
"test": f"{_URL}{_TEST_FILE}",
|
109 |
-
}
|
110 |
-
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
111 |
-
|
112 |
-
return [
|
113 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
|
114 |
-
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
|
115 |
-
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
|
116 |
-
]
|
117 |
-
|
118 |
-
def _generate_examples(self, filepath):
|
119 |
-
logger.info("⏳ Generating examples from = %s", filepath)
|
120 |
-
with open(filepath, encoding="utf-8") as f:
|
121 |
-
guid = 0
|
122 |
-
tokens = []
|
123 |
-
tags = []
|
124 |
-
for line in f:
|
125 |
-
line_stripped = line.strip()
|
126 |
-
if line_stripped == "":
|
127 |
-
if tokens:
|
128 |
-
yield guid, {
|
129 |
-
"id": str(guid),
|
130 |
-
"tokens": tokens,
|
131 |
-
"tags": tags,
|
132 |
-
}
|
133 |
-
guid += 1
|
134 |
-
tokens = []
|
135 |
-
tags = []
|
136 |
-
else:
|
137 |
-
splits = line_stripped.split("\t")
|
138 |
-
if len(splits) == 1:
|
139 |
-
splits.append("O")
|
140 |
-
tokens.append(splits[0])
|
141 |
-
tags.append(splits[1])
|
142 |
-
# last example
|
143 |
-
yield guid, {
|
144 |
-
"id": str(guid),
|
145 |
-
"tokens": tokens,
|
146 |
-
"tags": tags,
|
147 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
amttl/test-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e162219c3d2e9a4b234407072169e58475c70f69a1118c4c92c1cc8bdb7fddcf
|
3 |
+
size 51311
|
amttl/train-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:93ff0e728fa5bf6cf4c32805ac01529c1b022f29b39f28406a5e7fd28b9b6342
|
3 |
+
size 172615
|
amttl/validation-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7992b50bd6d87521937260ed7ebce5a986b8eb52ad0905373fe94d6b155c53e
|
3 |
+
size 50425
|
dataset_infos.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"amttl": {"description": "Chinese word segmentation (CWS) trained from open source corpus faces dramatic performance drop\nwhen dealing with domain text, especially for a domain with lots of special terms and diverse\nwriting styles, such as the biomedical domain. However, building domain-specific CWS requires\nextremely high annotation cost. In this paper, we propose an approach by exploiting domain-invariant\nknowledge from high resource to low resource domains. Extensive experiments show that our mode\nachieves consistently higher accuracy than the single-task CWS and other transfer learning\nbaselines, especially when there is a large disparity between source and target domains.\n\nThis dataset is the accompanied medical Chinese word segmentation (CWS) dataset.\nThe tags are in BIES scheme.\n\nFor more details see https://www.aclweb.org/anthology/C18-1307/\n", "citation": "@inproceedings{xing2018adaptive,\n title={Adaptive multi-task transfer learning for Chinese word segmentation in medical text},\n author={Xing, Junjie and Zhu, Kenny and Zhang, Shaodian},\n booktitle={Proceedings of the 27th International Conference on Computational Linguistics},\n pages={3619--3630},\n year={2018}\n}\n", "homepage": "https://www.aclweb.org/anthology/C18-1307/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "tags": {"feature": {"num_classes": 4, "names": ["B", "I", "E", "S"], "names_file": null, "id": null, "_type": "ClassLabel"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "amttl", "config_name": "amttl", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1132212, "num_examples": 3063, "dataset_name": "amttl"}, "validation": {"name": "validation", "num_bytes": 324374, "num_examples": 822, "dataset_name": "amttl"}, "test": {"name": "test", "num_bytes": 328525, "num_examples": 908, "dataset_name": "amttl"}}, "download_checksums": {"https://raw.githubusercontent.com/adapt-sjtu/AMTTL/master/medical_data/forum_train.txt": {"num_bytes": 434357, "checksum": "9819373963ea04d1d28844d5bc83b6b0332fad8b5f2e73092bcfc58dc6d6292a"}, "https://raw.githubusercontent.com/adapt-sjtu/AMTTL/master/medical_data/forum_dev.txt": {"num_bytes": 124973, "checksum": "1a2eb461b98d2a9160baad7f76d003cc0917b998e8283bcffa52b71224dd9d17"}, "https://raw.githubusercontent.com/adapt-sjtu/AMTTL/master/medical_data/forum_test.txt": {"num_bytes": 126204, "checksum": "aea1a8cf244cd565e94bd193a1eef7a10b16eeb0b6fbb6ed1d2fefbd55360dd6"}}, "download_size": 685534, "post_processing_size": null, "dataset_size": 1785111, "size_in_bytes": 2470645}}
|
|
|
|