Datasets:

Modalities:
Tabular
Text
ArXiv:
Libraries:
Datasets
License:
File size: 5,416 Bytes
080b541
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cea0b24
 
 
 
080b541
 
 
 
 
 
cea0b24
080b541
 
9e640f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
080b541
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cea0b24
080b541
 
 
cea0b24
080b541
 
 
 
cea0b24
080b541
 
cea0b24
 
 
 
 
 
 
 
 
 
 
9e640f6
 
cea0b24
 
 
080b541
 
 
cea0b24
 
080b541
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import csv
import json
import os

import datasets


_CITATION = """\
@InProceedings{mfaq_a_multilingual_dataset,
    title={MFAQ: a Multilingual FAQ Dataset},
    author={Maxime {De Bruyn} and Ehsan Lotfi and Jeska Buhmann and Walter Daelemans},
    year={2021},
    booktitle={MRQA @ EMNLP 2021}
}
"""


_DESCRIPTION = """\
We present the first multilingual FAQ dataset publicly available. We collected around 6M FAQ pairs from the web, in 21 different languages.
"""

_HOMEPAGE = ""

_LICENSE = ""


_LANGUAGES = ["cs", "da", "de", "en", "es", "fi", "fr", "he", "hr", "hu", "id", "it", "nl", "no", "pl", "pt", "ro", "ru", "sv", "tr", "vi"]
_URLs = {}
_URLs.update({f"{l}": {"train": [f"data/{l}/train.jsonl"], "valid": [f"data/{l}/valid.jsonl"]} for l in _LANGUAGES})
_URLs["all"] = {"train": [f"data/{l}/train.jsonl" for l in _LANGUAGES], "valid": [f"data/{l}/valid.jsonl" for l in _LANGUAGES]}
_URLs.update({f"{l}_flat": {"train": [f"data/{l}/train.jsonl"], "valid": [f"data/{l}/valid.jsonl"]} for l in _LANGUAGES})
_URLs["all_flat"] = {"train": [f"data/{l}/train.jsonl" for l in _LANGUAGES], "valid": [f"data/{l}/valid.jsonl" for l in _LANGUAGES]}


class MFAQ(datasets.GeneratorBasedBuilder):

    VERSION = datasets.Version("1.0.0")
    BUILDER_CONFIGS = list(map(lambda x: datasets.BuilderConfig(name=x, version=datasets.Version("1.1.0")), _URLs.keys()))
    DEFAULT_CONFIG_NAME = "all"

    def _info(self):
        if "_flat" in self.config.name: 
            features = datasets.Features(
                {
                    "id": datasets.Value("int64"),
                    "language": datasets.Value("string"),
                    "num_pairs": datasets.Value("int64"),
                    "domain": datasets.Value("string"),
                    "question": datasets.Value("string"),
                    "answer": datasets.Value("string")
                }
            )
        else:
            features = datasets.Features(
                {
                    "id": datasets.Value("int64"),
                    "language": datasets.Value("string"),
                    "num_pairs": datasets.Value("int64"),
                    "domain": datasets.Value("string"),
                    "qa_pairs": datasets.features.Sequence(
                        {
                            "question": datasets.Value("string"), 
                            "answer": datasets.Value("string"),
                            "language": datasets.Value("string")
                        }
                    )
                }
            )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,  # Here we define them above because they are different between the two configurations
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        my_urls = _URLs[self.config.name]
        data_dir = dl_manager.download_and_extract(my_urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepaths": data_dir["train"], "split": "train"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"filepaths": data_dir["valid"], "split": "valid"},
            ),
        ]

    def _generate_examples(
        self, filepaths, split  # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    ):
        """ Yields examples as (key, example) tuples. """
        for filepath in filepaths:
            with open(filepath, encoding="utf-8") as f:
                for _id, row in enumerate(f):
                    data = json.loads(row)
                    if "flat" in self.config.name:
                        for i, pair in enumerate(data["qa_pairs"]):
                            yield f"{filepath}_{_id}_{i}", {
                                "id": data["id"],
                                "domain": data["domain"],
                                "language": data["language"],
                                "num_pairs": 1,
                                "question": pair["question"],
                                "answer": pair["answer"]
                            }
                    else:
                        yield f"{filepath}_{_id}", {
                            "id": data["id"],
                            "domain": data["domain"],
                            "language": data["language"],
                            "num_pairs": data["num_pairs"],
                            "qa_pairs": data["qa_pairs"]
                        }