File size: 7,439 Bytes
7974918
 
 
 
dcc9bd4
2d28075
 
 
 
 
 
 
 
 
7974918
 
 
 
 
fdf5696
855b061
7974918
 
43b7c1f
 
f1c7699
a772b7b
7974918
 
 
 
85fe221
dcc9bd4
7974918
f1c7699
7974918
 
 
85fe221
 
f1c7699
 
 
7974918
 
 
 
2d28075
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
855b061
2d28075
855b061
2d28075
 
 
 
43b7c1f
 
 
 
2d28075
 
 
 
43b7c1f
 
7974918
855b061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43b7c1f
f1c7699
7974918
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import json
import os
from os.path import join as p_join
from tqdm import tqdm
from time import time

import hdbscan
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.manifold import TSNE


import pandas as pd
from datasets import load_dataset

from model_meta_voice import MetaVoiceSE
from model_pyannote_embedding import PyannoteSE
from model_w2v_bert import W2VBertSE
from model_clap import ClapSE, ClapGeneralSE
from model_xls import XLSRSE


def get_embedding(model_class, model_name: str, dataset_name: str, data_split: str):
    dataset = load_dataset(dataset_name, split=data_split)
    file_path = p_join("experiment_cache", "embeddings", f"{model_name}.{os.path.basename(dataset_name)}.json")
    os.makedirs(os.path.dirname(file_path), exist_ok=True)
    if os.path.exists(file_path):
        return
    model = model_class()
    embeddings = []
    for i in tqdm(dataset, total=len(dataset)):
        start = time()
        v = model.get_speaker_embedding(i["audio"]["array"], i["audio"]["sampling_rate"])
        tmp = {
            "model": model_name,
            "embedding": v.tolist(),
            "sampling_rate": i["audio"]["sampling_rate"],
            "process_time": time() - start,
            "dataset_name": os.path.basename(dataset_name)
        }
        tmp.update({k: v for k, v in i.items() if k != "audio"})
        embeddings.append(tmp)
    with open(file_path, "w") as f:
        f.write("\n".join([json.dumps(i) for i in embeddings]))


def cluster_embedding(model_name, dataset_name, label_name: str):
    file_path_embedding = p_join("experiment_cache", "embeddings", f"{model_name}.{os.path.basename(dataset_name)}.json")
    file_path_cluster = p_join("experiment_cache", "cluster", f"{model_name}.{os.path.basename(dataset_name)}.{label_name}.csv")
    if not os.path.exists(file_path_cluster):
        print('CLUSTERING')
        os.makedirs(os.path.dirname(file_path_cluster), exist_ok=True)
        assert os.path.exists(file_path_embedding)
        with open(file_path_embedding) as f:
            data = [json.loads(i) for i in f.readlines()]
        clusterer = hdbscan.HDBSCAN()
        embeddings = [i["embedding"] for i in data]
        keys = [i["id"] for i in data]
        clusterer.fit(np.stack(embeddings))  # data x dimension
        print(f'{clusterer.labels_.max()} clusters found from {len(data)} data points')
        print(f"generating report for {label_name}")
        label = [i[label_name] for i in data]
        cluster_info = [
            {"id": k, "cluster": c, f"label.{label_name}": l} for c, k, l in zip(clusterer.labels_, keys, label) if c != -1
        ]
        cluster_df = pd.DataFrame(cluster_info)
        cluster_df.to_csv(file_path_cluster, index=False)
    # cluster_df = pd.read_csv(file_path_cluster)

    file_path_tsne = p_join("experiment_cache", "tsne", f"{model_name}.{os.path.basename(dataset_name)}.{label_name}.npy")
    if not os.path.exists(file_path_tsne):
        os.makedirs(os.path.dirname(file_path_tsne), exist_ok=True)
        print('DIMENSION REDUCTION')
        assert os.path.exists(file_path_embedding)
        with open(file_path_embedding) as f:
            data = np.stack([json.loads(i)['embedding'] for i in f.readlines()])  # data x dimension
        print(f'Dimension reduction: {data.shape}')
        embedding_2d = TSNE(n_components=2, random_state=0).fit_transform(data)
        np.save(file_path_tsne, embedding_2d)
    embedding_2d = np.load(file_path_tsne)

    print('PLOT')
    figure_path = p_join("experiment_cache", "figure", f"2d.latent_space.{model_name}.{os.path.basename(dataset_name)}.{label_name}.png")
    os.makedirs(os.path.dirname(figure_path), exist_ok=True)
    with open(file_path_embedding) as f:
        label = np.stack([json.loads(i)[label_name] for i in f.readlines()])  # data x dimension
    label_type = sorted(list(set(label)))
    label2id = {v: n for n, v in enumerate(label_type)}
    plt.figure()
    scatter = plt.scatter(
        embedding_2d[:, 0],
        embedding_2d[:, 1],
        s=8,
        c=[label2id[i] for i in label],
        cmap=sns.color_palette('Spectral', len(label_type), as_cmap=True)
    )
    plt.gca().set_aspect('equal', 'datalim')
    plt.legend(handles=scatter.legend_elements(num=len(label_type))[0],
               labels=label_type,
               bbox_to_anchor=(1.04, 1),
               borderaxespad=0,
               loc='upper left',
               ncol=3 if len(label2id) > 12 else 1)
    plt.savefig(figure_path, bbox_inches='tight', dpi=600)

def analyze_embedding(model_name: str, dataset_name: str, n_shot: int = 5, n_cross_validation: int = 5):
    file_path = p_join("experiment_cache", "embeddings", f"{model_name}.{os.path.basename(dataset_name)}.json")
    assert os.path.exists(file_path)
    with open(file_path) as f:
        embeddings = [json.loads(i) for i in f.readlines()]
    df = pd.DataFrame(embeddings)
    process_time = df["process_time"].mean()
    df.groupby("speaker_ido")
    sorted(df["speaker_id"].unique())


if __name__ == '__main__':
    # get_embedding(MetaVoiceSE, "meta_voice_se", "asahi417/voxceleb1-test-split", "test")
    # get_embedding(PyannoteSE, "pyannote_se", "asahi417/voxceleb1-test-split", "test")
    # get_embedding(W2VBertSE, "w2v_bert_se", "asahi417/voxceleb1-test-split", "test")
    # get_embedding(ClapSE, "clap_se", "asahi417/voxceleb1-test-split", "test")
    # get_embedding(ClapGeneralSE, "clap_general_se", "asahi417/voxceleb1-test-split", "test")
    get_embedding(XLSRSE, "xlsr_se", "asahi417/voxceleb1-test-split", "test")

    # get_embedding(MetaVoiceSE, "meta_voice_se", "ylacombe/expresso", "train")
    # get_embedding(PyannoteSE, "pyannote_se", "ylacombe/expresso", "train")
    # get_embedding(W2VBertSE, "w2v_bert_se", "ylacombe/expresso", "train")
    # get_embedding(ClapSE, "clap_se", "ylacombe/expresso", "train")
    # get_embedding(ClapGeneralSE, "clap_general_se", "ylacombe/expresso", "train")
    get_embedding(XLSRSE, "xlsr_se", "ylacombe/expresso", "train")

    # cluster_embedding("meta_voice_se", "asahi417/voxceleb1-test-split", "speaker_id")
    # cluster_embedding("pyannote_se", "asahi417/voxceleb1-test-split", "speaker_id")
    # cluster_embedding("w2v_bert_se", "asahi417/voxceleb1-test-split", "speaker_id")
    # cluster_embedding("clap_se", "asahi417/voxceleb1-test-split", "speaker_id")
    # cluster_embedding("clap_general_se", "asahi417/voxceleb1-test-split", "speaker_id")
    cluster_embedding("xlsr_se", "asahi417/voxceleb1-test-split", "speaker_id")
    #
    # cluster_embedding("meta_voice_se", "ylacombe/expresso", "speaker_id")
    # cluster_embedding("pyannote_se", "ylacombe/expresso", "speaker_id")
    # cluster_embedding("w2v_bert_se", "ylacombe/expresso", "speaker_id")
    # cluster_embedding("clap_se", "ylacombe/expresso", "speaker_id")
    # cluster_embedding("clap_general_se", "ylacombe/expresso", "speaker_id")
    cluster_embedding("xlsr_se", "ylacombe/expresso", "speaker_id")
    #
    # cluster_embedding("meta_voice_se", "ylacombe/expresso", "style")
    # cluster_embedding("pyannote_se", "ylacombe/expresso", "style")
    # cluster_embedding("w2v_bert_se", "ylacombe/expresso", "style")
    # cluster_embedding("clap_se", "ylacombe/expresso", "style")
    # cluster_embedding("clap_general_se", "ylacombe/expresso", "style")
    cluster_embedding("xlsr_se", "ylacombe/expresso", "style")