init
Browse files- experiment_voxceleb1.py +43 -0
experiment_voxceleb1.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from os.path import join as p_join
|
4 |
+
from tqdm import tqdm
|
5 |
+
|
6 |
+
from datasets import load_dataset
|
7 |
+
|
8 |
+
from model_meta_voice import MetaVoiceSE
|
9 |
+
from model_pyannote_embedding import PyannoteSE
|
10 |
+
from model_w2v_bert import W2VBertSE
|
11 |
+
|
12 |
+
|
13 |
+
cache_dir = p_join("experiment_cache", "voxceleb1")
|
14 |
+
voxceleb1_dataset = load_dataset("asahi417/voxceleb1-test-split", split="test")
|
15 |
+
print(f"voxceleb1_dataset: {len(voxceleb1_dataset)}")
|
16 |
+
|
17 |
+
|
18 |
+
def get_embedding(model_class, model_name: str):
|
19 |
+
file_path = p_join(cache_dir, f"embedding.{model_name}.json")
|
20 |
+
if os.path.exists(file_path):
|
21 |
+
return
|
22 |
+
model = model_class()
|
23 |
+
embeddings = []
|
24 |
+
for i in tqdm(voxceleb1_dataset, total=len(voxceleb1_dataset)):
|
25 |
+
v = model.get_speaker_embedding(i["audio"]["array"], i["audio"]["sampling_rate"])
|
26 |
+
embeddings.append({
|
27 |
+
"model": model_name,
|
28 |
+
"embedding": v.tolist(),
|
29 |
+
"sampling_rate": i["audio"]["sampling_rate"],
|
30 |
+
"id": i["id"],
|
31 |
+
"speaker_id": i["speaker_id"]
|
32 |
+
})
|
33 |
+
with open(file_path, "w") as f:
|
34 |
+
f.write("\n".join([json.dumps(i) for i in embeddings]))
|
35 |
+
|
36 |
+
|
37 |
+
if __name__ == '__main__':
|
38 |
+
# cache embedding
|
39 |
+
get_embedding(MetaVoiceSE, "meta_voice_se")
|
40 |
+
get_embedding(PyannoteSE, "pyannote_se")
|
41 |
+
get_embedding(W2VBertSE, "w2v_bert_se")
|
42 |
+
|
43 |
+
|