init
Browse files
experiment_speaker_verification.py
CHANGED
@@ -10,9 +10,19 @@ from model_pyannote_embedding import PyannoteSE
|
|
10 |
from model_w2v_bert import W2VBertSE
|
11 |
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
def get_embedding(model_class, model_name: str, dataset_name: str):
|
14 |
dataset = load_dataset(dataset_name, split="test")
|
15 |
-
file_path = p_join("experiment_cache", "embeddings", f"{model_name}.{dataset_name}.json")
|
16 |
os.makedirs(os.path.dirname(file_path), exist_ok=True)
|
17 |
if os.path.exists(file_path):
|
18 |
return
|
@@ -21,15 +31,15 @@ def get_embedding(model_class, model_name: str, dataset_name: str):
|
|
21 |
for i in tqdm(dataset, total=len(dataset)):
|
22 |
start = time()
|
23 |
v = model.get_speaker_embedding(i["audio"]["array"], i["audio"]["sampling_rate"])
|
24 |
-
|
25 |
"model": model_name,
|
26 |
"embedding": v.tolist(),
|
27 |
"sampling_rate": i["audio"]["sampling_rate"],
|
28 |
-
"id": i["id"],
|
29 |
-
"speaker_id": i["speaker_id"],
|
30 |
"process_time": time() - start,
|
31 |
"dataset_name": os.path.basename(dataset_name)
|
32 |
-
}
|
|
|
|
|
33 |
with open(file_path, "w") as f:
|
34 |
f.write("\n".join([json.dumps(i) for i in embeddings]))
|
35 |
|
@@ -37,7 +47,11 @@ def get_embedding(model_class, model_name: str, dataset_name: str):
|
|
37 |
if __name__ == '__main__':
|
38 |
# cache embedding
|
39 |
get_embedding(MetaVoiceSE, "meta_voice_se", "asahi417/voxceleb1-test-split")
|
40 |
-
get_embedding(PyannoteSE, "pyannote_se", "asahi417/voxceleb1-test-split")
|
41 |
get_embedding(W2VBertSE, "w2v_bert_se", "asahi417/voxceleb1-test-split")
|
|
|
|
|
|
|
|
|
42 |
|
43 |
|
|
|
10 |
from model_w2v_bert import W2VBertSE
|
11 |
|
12 |
|
13 |
+
# def to_json_serializable(val):
|
14 |
+
# if type(val) is list:
|
15 |
+
# return val
|
16 |
+
# if "float" in str(type(val)):
|
17 |
+
# return float(val)
|
18 |
+
# if "int" in str(type(val)):
|
19 |
+
# return int(val)
|
20 |
+
# return str(val)
|
21 |
+
|
22 |
+
|
23 |
def get_embedding(model_class, model_name: str, dataset_name: str):
|
24 |
dataset = load_dataset(dataset_name, split="test")
|
25 |
+
file_path = p_join("experiment_cache", "embeddings", f"{model_name}.{os.path.basename(dataset_name)}.json")
|
26 |
os.makedirs(os.path.dirname(file_path), exist_ok=True)
|
27 |
if os.path.exists(file_path):
|
28 |
return
|
|
|
31 |
for i in tqdm(dataset, total=len(dataset)):
|
32 |
start = time()
|
33 |
v = model.get_speaker_embedding(i["audio"]["array"], i["audio"]["sampling_rate"])
|
34 |
+
tmp = {
|
35 |
"model": model_name,
|
36 |
"embedding": v.tolist(),
|
37 |
"sampling_rate": i["audio"]["sampling_rate"],
|
|
|
|
|
38 |
"process_time": time() - start,
|
39 |
"dataset_name": os.path.basename(dataset_name)
|
40 |
+
}
|
41 |
+
tmp.update({k: v for k, v in i.items() if k != "audio"})
|
42 |
+
embeddings.append(tmp)
|
43 |
with open(file_path, "w") as f:
|
44 |
f.write("\n".join([json.dumps(i) for i in embeddings]))
|
45 |
|
|
|
47 |
if __name__ == '__main__':
|
48 |
# cache embedding
|
49 |
get_embedding(MetaVoiceSE, "meta_voice_se", "asahi417/voxceleb1-test-split")
|
50 |
+
# get_embedding(PyannoteSE, "pyannote_se", "asahi417/voxceleb1-test-split")
|
51 |
get_embedding(W2VBertSE, "w2v_bert_se", "asahi417/voxceleb1-test-split")
|
52 |
+
get_embedding(MetaVoiceSE, "meta_voice_se", "ylacombe/expresso")
|
53 |
+
get_embedding(PyannoteSE, "pyannote_se", "ylacombe/expresso")
|
54 |
+
get_embedding(W2VBertSE, "w2v_bert_se", "ylacombe/expresso")
|
55 |
+
|
56 |
|
57 |
|