Dataset Viewer
Title
stringlengths 3
81
| Description
stringlengths 219
5.66k
⌀ | C
stringclasses 154
values | C#
stringclasses 299
values | C++
stringlengths 88
4.55k
⌀ | Cangjie
stringclasses 3
values | Dart
stringclasses 2
values | Go
stringlengths 47
3.11k
⌀ | Java
stringlengths 86
5.36k
⌀ | JavaScript
stringclasses 465
values | Kotlin
stringclasses 15
values | MySQL
stringclasses 282
values | Nim
stringclasses 4
values | PHP
stringclasses 111
values | Pandas
stringclasses 31
values | Python3
stringlengths 82
4.27k
⌀ | Ruby
stringclasses 8
values | Rust
stringlengths 83
4.8k
⌀ | Scala
stringclasses 5
values | Shell
stringclasses 4
values | Swift
stringclasses 13
values | TypeScript
stringlengths 65
20.6k
⌀ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Make Sum Divisible by P
|
Given an array of positive integers
nums
, remove the
smallest
subarray (possibly
empty
) such that the
sum
of the remaining elements is divisible by
p
. It is
not
allowed to remove the whole array.
Return
the length of the smallest subarray that you need to remove, or
-1
if it's impossible
.
A
subarray
is defined as a contiguous block of elements in the array.
Example 1:
Input:
nums = [3,1,4,2], p = 6
Output:
1
Explanation:
The sum of the elements in nums is 10, which is not divisible by 6. We can remove the subarray [4], and the sum of the remaining elements is 6, which is divisible by 6.
Example 2:
Input:
nums = [6,3,5,2], p = 9
Output:
2
Explanation:
We cannot remove a single element to get a sum divisible by 9. The best way is to remove the subarray [5,2], leaving us with [6,3] with sum 9.
Example 3:
Input:
nums = [1,2,3], p = 3
Output:
0
Explanation:
Here the sum is 6. which is already divisible by 3. Thus we do not need to remove anything.
Constraints:
1 <= nums.length <= 10
5
1 <= nums[i] <= 10
9
1 <= p <= 10
9
| null | null |
class Solution {
public:
int minSubarray(vector<int>& nums, int p) {
int k = 0;
for (int& x : nums) {
k = (k + x) % p;
}
if (k == 0) {
return 0;
}
unordered_map<int, int> last;
last[0] = -1;
int n = nums.size();
int ans = n;
int cur = 0;
for (int i = 0; i < n; ++i) {
cur = (cur + nums[i]) % p;
int target = (cur - k + p) % p;
if (last.count(target)) {
ans = min(ans, i - last[target]);
}
last[cur] = i;
}
return ans == n ? -1 : ans;
}
};
| null | null |
func minSubarray(nums []int, p int) int {
k := 0
for _, x := range nums {
k = (k + x) % p
}
if k == 0 {
return 0
}
last := map[int]int{0: -1}
n := len(nums)
ans := n
cur := 0
for i, x := range nums {
cur = (cur + x) % p
target := (cur - k + p) % p
if j, ok := last[target]; ok {
ans = min(ans, i-j)
}
last[cur] = i
}
if ans == n {
return -1
}
return ans
}
|
class Solution {
public int minSubarray(int[] nums, int p) {
int k = 0;
for (int x : nums) {
k = (k + x) % p;
}
if (k == 0) {
return 0;
}
Map<Integer, Integer> last = new HashMap<>();
last.put(0, -1);
int n = nums.length;
int ans = n;
int cur = 0;
for (int i = 0; i < n; ++i) {
cur = (cur + nums[i]) % p;
int target = (cur - k + p) % p;
if (last.containsKey(target)) {
ans = Math.min(ans, i - last.get(target));
}
last.put(cur, i);
}
return ans == n ? -1 : ans;
}
}
|
/**
* @param {number[]} nums
* @param {number} p
* @return {number}
*/
var minSubarray = function (nums, p) {
let k = 0;
for (const x of nums) {
k = (k + x) % p;
}
if (k === 0) {
return 0;
}
const last = new Map();
last.set(0, -1);
const n = nums.length;
let ans = n;
let cur = 0;
for (let i = 0; i < n; ++i) {
cur = (cur + nums[i]) % p;
const target = (cur - k + p) % p;
if (last.has(target)) {
const j = last.get(target);
ans = Math.min(ans, i - j);
}
last.set(cur, i);
}
return ans === n ? -1 : ans;
};
| null | null | null | null | null |
class Solution:
def minSubarray(self, nums: List[int], p: int) -> int:
k = sum(nums) % p
if k == 0:
return 0
last = {0: -1}
cur = 0
ans = len(nums)
for i, x in enumerate(nums):
cur = (cur + x) % p
target = (cur - k + p) % p
if target in last:
ans = min(ans, i - last[target])
last[cur] = i
return -1 if ans == len(nums) else ans
| null |
use std::collections::HashMap;
impl Solution {
pub fn min_subarray(nums: Vec<i32>, p: i32) -> i32 {
let mut k = 0;
for &x in &nums {
k = (k + x) % p;
}
if k == 0 {
return 0;
}
let mut last = HashMap::new();
last.insert(0, -1);
let n = nums.len();
let mut ans = n as i32;
let mut cur = 0;
for i in 0..n {
cur = (cur + nums[i]) % p;
let target = (cur - k + p) % p;
if let Some(&prev_idx) = last.get(&target) {
ans = ans.min(i as i32 - prev_idx);
}
last.insert(cur, i as i32);
}
if ans == n as i32 {
-1
} else {
ans
}
}
}
| null | null | null |
function minSubarray(nums: number[], p: number): number {
let k = 0;
for (const x of nums) {
k = (k + x) % p;
}
if (k === 0) {
return 0;
}
const last = new Map<number, number>();
last.set(0, -1);
const n = nums.length;
let ans = n;
let cur = 0;
for (let i = 0; i < n; ++i) {
cur = (cur + nums[i]) % p;
const target = (cur - k + p) % p;
if (last.has(target)) {
const j = last.get(target)!;
ans = Math.min(ans, i - j);
}
last.set(cur, i);
}
return ans === n ? -1 : ans;
}
|
Largest Subarray Length K 🔒
|
An array
A
is larger than some array
B
if for the first index
i
where
A[i] != B[i]
,
A[i] > B[i]
.
For example, consider
0
-indexing:
[1,3,2,4] > [1,2,2,4]
, since at index
1
,
3 > 2
.
[1,4,4,4] < [2,1,1,1]
, since at index
0
,
1 < 2
.
A subarray is a contiguous subsequence of the array.
Given an integer array
nums
of
distinct
integers, return the
largest
subarray of
nums
of length
k
.
Example 1:
Input:
nums = [1,4,5,2,3], k = 3
Output:
[5,2,3]
Explanation:
The subarrays of size 3 are: [1,4,5], [4,5,2], and [5,2,3].
Of these, [5,2,3] is the largest.
Example 2:
Input:
nums = [1,4,5,2,3], k = 4
Output:
[4,5,2,3]
Explanation:
The subarrays of size 4 are: [1,4,5,2], and [4,5,2,3].
Of these, [4,5,2,3] is the largest.
Example 3:
Input:
nums = [1,4,5,2,3], k = 1
Output:
[5]
Constraints:
1 <= k <= nums.length <= 10
5
1 <= nums[i] <= 10
9
All the integers of
nums
are
unique
.
Follow up:
What if the integers in
nums
are not distinct?
| null | null |
class Solution {
public:
vector<int> largestSubarray(vector<int>& nums, int k) {
auto i = max_element(nums.begin(), nums.end() - k + 1);
return {i, i + k};
}
};
| null | null |
func largestSubarray(nums []int, k int) []int {
j := 0
for i := 1; i < len(nums)-k+1; i++ {
if nums[j] < nums[i] {
j = i
}
}
return nums[j : j+k]
}
|
class Solution {
public int[] largestSubarray(int[] nums, int k) {
int j = 0;
for (int i = 1; i < nums.length - k + 1; ++i) {
if (nums[j] < nums[i]) {
j = i;
}
}
return Arrays.copyOfRange(nums, j, j + k);
}
}
| null | null | null | null | null | null |
class Solution:
def largestSubarray(self, nums: List[int], k: int) -> List[int]:
i = nums.index(max(nums[: len(nums) - k + 1]))
return nums[i : i + k]
| null |
impl Solution {
pub fn largest_subarray(nums: Vec<i32>, k: i32) -> Vec<i32> {
let mut j = 0;
for i in 1..=nums.len() - (k as usize) {
if nums[i] > nums[j] {
j = i;
}
}
nums[j..j + (k as usize)].to_vec()
}
}
| null | null | null |
function largestSubarray(nums: number[], k: number): number[] {
let j = 0;
for (let i = 1; i < nums.length - k + 1; ++i) {
if (nums[j] < nums[i]) {
j = i;
}
}
return nums.slice(j, j + k);
}
|
Zero Array Transformation II
|
You are given an integer array
nums
of length
n
and a 2D array
queries
where
queries[i] = [l
i
, r
i
, val
i
]
.
Each
queries[i]
represents the following action on
nums
:
Decrement the value at each index in the range
[l
i
, r
i
]
in
nums
by
at most
val
i
.
The amount by which each value is decremented
can be chosen
independently
for each index.
A
Zero Array
is an array with all its elements equal to 0.
Return the
minimum
possible
non-negative
value of
k
, such that after processing the first
k
queries in
sequence
,
nums
becomes a
Zero Array
. If no such
k
exists, return -1.
Example 1:
Input:
nums = [2,0,2], queries = [[0,2,1],[0,2,1],[1,1,3]]
Output:
2
Explanation:
For i = 0 (l = 0, r = 2, val = 1):
Decrement values at indices
[0, 1, 2]
by
[1, 0, 1]
respectively.
The array will become
[1, 0, 1]
.
For i = 1 (l = 0, r = 2, val = 1):
Decrement values at indices
[0, 1, 2]
by
[1, 0, 1]
respectively.
The array will become
[0, 0, 0]
, which is a Zero Array. Therefore, the minimum value of
k
is 2.
Example 2:
Input:
nums = [4,3,2,1], queries = [[1,3,2],[0,2,1]]
Output:
-1
Explanation:
For i = 0 (l = 1, r = 3, val = 2):
Decrement values at indices
[1, 2, 3]
by
[2, 2, 1]
respectively.
The array will become
[4, 1, 0, 0]
.
For i = 1 (l = 0, r = 2, val
= 1):
Decrement values at indices
[0, 1, 2]
by
[1, 1, 0]
respectively.
The array will become
[3, 0, 0, 0]
, which is not a Zero Array.
Constraints:
1 <= nums.length <= 10
5
0 <= nums[i] <= 5 * 10
5
1 <= queries.length <= 10
5
queries[i].length == 3
0 <= l
i
<= r
i
< nums.length
1 <= val
i
<= 5
| null | null |
class Solution {
public:
int minZeroArray(vector<int>& nums, vector<vector<int>>& queries) {
int n = nums.size();
int d[n + 1];
int m = queries.size();
int l = 0, r = m + 1;
auto check = [&](int k) -> bool {
memset(d, 0, sizeof(d));
for (int i = 0; i < k; ++i) {
int l = queries[i][0], r = queries[i][1], val = queries[i][2];
d[l] += val;
d[r + 1] -= val;
}
for (int i = 0, s = 0; i < n; ++i) {
s += d[i];
if (nums[i] > s) {
return false;
}
}
return true;
};
while (l < r) {
int mid = (l + r) >> 1;
if (check(mid)) {
r = mid;
} else {
l = mid + 1;
}
}
return l > m ? -1 : l;
}
};
| null | null |
func minZeroArray(nums []int, queries [][]int) int {
n, m := len(nums), len(queries)
l := sort.Search(m+1, func(k int) bool {
d := make([]int, n+1)
for _, q := range queries[:k] {
l, r, val := q[0], q[1], q[2]
d[l] += val
d[r+1] -= val
}
s := 0
for i, x := range nums {
s += d[i]
if x > s {
return false
}
}
return true
})
if l > m {
return -1
}
return l
}
|
class Solution {
private int n;
private int[] nums;
private int[][] queries;
public int minZeroArray(int[] nums, int[][] queries) {
this.nums = nums;
this.queries = queries;
n = nums.length;
int m = queries.length;
int l = 0, r = m + 1;
while (l < r) {
int mid = (l + r) >> 1;
if (check(mid)) {
r = mid;
} else {
l = mid + 1;
}
}
return l > m ? -1 : l;
}
private boolean check(int k) {
int[] d = new int[n + 1];
for (int i = 0; i < k; ++i) {
int l = queries[i][0], r = queries[i][1], val = queries[i][2];
d[l] += val;
d[r + 1] -= val;
}
for (int i = 0, s = 0; i < n; ++i) {
s += d[i];
if (nums[i] > s) {
return false;
}
}
return true;
}
}
| null | null | null | null | null | null |
class Solution:
def minZeroArray(self, nums: List[int], queries: List[List[int]]) -> int:
def check(k: int) -> bool:
d = [0] * (len(nums) + 1)
for l, r, val in queries[:k]:
d[l] += val
d[r + 1] -= val
s = 0
for x, y in zip(nums, d):
s += y
if x > s:
return False
return True
m = len(queries)
l = bisect_left(range(m + 1), True, key=check)
return -1 if l > m else l
| null |
impl Solution {
pub fn min_zero_array(nums: Vec<i32>, queries: Vec<Vec<i32>>) -> i32 {
let n = nums.len();
let m = queries.len();
let mut d: Vec<i64> = vec![0; n + 1];
let (mut l, mut r) = (0_usize, m + 1);
let check = |k: usize, d: &mut Vec<i64>| -> bool {
d.fill(0);
for i in 0..k {
let (l, r, val) = (
queries[i][0] as usize,
queries[i][1] as usize,
queries[i][2] as i64,
);
d[l] += val;
d[r + 1] -= val;
}
let mut s: i64 = 0;
for i in 0..n {
s += d[i];
if nums[i] as i64 > s {
return false;
}
}
true
};
while l < r {
let mid = (l + r) >> 1;
if check(mid, &mut d) {
r = mid;
} else {
l = mid + 1;
}
}
if l > m { -1 } else { l as i32 }
}
}
| null | null | null |
function minZeroArray(nums: number[], queries: number[][]): number {
const [n, m] = [nums.length, queries.length];
const d: number[] = Array(n + 1);
let [l, r] = [0, m + 1];
const check = (k: number): boolean => {
d.fill(0);
for (let i = 0; i < k; ++i) {
const [l, r, val] = queries[i];
d[l] += val;
d[r + 1] -= val;
}
for (let i = 0, s = 0; i < n; ++i) {
s += d[i];
if (nums[i] > s) {
return false;
}
}
return true;
};
while (l < r) {
const mid = (l + r) >> 1;
if (check(mid)) {
r = mid;
} else {
l = mid + 1;
}
}
return l > m ? -1 : l;
}
|
Immediate Food Delivery II
|
Table:
Delivery
+-----------------------------+---------+
| Column Name | Type |
+-----------------------------+---------+
| delivery_id | int |
| customer_id | int |
| order_date | date |
| customer_pref_delivery_date | date |
+-----------------------------+---------+
delivery_id is the column of unique values of this table.
The table holds information about food delivery to customers that make orders at some date and specify a preferred delivery date (on the same order date or after it).
If the customer's preferred delivery date is the same as the order date, then the order is called
immediate;
otherwise, it is called
scheduled
.
The
first order
of a customer is the order with the earliest order date that the customer made. It is guaranteed that a customer has precisely one first order.
Write a solution to find the percentage of immediate orders in the first orders of all customers,
rounded to 2 decimal places
.
The result format is in the following example.
Example 1:
Input:
Delivery table:
+-------------+-------------+------------+-----------------------------+
| delivery_id | customer_id | order_date | customer_pref_delivery_date |
+-------------+-------------+------------+-----------------------------+
| 1 | 1 | 2019-08-01 | 2019-08-02 |
| 2 | 2 | 2019-08-02 | 2019-08-02 |
| 3 | 1 | 2019-08-11 | 2019-08-12 |
| 4 | 3 | 2019-08-24 | 2019-08-24 |
| 5 | 3 | 2019-08-21 | 2019-08-22 |
| 6 | 2 | 2019-08-11 | 2019-08-13 |
| 7 | 4 | 2019-08-09 | 2019-08-09 |
+-------------+-------------+------------+-----------------------------+
Output:
+----------------------+
| immediate_percentage |
+----------------------+
| 50.00 |
+----------------------+
Explanation:
The customer id 1 has a first order with delivery id 1 and it is scheduled.
The customer id 2 has a first order with delivery id 2 and it is immediate.
The customer id 3 has a first order with delivery id 5 and it is scheduled.
The customer id 4 has a first order with delivery id 7 and it is immediate.
Hence, half the customers have immediate first orders.
| null | null | null | null | null | null | null | null | null |
# Write your MySQL query statement below
WITH
T AS (
SELECT
*,
RANK() OVER (
PARTITION BY customer_id
ORDER BY order_date
) AS rk
FROM Delivery
)
SELECT
ROUND(AVG(order_date = customer_pref_delivery_date) * 100, 2) AS immediate_percentage
FROM T
WHERE rk = 1;
| null | null | null | null | null | null | null | null | null | null |
Rearranging Fruits
|
You have two fruit baskets containing
n
fruits each. You are given two
0-indexed
integer arrays
basket1
and
basket2
representing the cost of fruit in each basket. You want to make both baskets
equal
. To do so, you can use the following operation as many times as you want:
Chose two indices
i
and
j
, and swap the
i
th
fruit of
basket1
with the
j
th
fruit of
basket2
.
The cost of the swap is
min(basket1[i],basket2[j])
.
Two baskets are considered equal if sorting them according to the fruit cost makes them exactly the same baskets.
Return
the minimum cost to make both the baskets equal or
-1
if impossible.
Example 1:
Input:
basket1 = [4,2,2,2], basket2 = [1,4,1,2]
Output:
1
Explanation:
Swap index 1 of basket1 with index 0 of basket2, which has cost 1. Now basket1 = [4,1,2,2] and basket2 = [2,4,1,2]. Rearranging both the arrays makes them equal.
Example 2:
Input:
basket1 = [2,3,4,1], basket2 = [3,2,5,1]
Output:
-1
Explanation:
It can be shown that it is impossible to make both the baskets equal.
Constraints:
basket1.length == basket2.length
1 <= basket1.length <= 10
5
1 <= basket1[i],basket2[i] <= 10
9
| null | null |
class Solution {
public:
long long minCost(vector<int>& basket1, vector<int>& basket2) {
int n = basket1.size();
unordered_map<int, int> cnt;
for (int i = 0; i < n; ++i) {
cnt[basket1[i]]++;
cnt[basket2[i]]--;
}
int mi = 1 << 30;
vector<int> nums;
for (auto& [x, v] : cnt) {
if (v % 2) {
return -1;
}
for (int i = abs(v) / 2; i; --i) {
nums.push_back(x);
}
mi = min(mi, x);
}
ranges::sort(nums);
int m = nums.size();
long long ans = 0;
for (int i = 0; i < m / 2; ++i) {
ans += min(nums[i], mi * 2);
}
return ans;
}
};
| null | null |
func minCost(basket1 []int, basket2 []int) (ans int64) {
cnt := map[int]int{}
for i, a := range basket1 {
cnt[a]++
cnt[basket2[i]]--
}
mi := 1 << 30
nums := []int{}
for x, v := range cnt {
if v%2 != 0 {
return -1
}
for i := abs(v) / 2; i > 0; i-- {
nums = append(nums, x)
}
mi = min(mi, x)
}
sort.Ints(nums)
m := len(nums)
for i := 0; i < m/2; i++ {
ans += int64(min(nums[i], mi*2))
}
return
}
func abs(x int) int {
if x < 0 {
return -x
}
return x
}
|
class Solution {
public long minCost(int[] basket1, int[] basket2) {
int n = basket1.length;
Map<Integer, Integer> cnt = new HashMap<>();
for (int i = 0; i < n; ++i) {
cnt.merge(basket1[i], 1, Integer::sum);
cnt.merge(basket2[i], -1, Integer::sum);
}
int mi = 1 << 30;
List<Integer> nums = new ArrayList<>();
for (var e : cnt.entrySet()) {
int x = e.getKey(), v = e.getValue();
if (v % 2 != 0) {
return -1;
}
for (int i = Math.abs(v) / 2; i > 0; --i) {
nums.add(x);
}
mi = Math.min(mi, x);
}
Collections.sort(nums);
int m = nums.size();
long ans = 0;
for (int i = 0; i < m / 2; ++i) {
ans += Math.min(nums.get(i), mi * 2);
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def minCost(self, basket1: List[int], basket2: List[int]) -> int:
cnt = Counter()
for a, b in zip(basket1, basket2):
cnt[a] += 1
cnt[b] -= 1
mi = min(cnt)
nums = []
for x, v in cnt.items():
if v % 2:
return -1
nums.extend([x] * (abs(v) // 2))
nums.sort()
m = len(nums) // 2
return sum(min(x, mi * 2) for x in nums[:m])
| null |
use std::collections::HashMap;
impl Solution {
pub fn min_cost(basket1: Vec<i32>, basket2: Vec<i32>) -> i64 {
let n = basket1.len();
let mut cnt: HashMap<i32, i32> = HashMap::new();
for i in 0..n {
*cnt.entry(basket1[i]).or_insert(0) += 1;
*cnt.entry(basket2[i]).or_insert(0) -= 1;
}
let mut mi = i32::MAX;
let mut nums = Vec::new();
for (x, v) in cnt {
if v % 2 != 0 {
return -1;
}
for _ in 0..(v.abs() / 2) {
nums.push(x);
}
mi = mi.min(x);
}
nums.sort();
let m = nums.len();
let mut ans = 0;
for i in 0..(m / 2) {
ans += nums[i].min(mi * 2) as i64;
}
ans
}
}
| null | null | null |
function minCost(basket1: number[], basket2: number[]): number {
const n = basket1.length;
const cnt: Map<number, number> = new Map();
for (let i = 0; i < n; i++) {
cnt.set(basket1[i], (cnt.get(basket1[i]) || 0) + 1);
cnt.set(basket2[i], (cnt.get(basket2[i]) || 0) - 1);
}
let mi = Number.MAX_SAFE_INTEGER;
const nums: number[] = [];
for (const [x, v] of cnt.entries()) {
if (v % 2 !== 0) {
return -1;
}
for (let i = 0; i < Math.abs(v) / 2; i++) {
nums.push(x);
}
mi = Math.min(mi, x);
}
nums.sort((a, b) => a - b);
const m = nums.length;
let ans = 0;
for (let i = 0; i < m / 2; i++) {
ans += Math.min(nums[i], mi * 2);
}
return ans;
}
|
Minimum Number of Chairs in a Waiting Room
|
You are given a string
s
. Simulate events at each second
i
:
If
s[i] == 'E'
, a person enters the waiting room and takes one of the chairs in it.
If
s[i] == 'L'
, a person leaves the waiting room, freeing up a chair.
Return the
minimum
number of chairs needed so that a chair is available for every person who enters the waiting room given that it is initially
empty
.
Example 1:
Input:
s = "EEEEEEE"
Output:
7
Explanation:
After each second, a person enters the waiting room and no person leaves it. Therefore, a minimum of 7 chairs is needed.
Example 2:
Input:
s = "ELELEEL"
Output:
2
Explanation:
Let's consider that there are 2 chairs in the waiting room. The table below shows the state of the waiting room at each second.
Second
Event
People in the Waiting Room
Available Chairs
0
Enter
1
1
1
Leave
0
2
2
Enter
1
1
3
Leave
0
2
4
Enter
1
1
5
Enter
2
0
6
Leave
1
1
Example 3:
Input:
s = "ELEELEELLL"
Output:
3
Explanation:
Let's consider that there are 3 chairs in the waiting room. The table below shows the state of the waiting room at each second.
Second
Event
People in the Waiting Room
Available Chairs
0
Enter
1
2
1
Leave
0
3
2
Enter
1
2
3
Enter
2
1
4
Leave
1
2
5
Enter
2
1
6
Enter
3
0
7
Leave
2
1
8
Leave
1
2
9
Leave
0
3
Constraints:
1 <= s.length <= 50
s
consists only of the letters
'E'
and
'L'
.
s
represents a valid sequence of entries and exits.
| null | null |
class Solution {
public:
int minimumChairs(string s) {
int cnt = 0, left = 0;
for (char& c : s) {
if (c == 'E') {
if (left > 0) {
--left;
} else {
++cnt;
}
} else {
++left;
}
}
return cnt;
}
};
| null | null |
func minimumChairs(s string) int {
cnt, left := 0, 0
for _, c := range s {
if c == 'E' {
if left > 0 {
left--
} else {
cnt++
}
} else {
left++
}
}
return cnt
}
|
class Solution {
public int minimumChairs(String s) {
int cnt = 0, left = 0;
for (int i = 0; i < s.length(); ++i) {
if (s.charAt(i) == 'E') {
if (left > 0) {
--left;
} else {
++cnt;
}
} else {
++left;
}
}
return cnt;
}
}
| null | null | null | null | null | null |
class Solution:
def minimumChairs(self, s: str) -> int:
cnt = left = 0
for c in s:
if c == "E":
if left:
left -= 1
else:
cnt += 1
else:
left += 1
return cnt
| null | null | null | null | null |
function minimumChairs(s: string): number {
let [cnt, left] = [0, 0];
for (const c of s) {
if (c === 'E') {
if (left > 0) {
--left;
} else {
++cnt;
}
} else {
++left;
}
}
return cnt;
}
|
Rotate String
|
Given two strings
s
and
goal
, return
true
if and only if
s
can become
goal
after some number of
shifts
on
s
.
A
shift
on
s
consists of moving the leftmost character of
s
to the rightmost position.
For example, if
s = "abcde"
, then it will be
"bcdea"
after one shift.
Example 1:
Input:
s = "abcde", goal = "cdeab"
Output:
true
Example 2:
Input:
s = "abcde", goal = "abced"
Output:
false
Constraints:
1 <= s.length, goal.length <= 100
s
and
goal
consist of lowercase English letters.
| null | null |
class Solution {
public:
bool rotateString(string s, string goal) {
return s.size() == goal.size() && strstr((s + s).data(), goal.data());
}
};
| null | null |
func rotateString(s string, goal string) bool {
return len(s) == len(goal) && strings.Contains(s+s, goal)
}
|
class Solution {
public boolean rotateString(String s, String goal) {
return s.length() == goal.length() && (s + s).contains(goal);
}
}
| null | null | null | null |
class Solution {
/**
* @param String $s
* @param String $goal
* @return Boolean
*/
function rotateString($s, $goal) {
return strlen($goal) === strlen($s) && strpos($s . $s, $goal) !== false;
}
}
| null |
class Solution:
def rotateString(self, s: str, goal: str) -> bool:
return len(s) == len(goal) and goal in s + s
| null |
impl Solution {
pub fn rotate_string(s: String, goal: String) -> bool {
s.len() == goal.len() && (s.clone() + &s).contains(&goal)
}
}
| null | null | null |
function rotateString(s: string, goal: string): boolean {
return s.length === goal.length && (goal + goal).includes(s);
}
|
Kth Smallest Product of Two Sorted Arrays
|
Given two
sorted 0-indexed
integer arrays
nums1
and
nums2
as well as an integer
k
, return
the
k
th
(
1-based
) smallest product of
nums1[i] \* nums2[j]
where
0 <= i < nums1.length
and
0 <= j < nums2.length
.
Example 1:
Input:
nums1 = [2,5], nums2 = [3,4], k = 2
Output:
8
Explanation:
The 2 smallest products are:
- nums1[0] * nums2[0] = 2 * 3 = 6
- nums1[0] * nums2[1] = 2 * 4 = 8
The 2
nd
smallest product is 8.
Example 2:
Input:
nums1 = [-4,-2,0,3], nums2 = [2,4], k = 6
Output:
0
Explanation:
The 6 smallest products are:
- nums1[0] * nums2[1] = (-4) * 4 = -16
- nums1[0] * nums2[0] = (-4) * 2 = -8
- nums1[1] * nums2[1] = (-2) * 4 = -8
- nums1[1] * nums2[0] = (-2) * 2 = -4
- nums1[2] * nums2[0] = 0 * 2 = 0
- nums1[2] * nums2[1] = 0 * 4 = 0
The 6
th
smallest product is 0.
Example 3:
Input:
nums1 = [-2,-1,0,1,2], nums2 = [-3,-1,2,4,5], k = 3
Output:
-6
Explanation:
The 3 smallest products are:
- nums1[0] * nums2[4] = (-2) * 5 = -10
- nums1[0] * nums2[3] = (-2) * 4 = -8
- nums1[4] * nums2[0] = 2 * (-3) = -6
The 3
rd
smallest product is -6.
Constraints:
1 <= nums1.length, nums2.length <= 5 * 10
4
-10
5
<= nums1[i], nums2[j] <= 10
5
1 <= k <= nums1.length * nums2.length
nums1
and
nums2
are sorted.
| null | null |
class Solution {
public:
long long kthSmallestProduct(vector<int>& nums1, vector<int>& nums2, long long k) {
int m = nums1.size(), n = nums2.size();
int a = max(abs(nums1[0]), abs(nums1[m - 1]));
int b = max(abs(nums2[0]), abs(nums2[n - 1]));
long long r = 1LL * a * b;
long long l = -r;
auto count = [&](long long p) {
long long cnt = 0;
for (int x : nums1) {
if (x > 0) {
int l = 0, r = n;
while (l < r) {
int mid = (l + r) >> 1;
if (1LL * x * nums2[mid] > p) {
r = mid;
} else {
l = mid + 1;
}
}
cnt += l;
} else if (x < 0) {
int l = 0, r = n;
while (l < r) {
int mid = (l + r) >> 1;
if (1LL * x * nums2[mid] <= p) {
r = mid;
} else {
l = mid + 1;
}
}
cnt += n - l;
} else if (p >= 0) {
cnt += n;
}
}
return cnt;
};
while (l < r) {
long long mid = (l + r) >> 1;
if (count(mid) >= k) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
}
};
| null | null |
func kthSmallestProduct(nums1 []int, nums2 []int, k int64) int64 {
m := len(nums1)
n := len(nums2)
a := max(abs(nums1[0]), abs(nums1[m-1]))
b := max(abs(nums2[0]), abs(nums2[n-1]))
r := int64(a) * int64(b)
l := -r
count := func(p int64) int64 {
var cnt int64
for _, x := range nums1 {
if x > 0 {
l, r := 0, n
for l < r {
mid := (l + r) >> 1
if int64(x)*int64(nums2[mid]) > p {
r = mid
} else {
l = mid + 1
}
}
cnt += int64(l)
} else if x < 0 {
l, r := 0, n
for l < r {
mid := (l + r) >> 1
if int64(x)*int64(nums2[mid]) <= p {
r = mid
} else {
l = mid + 1
}
}
cnt += int64(n - l)
} else if p >= 0 {
cnt += int64(n)
}
}
return cnt
}
for l < r {
mid := (l + r) >> 1
if count(mid) >= k {
r = mid
} else {
l = mid + 1
}
}
return l
}
func abs(x int) int {
if x < 0 {
return -x
}
return x
}
|
class Solution {
private int[] nums1;
private int[] nums2;
public long kthSmallestProduct(int[] nums1, int[] nums2, long k) {
this.nums1 = nums1;
this.nums2 = nums2;
int m = nums1.length;
int n = nums2.length;
int a = Math.max(Math.abs(nums1[0]), Math.abs(nums1[m - 1]));
int b = Math.max(Math.abs(nums2[0]), Math.abs(nums2[n - 1]));
long r = (long) a * b;
long l = (long) -a * b;
while (l < r) {
long mid = (l + r) >> 1;
if (count(mid) >= k) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
}
private long count(long p) {
long cnt = 0;
int n = nums2.length;
for (int x : nums1) {
if (x > 0) {
int l = 0, r = n;
while (l < r) {
int mid = (l + r) >> 1;
if ((long) x * nums2[mid] > p) {
r = mid;
} else {
l = mid + 1;
}
}
cnt += l;
} else if (x < 0) {
int l = 0, r = n;
while (l < r) {
int mid = (l + r) >> 1;
if ((long) x * nums2[mid] <= p) {
r = mid;
} else {
l = mid + 1;
}
}
cnt += n - l;
} else if (p >= 0) {
cnt += n;
}
}
return cnt;
}
}
| null | null | null | null | null | null |
class Solution:
def kthSmallestProduct(self, nums1: List[int], nums2: List[int], k: int) -> int:
def count(p: int) -> int:
cnt = 0
n = len(nums2)
for x in nums1:
if x > 0:
cnt += bisect_right(nums2, p / x)
elif x < 0:
cnt += n - bisect_left(nums2, p / x)
else:
cnt += n * int(p >= 0)
return cnt
mx = max(abs(nums1[0]), abs(nums1[-1])) * max(abs(nums2[0]), abs(nums2[-1]))
return bisect_left(range(-mx, mx + 1), k, key=count) - mx
| null |
impl Solution {
pub fn kth_smallest_product(nums1: Vec<i32>, nums2: Vec<i32>, k: i64) -> i64 {
let m = nums1.len();
let n = nums2.len();
let a = nums1[0].abs().max(nums1[m - 1].abs()) as i64;
let b = nums2[0].abs().max(nums2[n - 1].abs()) as i64;
let mut l = -a * b;
let mut r = a * b;
let count = |p: i64| -> i64 {
let mut cnt = 0i64;
for &x in &nums1 {
if x > 0 {
let mut left = 0;
let mut right = n;
while left < right {
let mid = (left + right) / 2;
if (x as i64) * (nums2[mid] as i64) > p {
right = mid;
} else {
left = mid + 1;
}
}
cnt += left as i64;
} else if x < 0 {
let mut left = 0;
let mut right = n;
while left < right {
let mid = (left + right) / 2;
if (x as i64) * (nums2[mid] as i64) <= p {
right = mid;
} else {
left = mid + 1;
}
}
cnt += (n - left) as i64;
} else if p >= 0 {
cnt += n as i64;
}
}
cnt
};
while l < r {
let mid = l + (r - l) / 2;
if count(mid) >= k {
r = mid;
} else {
l = mid + 1;
}
}
l
}
}
| null | null | null |
function kthSmallestProduct(nums1: number[], nums2: number[], k: number): number {
const m = nums1.length;
const n = nums2.length;
const a = BigInt(Math.max(Math.abs(nums1[0]), Math.abs(nums1[m - 1])));
const b = BigInt(Math.max(Math.abs(nums2[0]), Math.abs(nums2[n - 1])));
let l = -a * b;
let r = a * b;
const count = (p: bigint): bigint => {
let cnt = 0n;
for (const x of nums1) {
const bx = BigInt(x);
if (bx > 0n) {
let l = 0,
r = n;
while (l < r) {
const mid = (l + r) >> 1;
const prod = bx * BigInt(nums2[mid]);
if (prod > p) {
r = mid;
} else {
l = mid + 1;
}
}
cnt += BigInt(l);
} else if (bx < 0n) {
let l = 0,
r = n;
while (l < r) {
const mid = (l + r) >> 1;
const prod = bx * BigInt(nums2[mid]);
if (prod <= p) {
r = mid;
} else {
l = mid + 1;
}
}
cnt += BigInt(n - l);
} else if (p >= 0n) {
cnt += BigInt(n);
}
}
return cnt;
};
while (l < r) {
const mid = (l + r) >> 1n;
if (count(mid) >= BigInt(k)) {
r = mid;
} else {
l = mid + 1n;
}
}
return Number(l);
}
|
Before and After Puzzle 🔒
|
Given a list of
phrases
, generate a list of Before and After puzzles.
A
phrase
is a string that consists of lowercase English letters and spaces only. No space appears in the start or the end of a phrase. There are no consecutive spaces in a phrase.
Before and After puzzles
are phrases that are formed by merging two phrases where the
last word of the first phrase
is the same as the
first word of the second phrase
.
Return the Before and After puzzles that can be formed by every two phrases
phrases[i]
and
phrases[j]
where
i != j
. Note that the order of matching two phrases matters, we want to consider both orders.
You should return a list of
distinct
strings
sorted lexicographically
.
Example 1:
Input:
phrases = ["writing code","code rocks"]
Output:
["writing code rocks"]
Example 2:
Input:
phrases = ["mission statement",
"a quick bite to eat",
"a chip off the old block",
"chocolate bar",
"mission impossible",
"a man on a mission",
"block party",
"eat my words",
"bar of soap"]
Output:
["a chip off the old block party",
"a man on a mission impossible",
"a man on a mission statement",
"a quick bite to eat my words",
"chocolate bar of soap"]
Example 3:
Input:
phrases = ["a","b","a"]
Output:
["a"]
Constraints:
1 <= phrases.length <= 100
1 <= phrases[i].length <= 100
| null | null |
class Solution {
public:
vector<string> beforeAndAfterPuzzles(vector<string>& phrases) {
int n = phrases.size();
pair<string, string> ps[n];
for (int i = 0; i < n; ++i) {
int j = phrases[i].find(' ');
if (j == string::npos) {
ps[i] = {phrases[i], phrases[i]};
} else {
int k = phrases[i].rfind(' ');
ps[i] = {phrases[i].substr(0, j), phrases[i].substr(k + 1)};
}
}
unordered_set<string> s;
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
if (i != j && ps[i].second == ps[j].first) {
s.insert(phrases[i] + phrases[j].substr(ps[i].second.size()));
}
}
}
vector<string> ans(s.begin(), s.end());
sort(ans.begin(), ans.end());
return ans;
}
};
| null | null |
func beforeAndAfterPuzzles(phrases []string) []string {
n := len(phrases)
ps := make([][2]string, n)
for i, p := range phrases {
ws := strings.Split(p, " ")
ps[i] = [2]string{ws[0], ws[len(ws)-1]}
}
s := map[string]bool{}
for i := 0; i < n; i++ {
for j := 0; j < n; j++ {
if i != j && ps[i][1] == ps[j][0] {
s[phrases[i]+phrases[j][len(ps[j][0]):]] = true
}
}
}
ans := make([]string, 0, len(s))
for k := range s {
ans = append(ans, k)
}
sort.Strings(ans)
return ans
}
|
class Solution {
public List<String> beforeAndAfterPuzzles(String[] phrases) {
int n = phrases.length;
var ps = new String[n][];
for (int i = 0; i < n; ++i) {
var ws = phrases[i].split(" ");
ps[i] = new String[] {ws[0], ws[ws.length - 1]};
}
Set<String> s = new HashSet<>();
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
if (i != j && ps[i][1].equals(ps[j][0])) {
s.add(phrases[i] + phrases[j].substring(ps[j][0].length()));
}
}
}
var ans = new ArrayList<>(s);
Collections.sort(ans);
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def beforeAndAfterPuzzles(self, phrases: List[str]) -> List[str]:
ps = []
for p in phrases:
ws = p.split()
ps.append((ws[0], ws[-1]))
n = len(ps)
ans = []
for i in range(n):
for j in range(n):
if i != j and ps[i][1] == ps[j][0]:
ans.append(phrases[i] + phrases[j][len(ps[j][0]) :])
return sorted(set(ans))
| null | null | null | null | null |
function beforeAndAfterPuzzles(phrases: string[]): string[] {
const ps: string[][] = [];
for (const p of phrases) {
const ws = p.split(' ');
ps.push([ws[0], ws[ws.length - 1]]);
}
const n = ps.length;
const s: Set<string> = new Set();
for (let i = 0; i < n; ++i) {
for (let j = 0; j < n; ++j) {
if (i !== j && ps[i][1] === ps[j][0]) {
s.add(`${phrases[i]}${phrases[j].substring(ps[j][0].length)}`);
}
}
}
return [...s].sort();
}
|
Lowest Common Ancestor of a Binary Tree III 🔒
|
Given two nodes of a binary tree
p
and
q
, return
their lowest common ancestor (LCA)
.
Each node will have a reference to its parent node. The definition for
Node
is below:
class Node {
public int val;
public Node left;
public Node right;
public Node parent;
}
According to the
definition of LCA on Wikipedia
: "The lowest common ancestor of two nodes p and q in a tree T is the lowest node that has both p and q as descendants (where we allow
a node to be a descendant of itself
)."
Example 1:
Input:
root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
Output:
3
Explanation:
The LCA of nodes 5 and 1 is 3.
Example 2:
Input:
root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
Output:
5
Explanation:
The LCA of nodes 5 and 4 is 5 since a node can be a descendant of itself according to the LCA definition.
Example 3:
Input:
root = [1,2], p = 1, q = 2
Output:
1
Constraints:
The number of nodes in the tree is in the range
[2, 10
5
]
.
-10
9
<= Node.val <= 10
9
All
Node.val
are
unique
.
p != q
p
and
q
exist in the tree.
| null | null |
/*
// Definition for a Node.
class Node {
public:
int val;
Node* left;
Node* right;
Node* parent;
};
*/
class Solution {
public:
Node* lowestCommonAncestor(Node* p, Node* q) {
Node* a = p;
Node* b = q;
while (a != b) {
a = a->parent ? a->parent : q;
b = b->parent ? b->parent : p;
}
return a;
}
};
| null | null |
/**
* Definition for Node.
* type Node struct {
* Val int
* Left *Node
* Right *Node
* Parent *Node
* }
*/
func lowestCommonAncestor(p *Node, q *Node) *Node {
a, b := p, q
for a != b {
if a.Parent != nil {
a = a.Parent
} else {
a = q
}
if b.Parent != nil {
b = b.Parent
} else {
b = p
}
}
return a
}
|
/*
// Definition for a Node.
class Node {
public int val;
public Node left;
public Node right;
public Node parent;
};
*/
class Solution {
public Node lowestCommonAncestor(Node p, Node q) {
Node a = p, b = q;
while (a != b) {
a = a.parent == null ? q : a.parent;
b = b.parent == null ? p : b.parent;
}
return a;
}
}
| null | null | null | null | null | null |
"""
# Definition for a Node.
class Node:
def __init__(self, val):
self.val = val
self.left = None
self.right = None
self.parent = None
"""
class Solution:
def lowestCommonAncestor(self, p: 'Node', q: 'Node') -> 'Node':
a, b = p, q
while a != b:
a = a.parent if a.parent else q
b = b.parent if b.parent else p
return a
| null | null | null | null | null |
/**
* Definition for a binary tree node.
* class Node {
* val: number
* left: Node | null
* right: Node | null
* parent: Node | null
* constructor(val?: number, left?: Node | null, right?: Node | null, parent?: Node | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* this.parent = (parent===undefined ? null : parent)
* }
* }
*/
function lowestCommonAncestor(p: Node | null, q: Node | null): Node | null {
let [a, b] = [p, q];
while (a != b) {
a = a.parent ?? q;
b = b.parent ?? p;
}
return a;
}
|
Letter Tile Possibilities
|
You have
n
tiles
, where each tile has one letter
tiles[i]
printed on it.
Return
the number of possible non-empty sequences of letters
you can make using the letters printed on those
tiles
.
Example 1:
Input:
tiles = "AAB"
Output:
8
Explanation:
The possible sequences are "A", "B", "AA", "AB", "BA", "AAB", "ABA", "BAA".
Example 2:
Input:
tiles = "AAABBC"
Output:
188
Example 3:
Input:
tiles = "V"
Output:
1
Constraints:
1 <= tiles.length <= 7
tiles
consists of uppercase English letters.
| null | null |
class Solution {
public:
int numTilePossibilities(string tiles) {
int cnt[26]{};
for (char c : tiles) {
++cnt[c - 'A'];
}
function<int(int* cnt)> dfs = [&](int* cnt) -> int {
int res = 0;
for (int i = 0; i < 26; ++i) {
if (cnt[i] > 0) {
++res;
--cnt[i];
res += dfs(cnt);
++cnt[i];
}
}
return res;
};
return dfs(cnt);
}
};
| null | null |
func numTilePossibilities(tiles string) int {
cnt := [26]int{}
for _, c := range tiles {
cnt[c-'A']++
}
var dfs func(cnt [26]int) int
dfs = func(cnt [26]int) (res int) {
for i, x := range cnt {
if x > 0 {
res++
cnt[i]--
res += dfs(cnt)
cnt[i]++
}
}
return
}
return dfs(cnt)
}
|
class Solution {
public int numTilePossibilities(String tiles) {
int[] cnt = new int[26];
for (char c : tiles.toCharArray()) {
++cnt[c - 'A'];
}
return dfs(cnt);
}
private int dfs(int[] cnt) {
int res = 0;
for (int i = 0; i < cnt.length; ++i) {
if (cnt[i] > 0) {
++res;
--cnt[i];
res += dfs(cnt);
++cnt[i];
}
}
return res;
}
}
| null | null | null | null | null | null |
class Solution:
def numTilePossibilities(self, tiles: str) -> int:
def dfs(cnt: Counter) -> int:
ans = 0
for i, x in cnt.items():
if x > 0:
ans += 1
cnt[i] -= 1
ans += dfs(cnt)
cnt[i] += 1
return ans
cnt = Counter(tiles)
return dfs(cnt)
| null | null | null | null | null |
function numTilePossibilities(tiles: string): number {
const cnt: number[] = new Array(26).fill(0);
for (const c of tiles) {
++cnt[c.charCodeAt(0) - 'A'.charCodeAt(0)];
}
const dfs = (cnt: number[]): number => {
let res = 0;
for (let i = 0; i < 26; ++i) {
if (cnt[i] > 0) {
++res;
--cnt[i];
res += dfs(cnt);
++cnt[i];
}
}
return res;
};
return dfs(cnt);
}
|
Most Popular Video Creator
|
You are given two string arrays
creators
and
ids
, and an integer array
views
, all of length
n
. The
i
th
video on a platform was created by
creators[i]
, has an id of
ids[i]
, and has
views[i]
views.
The
popularity
of a creator is the
sum
of the number of views on
all
of the creator's videos. Find the creator with the
highest
popularity and the id of their
most
viewed video.
If multiple creators have the highest popularity, find all of them.
If multiple videos have the highest view count for a creator, find the lexicographically
smallest
id.
Note: It is possible for different videos to have the same
id
, meaning that
id
s do not uniquely identify a video. For example, two videos with the same ID are considered as distinct videos with their own viewcount.
Return
a
2D array
of
strings
answer
where
answer[i] = [creators
i
, id
i
]
means that
creators
i
has the
highest
popularity and
id
i
is the
id
of their most
popular
video. The answer can be returned in any order.
Example 1:
Input:
creators = ["alice","bob","alice","chris"], ids = ["one","two","three","four"], views = [5,10,5,4]
Output:
[["alice","one"],["bob","two"]]
Explanation:
The popularity of alice is 5 + 5 = 10.
The popularity of bob is 10.
The popularity of chris is 4.
alice and bob are the most popular creators.
For bob, the video with the highest view count is "two".
For alice, the videos with the highest view count are "one" and "three". Since "one" is lexicographically smaller than "three", it is included in the answer.
Example 2:
Input:
creators = ["alice","alice","alice"], ids = ["a","b","c"], views = [1,2,2]
Output:
[["alice","b"]]
Explanation:
The videos with id "b" and "c" have the highest view count.
Since "b" is lexicographically smaller than "c", it is included in the answer.
Constraints:
n == creators.length == ids.length == views.length
1 <= n <= 10
5
1 <= creators[i].length, ids[i].length <= 5
creators[i]
and
ids[i]
consist only of lowercase English letters.
0 <= views[i] <= 10
5
| null | null |
class Solution {
public:
vector<vector<string>> mostPopularCreator(vector<string>& creators, vector<string>& ids, vector<int>& views) {
unordered_map<string, long long> cnt;
unordered_map<string, int> d;
int n = ids.size();
for (int k = 0; k < n; ++k) {
auto c = creators[k], id = ids[k];
int v = views[k];
cnt[c] += v;
if (!d.count(c) || views[d[c]] < v || (views[d[c]] == v && ids[d[c]] > id)) {
d[c] = k;
}
}
long long mx = 0;
for (auto& [_, x] : cnt) {
mx = max(mx, x);
}
vector<vector<string>> ans;
for (auto& [c, x] : cnt) {
if (x == mx) {
ans.push_back({c, ids[d[c]]});
}
}
return ans;
}
};
| null | null |
func mostPopularCreator(creators []string, ids []string, views []int) (ans [][]string) {
cnt := map[string]int{}
d := map[string]int{}
for k, c := range creators {
i, v := ids[k], views[k]
cnt[c] += v
if j, ok := d[c]; !ok || views[j] < v || (views[j] == v && ids[j] > i) {
d[c] = k
}
}
mx := 0
for _, x := range cnt {
if mx < x {
mx = x
}
}
for c, x := range cnt {
if x == mx {
ans = append(ans, []string{c, ids[d[c]]})
}
}
return
}
|
class Solution {
public List<List<String>> mostPopularCreator(String[] creators, String[] ids, int[] views) {
int n = ids.length;
Map<String, Long> cnt = new HashMap<>(n);
Map<String, Integer> d = new HashMap<>(n);
for (int k = 0; k < n; ++k) {
String c = creators[k], i = ids[k];
long v = views[k];
cnt.merge(c, v, Long::sum);
if (!d.containsKey(c) || views[d.get(c)] < v
|| (views[d.get(c)] == v && ids[d.get(c)].compareTo(i) > 0)) {
d.put(c, k);
}
}
long mx = 0;
for (long x : cnt.values()) {
mx = Math.max(mx, x);
}
List<List<String>> ans = new ArrayList<>();
for (var e : cnt.entrySet()) {
if (e.getValue() == mx) {
String c = e.getKey();
ans.add(List.of(c, ids[d.get(c)]));
}
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def mostPopularCreator(
self, creators: List[str], ids: List[str], views: List[int]
) -> List[List[str]]:
cnt = defaultdict(int)
d = defaultdict(int)
for k, (c, i, v) in enumerate(zip(creators, ids, views)):
cnt[c] += v
if c not in d or views[d[c]] < v or (views[d[c]] == v and ids[d[c]] > i):
d[c] = k
mx = max(cnt.values())
return [[c, ids[d[c]]] for c, x in cnt.items() if x == mx]
| null | null | null | null | null |
function mostPopularCreator(creators: string[], ids: string[], views: number[]): string[][] {
const cnt: Map<string, number> = new Map();
const d: Map<string, number> = new Map();
const n = ids.length;
for (let k = 0; k < n; ++k) {
const [c, i, v] = [creators[k], ids[k], views[k]];
cnt.set(c, (cnt.get(c) ?? 0) + v);
if (!d.has(c) || views[d.get(c)!] < v || (views[d.get(c)!] === v && ids[d.get(c)!] > i)) {
d.set(c, k);
}
}
const mx = Math.max(...cnt.values());
const ans: string[][] = [];
for (const [c, x] of cnt) {
if (x === mx) {
ans.push([c, ids[d.get(c)!]]);
}
}
return ans;
}
|
Shortest Impossible Sequence of Rolls
|
You are given an integer array
rolls
of length
n
and an integer
k
. You roll a
k
sided dice numbered from
1
to
k
,
n
times, where the result of the
i
th
roll is
rolls[i]
.
Return
the length of the
shortest
sequence of rolls so that there's no such
subsequence
in
rolls
.
A
sequence of rolls
of length
len
is the result of rolling a
k
sided dice
len
times.
Example 1:
Input:
rolls = [4,2,1,2,3,3,2,4,1], k = 4
Output:
3
Explanation:
Every sequence of rolls of length 1, [1], [2], [3], [4], can be taken from rolls.
Every sequence of rolls of length 2, [1, 1], [1, 2], ..., [4, 4], can be taken from rolls.
The sequence [1, 4, 2] cannot be taken from rolls, so we return 3.
Note that there are other sequences that cannot be taken from rolls.
Example 2:
Input:
rolls = [1,1,2,2], k = 2
Output:
2
Explanation:
Every sequence of rolls of length 1, [1], [2], can be taken from rolls.
The sequence [2, 1] cannot be taken from rolls, so we return 2.
Note that there are other sequences that cannot be taken from rolls but [2, 1] is the shortest.
Example 3:
Input:
rolls = [1,1,3,2,2,2,3,3], k = 4
Output:
1
Explanation:
The sequence [4] cannot be taken from rolls, so we return 1.
Note that there are other sequences that cannot be taken from rolls but [4] is the shortest.
Constraints:
n == rolls.length
1 <= n <= 10
5
1 <= rolls[i] <= k <= 10
5
| null | null |
class Solution {
public:
int shortestSequence(vector<int>& rolls, int k) {
unordered_set<int> s;
int ans = 1;
for (int v : rolls) {
s.insert(v);
if (s.size() == k) {
s.clear();
++ans;
}
}
return ans;
}
};
| null | null |
func shortestSequence(rolls []int, k int) int {
s := map[int]bool{}
ans := 1
for _, v := range rolls {
s[v] = true
if len(s) == k {
ans++
s = map[int]bool{}
}
}
return ans
}
|
class Solution {
public int shortestSequence(int[] rolls, int k) {
Set<Integer> s = new HashSet<>();
int ans = 1;
for (int v : rolls) {
s.add(v);
if (s.size() == k) {
s.clear();
++ans;
}
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def shortestSequence(self, rolls: List[int], k: int) -> int:
ans = 1
s = set()
for v in rolls:
s.add(v)
if len(s) == k:
ans += 1
s.clear()
return ans
| null | null | null | null | null | null |
Product's Worth Over Invoices 🔒
|
Table:
Product
+-------------+---------+
| Column Name | Type |
+-------------+---------+
| product_id | int |
| name | varchar |
+-------------+---------+
product_id is the column with unique values for this table.
This table contains the ID and the name of the product. The name consists of only lowercase English letters. No two products have the same name.
Table:
Invoice
+-------------+------+
| Column Name | Type |
+-------------+------+
| invoice_id | int |
| product_id | int |
| rest | int |
| paid | int |
| canceled | int |
| refunded | int |
+-------------+------+
invoice_id is the column with unique values for this table and the id of this invoice.
product_id is the id of the product for this invoice.
rest is the amount left to pay for this invoice.
paid is the amount paid for this invoice.
canceled is the amount canceled for this invoice.
refunded is the amount refunded for this invoice.
Write a solution that will, for all products, return each product name with the total amount due, paid, canceled, and refunded across all invoices.
Return the result table ordered by
product_name
.
The result format is in the following example.
Example 1:
Input:
Product table:
+------------+-------+
| product_id | name |
+------------+-------+
| 0 | ham |
| 1 | bacon |
+------------+-------+
Invoice table:
+------------+------------+------+------+----------+----------+
| invoice_id | product_id | rest | paid | canceled | refunded |
+------------+------------+------+------+----------+----------+
| 23 | 0 | 2 | 0 | 5 | 0 |
| 12 | 0 | 0 | 4 | 0 | 3 |
| 1 | 1 | 1 | 1 | 0 | 1 |
| 2 | 1 | 1 | 0 | 1 | 1 |
| 3 | 1 | 0 | 1 | 1 | 1 |
| 4 | 1 | 1 | 1 | 1 | 0 |
+------------+------------+------+------+----------+----------+
Output:
+-------+------+------+----------+----------+
| name | rest | paid | canceled | refunded |
+-------+------+------+----------+----------+
| bacon | 3 | 3 | 3 | 3 |
| ham | 2 | 4 | 5 | 3 |
+-------+------+------+----------+----------+
Explanation:
- The amount of money left to pay for bacon is 1 + 1 + 0 + 1 = 3
- The amount of money paid for bacon is 1 + 0 + 1 + 1 = 3
- The amount of money canceled for bacon is 0 + 1 + 1 + 1 = 3
- The amount of money refunded for bacon is 1 + 1 + 1 + 0 = 3
- The amount of money left to pay for ham is 2 + 0 = 2
- The amount of money paid for ham is 0 + 4 = 4
- The amount of money canceled for ham is 5 + 0 = 5
- The amount of money refunded for ham is 0 + 3 = 3
| null | null | null | null | null | null | null | null | null |
# Write your MySQL query statement below
SELECT
name,
IFNULL(SUM(rest), 0) AS rest,
IFNULL(SUM(paid), 0) AS paid,
IFNULL(SUM(canceled), 0) AS canceled,
IFNULL(SUM(refunded), 0) AS refunded
FROM
Product
LEFT JOIN Invoice USING (product_id)
GROUP BY product_id
ORDER BY name;
| null | null | null | null | null | null | null | null | null | null |
Number of Valid Clock Times
|
You are given a string of length
5
called
time
, representing the current time on a digital clock in the format
"hh:mm"
. The
earliest
possible time is
"00:00"
and the
latest
possible time is
"23:59"
.
In the string
time
, the digits represented by the
?
symbol are
unknown
, and must be
replaced
with a digit from
0
to
9
.
Return
an integer
answer
, the number of valid clock times that can be created by replacing every
?
with a digit from
0
to
9
.
Example 1:
Input:
time = "?5:00"
Output:
2
Explanation:
We can replace the ? with either a 0 or 1, producing "05:00" or "15:00". Note that we cannot replace it with a 2, since the time "25:00" is invalid. In total, we have two choices.
Example 2:
Input:
time = "0?:0?"
Output:
100
Explanation:
Each ? can be replaced by any digit from 0 to 9, so we have 100 total choices.
Example 3:
Input:
time = "??:??"
Output:
1440
Explanation:
There are 24 possible choices for the hours, and 60 possible choices for the minutes. In total, we have 24 * 60 = 1440 choices.
Constraints:
time
is a valid string of length
5
in the format
"hh:mm"
.
"00" <= hh <= "23"
"00" <= mm <= "59"
Some of the digits might be replaced with
'?'
and need to be replaced with digits from
0
to
9
.
| null | null |
class Solution {
public:
int countTime(string time) {
auto f = [](string s, int m) {
int cnt = 0;
for (int i = 0; i < m; ++i) {
bool a = s[0] == '?' || s[0] - '0' == i / 10;
bool b = s[1] == '?' || s[1] - '0' == i % 10;
cnt += a && b;
}
return cnt;
};
return f(time.substr(0, 2), 24) * f(time.substr(3, 2), 60);
}
};
| null | null |
func countTime(time string) int {
f := func(s string, m int) (cnt int) {
for i := 0; i < m; i++ {
a := s[0] == '?' || int(s[0]-'0') == i/10
b := s[1] == '?' || int(s[1]-'0') == i%10
if a && b {
cnt++
}
}
return
}
return f(time[:2], 24) * f(time[3:], 60)
}
|
class Solution {
public int countTime(String time) {
return f(time.substring(0, 2), 24) * f(time.substring(3), 60);
}
private int f(String s, int m) {
int cnt = 0;
for (int i = 0; i < m; ++i) {
boolean a = s.charAt(0) == '?' || s.charAt(0) - '0' == i / 10;
boolean b = s.charAt(1) == '?' || s.charAt(1) - '0' == i % 10;
cnt += a && b ? 1 : 0;
}
return cnt;
}
}
| null | null | null | null | null | null |
class Solution:
def countTime(self, time: str) -> int:
def f(s: str, m: int) -> int:
cnt = 0
for i in range(m):
a = s[0] == '?' or (int(s[0]) == i // 10)
b = s[1] == '?' or (int(s[1]) == i % 10)
cnt += a and b
return cnt
return f(time[:2], 24) * f(time[3:], 60)
| null |
impl Solution {
pub fn count_time(time: String) -> i32 {
let f = |s: &str, m: usize| -> i32 {
let mut cnt = 0;
let first = s.chars().nth(0).unwrap();
let second = s.chars().nth(1).unwrap();
for i in 0..m {
let a = first == '?' || (first.to_digit(10).unwrap() as usize) == i / 10;
let b = second == '?' || (second.to_digit(10).unwrap() as usize) == i % 10;
if a && b {
cnt += 1;
}
}
cnt
};
f(&time[..2], 24) * f(&time[3..], 60)
}
}
| null | null | null |
function countTime(time: string): number {
const f = (s: string, m: number): number => {
let cnt = 0;
for (let i = 0; i < m; ++i) {
const a = s[0] === '?' || s[0] === Math.floor(i / 10).toString();
const b = s[1] === '?' || s[1] === (i % 10).toString();
if (a && b) {
++cnt;
}
}
return cnt;
};
return f(time.slice(0, 2), 24) * f(time.slice(3), 60);
}
|
Maximum Number of Moves to Kill All Pawns
|
There is a
50 x 50
chessboard with
one
knight and some pawns on it. You are given two integers
kx
and
ky
where
(kx, ky)
denotes the position of the knight, and a 2D array
positions
where
positions[i] = [x
i
, y
i
]
denotes the position of the pawns on the chessboard.
Alice and Bob play a
turn-based
game, where Alice goes first. In each player's turn:
The player
selects
a pawn that still exists on the board and captures it with the knight in the
fewest
possible
moves
.
Note
that the player can select
any
pawn, it
might not
be one that can be captured in the
least
number of moves.
In the process of capturing the
selected
pawn, the knight
may
pass other pawns
without
capturing them
.
Only
the
selected
pawn can be captured in
this
turn.
Alice is trying to
maximize
the
sum
of the number of moves made by
both
players until there are no more pawns on the board, whereas Bob tries to
minimize
them.
Return the
maximum
total
number of moves made during the game that Alice can achieve, assuming both players play
optimally
.
Note that in one
move,
a chess knight has eight possible positions it can move to, as illustrated below. Each move is two cells in a cardinal direction, then one cell in an orthogonal direction.
Example 1:
Input:
kx = 1, ky = 1, positions = [[0,0]]
Output:
4
Explanation:
The knight takes 4 moves to reach the pawn at
(0, 0)
.
Example 2:
Input:
kx = 0, ky = 2, positions = [[1,1],[2,2],[3,3]]
Output:
8
Explanation:
Alice picks the pawn at
(2, 2)
and captures it in two moves:
(0, 2) -> (1, 4) -> (2, 2)
.
Bob picks the pawn at
(3, 3)
and captures it in two moves:
(2, 2) -> (4, 1) -> (3, 3)
.
Alice picks the pawn at
(1, 1)
and captures it in four moves:
(3, 3) -> (4, 1) -> (2, 2) -> (0, 3) -> (1, 1)
.
Example 3:
Input:
kx = 0, ky = 0, positions = [[1,2],[2,4]]
Output:
3
Explanation:
Alice picks the pawn at
(2, 4)
and captures it in two moves:
(0, 0) -> (1, 2) -> (2, 4)
. Note that the pawn at
(1, 2)
is not captured.
Bob picks the pawn at
(1, 2)
and captures it in one move:
(2, 4) -> (1, 2)
.
Constraints:
0 <= kx, ky <= 49
1 <= positions.length <= 15
positions[i].length == 2
0 <= positions[i][0], positions[i][1] <= 49
All
positions[i]
are unique.
The input is generated such that
positions[i] != [kx, ky]
for all
0 <= i < positions.length
.
| null | null |
class Solution {
public:
int maxMoves(int kx, int ky, vector<vector<int>>& positions) {
int n = positions.size();
const int m = 50;
const int dx[8] = {1, 1, 2, 2, -1, -1, -2, -2};
const int dy[8] = {2, -2, 1, -1, 2, -2, 1, -1};
int dist[n + 1][m][m];
memset(dist, -1, sizeof(dist));
for (int i = 0; i <= n; ++i) {
int x = (i < n) ? positions[i][0] : kx;
int y = (i < n) ? positions[i][1] : ky;
queue<pair<int, int>> q;
q.push({x, y});
dist[i][x][y] = 0;
for (int step = 1; !q.empty(); ++step) {
for (int k = q.size(); k > 0; --k) {
auto [x1, y1] = q.front();
q.pop();
for (int j = 0; j < 8; ++j) {
int x2 = x1 + dx[j], y2 = y1 + dy[j];
if (x2 >= 0 && x2 < m && y2 >= 0 && y2 < m && dist[i][x2][y2] == -1) {
dist[i][x2][y2] = step;
q.push({x2, y2});
}
}
}
}
}
int f[n + 1][1 << n][2];
memset(f, -1, sizeof(f));
auto dfs = [&](this auto&& dfs, int last, int state, int k) -> int {
if (state == 0) {
return 0;
}
if (f[last][state][k] != -1) {
return f[last][state][k];
}
int res = (k == 1) ? 0 : INT_MAX;
for (int i = 0; i < positions.size(); ++i) {
int x = positions[i][0], y = positions[i][1];
if ((state >> i) & 1) {
int t = dfs(i, state ^ (1 << i), k ^ 1) + dist[last][x][y];
if (k == 1) {
res = max(res, t);
} else {
res = min(res, t);
}
}
}
return f[last][state][k] = res;
};
return dfs(n, (1 << n) - 1, 1);
}
};
| null | null |
func maxMoves(kx int, ky int, positions [][]int) int {
n := len(positions)
const m = 50
dx := []int{1, 1, 2, 2, -1, -1, -2, -2}
dy := []int{2, -2, 1, -1, 2, -2, 1, -1}
dist := make([][][]int, n+1)
for i := range dist {
dist[i] = make([][]int, m)
for j := range dist[i] {
dist[i][j] = make([]int, m)
for k := range dist[i][j] {
dist[i][j][k] = -1
}
}
}
for i := 0; i <= n; i++ {
x := kx
y := ky
if i < n {
x = positions[i][0]
y = positions[i][1]
}
q := [][2]int{[2]int{x, y}}
dist[i][x][y] = 0
for step := 1; len(q) > 0; step++ {
for k := len(q); k > 0; k-- {
p := q[0]
q = q[1:]
x1, y1 := p[0], p[1]
for j := 0; j < 8; j++ {
x2 := x1 + dx[j]
y2 := y1 + dy[j]
if x2 >= 0 && x2 < m && y2 >= 0 && y2 < m && dist[i][x2][y2] == -1 {
dist[i][x2][y2] = step
q = append(q, [2]int{x2, y2})
}
}
}
}
}
f := make([][][]int, n+1)
for i := range f {
f[i] = make([][]int, 1<<n)
for j := range f[i] {
f[i][j] = make([]int, 2)
for k := range f[i][j] {
f[i][j][k] = -1
}
}
}
var dfs func(last, state, k int) int
dfs = func(last, state, k int) int {
if state == 0 {
return 0
}
if f[last][state][k] != -1 {
return f[last][state][k]
}
var res int
if k == 0 {
res = math.MaxInt32
}
for i, p := range positions {
x, y := p[0], p[1]
if (state>>i)&1 == 1 {
t := dfs(i, state^(1<<i), k^1) + dist[last][x][y]
if k == 1 {
res = max(res, t)
} else {
res = min(res, t)
}
}
}
f[last][state][k] = res
return res
}
return dfs(n, (1<<n)-1, 1)
}
|
class Solution {
private Integer[][][] f;
private Integer[][][] dist;
private int[][] positions;
private final int[] dx = {1, 1, 2, 2, -1, -1, -2, -2};
private final int[] dy = {2, -2, 1, -1, 2, -2, 1, -1};
public int maxMoves(int kx, int ky, int[][] positions) {
int n = positions.length;
final int m = 50;
dist = new Integer[n + 1][m][m];
this.positions = positions;
for (int i = 0; i <= n; ++i) {
int x = i < n ? positions[i][0] : kx;
int y = i < n ? positions[i][1] : ky;
Deque<int[]> q = new ArrayDeque<>();
q.offer(new int[] {x, y});
for (int step = 1; !q.isEmpty(); ++step) {
for (int k = q.size(); k > 0; --k) {
var p = q.poll();
int x1 = p[0], y1 = p[1];
for (int j = 0; j < 8; ++j) {
int x2 = x1 + dx[j], y2 = y1 + dy[j];
if (x2 >= 0 && x2 < m && y2 >= 0 && y2 < m && dist[i][x2][y2] == null) {
dist[i][x2][y2] = step;
q.offer(new int[] {x2, y2});
}
}
}
}
}
f = new Integer[n + 1][1 << n][2];
return dfs(n, (1 << n) - 1, 1);
}
private int dfs(int last, int state, int k) {
if (state == 0) {
return 0;
}
if (f[last][state][k] != null) {
return f[last][state][k];
}
int res = k == 1 ? 0 : Integer.MAX_VALUE;
for (int i = 0; i < positions.length; ++i) {
int x = positions[i][0], y = positions[i][1];
if ((state >> i & 1) == 1) {
int t = dfs(i, state ^ (1 << i), k ^ 1) + dist[last][x][y];
res = k == 1 ? Math.max(res, t) : Math.min(res, t);
}
}
return f[last][state][k] = res;
}
}
| null | null | null | null | null | null |
class Solution:
def maxMoves(self, kx: int, ky: int, positions: List[List[int]]) -> int:
@cache
def dfs(last: int, state: int, k: int) -> int:
if state == 0:
return 0
if k:
res = 0
for i, (x, y) in enumerate(positions):
if state >> i & 1:
t = dfs(i, state ^ (1 << i), k ^ 1) + dist[last][x][y]
if res < t:
res = t
return res
else:
res = inf
for i, (x, y) in enumerate(positions):
if state >> i & 1:
t = dfs(i, state ^ (1 << i), k ^ 1) + dist[last][x][y]
if res > t:
res = t
return res
n = len(positions)
m = 50
dist = [[[-1] * m for _ in range(m)] for _ in range(n + 1)]
dx = [1, 1, 2, 2, -1, -1, -2, -2]
dy = [2, -2, 1, -1, 2, -2, 1, -1]
positions.append([kx, ky])
for i, (x, y) in enumerate(positions):
dist[i][x][y] = 0
q = deque([(x, y)])
step = 0
while q:
step += 1
for _ in range(len(q)):
x1, y1 = q.popleft()
for j in range(8):
x2, y2 = x1 + dx[j], y1 + dy[j]
if 0 <= x2 < m and 0 <= y2 < m and dist[i][x2][y2] == -1:
dist[i][x2][y2] = step
q.append((x2, y2))
ans = dfs(n, (1 << n) - 1, 1)
dfs.cache_clear()
return ans
| null | null | null | null | null | null |
Number of Students Unable to Eat Lunch
|
The school cafeteria offers circular and square sandwiches at lunch break, referred to by numbers
0
and
1
respectively. All students stand in a queue. Each student either prefers square or circular sandwiches.
The number of sandwiches in the cafeteria is equal to the number of students. The sandwiches are placed in a
stack
. At each step:
If the student at the front of the queue
prefers
the sandwich on the top of the stack, they will
take it
and leave the queue.
Otherwise, they will
leave it
and go to the queue's end.
This continues until none of the queue students want to take the top sandwich and are thus unable to eat.
You are given two integer arrays
students
and
sandwiches
where
sandwiches[i]
is the type of the
i
th
sandwich in the stack (
i = 0
is the top of the stack) and
students[j]
is the preference of the
j
th
student in the initial queue (
j = 0
is the front of the queue). Return
the number of students that are unable to eat.
Example 1:
Input:
students = [1,1,0,0], sandwiches = [0,1,0,1]
Output:
0
Explanation:
- Front student leaves the top sandwich and returns to the end of the line making students = [1,0,0,1].
- Front student leaves the top sandwich and returns to the end of the line making students = [0,0,1,1].
- Front student takes the top sandwich and leaves the line making students = [0,1,1] and sandwiches = [1,0,1].
- Front student leaves the top sandwich and returns to the end of the line making students = [1,1,0].
- Front student takes the top sandwich and leaves the line making students = [1,0] and sandwiches = [0,1].
- Front student leaves the top sandwich and returns to the end of the line making students = [0,1].
- Front student takes the top sandwich and leaves the line making students = [1] and sandwiches = [1].
- Front student takes the top sandwich and leaves the line making students = [] and sandwiches = [].
Hence all students are able to eat.
Example 2:
Input:
students = [1,1,1,0,0,1], sandwiches = [1,0,0,0,1,1]
Output:
3
Constraints:
1 <= students.length, sandwiches.length <= 100
students.length == sandwiches.length
sandwiches[i]
is
0
or
1
.
students[i]
is
0
or
1
.
|
int countStudents(int* students, int studentsSize, int* sandwiches, int sandwichesSize) {
int count[2] = {0};
for (int i = 0; i < studentsSize; i++) {
count[students[i]]++;
}
for (int i = 0; i < sandwichesSize; i++) {
int j = sandwiches[i];
if (count[j] == 0) {
return count[j ^ 1];
}
count[j]--;
}
return 0;
}
| null |
class Solution {
public:
int countStudents(vector<int>& students, vector<int>& sandwiches) {
int cnt[2] = {0};
for (int& v : students) ++cnt[v];
for (int& v : sandwiches) {
if (cnt[v]-- == 0) {
return cnt[v ^ 1];
}
}
return 0;
}
};
| null | null |
func countStudents(students []int, sandwiches []int) int {
cnt := [2]int{}
for _, v := range students {
cnt[v]++
}
for _, v := range sandwiches {
if cnt[v] == 0 {
return cnt[v^1]
}
cnt[v]--
}
return 0
}
|
class Solution {
public int countStudents(int[] students, int[] sandwiches) {
int[] cnt = new int[2];
for (int v : students) {
++cnt[v];
}
for (int v : sandwiches) {
if (cnt[v]-- == 0) {
return cnt[v ^ 1];
}
}
return 0;
}
}
| null | null | null | null | null | null |
class Solution:
def countStudents(self, students: List[int], sandwiches: List[int]) -> int:
cnt = Counter(students)
for v in sandwiches:
if cnt[v] == 0:
return cnt[v ^ 1]
cnt[v] -= 1
return 0
| null |
impl Solution {
pub fn count_students(students: Vec<i32>, sandwiches: Vec<i32>) -> i32 {
let mut count = [0, 0];
for &v in students.iter() {
count[v as usize] += 1;
}
for &v in sandwiches.iter() {
let v = v as usize;
if count[v as usize] == 0 {
return count[v ^ 1];
}
count[v] -= 1;
}
0
}
}
| null | null | null |
function countStudents(students: number[], sandwiches: number[]): number {
const count = [0, 0];
for (const v of students) {
count[v]++;
}
for (const v of sandwiches) {
if (count[v] === 0) {
return count[v ^ 1];
}
count[v]--;
}
return 0;
}
|
Maximize Items 🔒
|
Table:
Inventory
+----------------+---------+
| Column Name | Type |
+----------------+---------+
| item_id | int |
| item_type | varchar |
| item_category | varchar |
| square_footage | decimal |
+----------------+---------+
item_id is the column of unique values for this table.
Each row includes item id, item type, item category and sqaure footage.
Leetcode warehouse wants to maximize the number of items it can stock in a
500,000
square feet warehouse. It wants to stock as many
prime
items as possible, and afterwards use the
remaining
square footage to stock the most number of
non-prime
items.
Write a solution to find the number of
prime
and
non-prime
items that can be
stored
in the
500,000
square feet warehouse. Output the item type with
prime_eligible
followed by
not_prime
and the maximum number of items that can be stocked.
Note:
Item
count
must be a whole number (integer).
If the count for the
not_prime
category is
0
, you should
output
0
for that particular category.
Return
the result table ordered by item count in
descending order
.
The result format is in the following example.
Example 1:
Input:
Inventory table:
+---------+----------------+---------------+----------------+
| item_id | item_type | item_category | square_footage |
+---------+----------------+---------------+----------------+
| 1374 | prime_eligible | Watches | 68.00 |
| 4245 | not_prime | Art | 26.40 |
| 5743 | prime_eligible | Software | 325.00 |
| 8543 | not_prime | Clothing | 64.50 |
| 2556 | not_prime | Shoes | 15.00 |
| 2452 | prime_eligible | Scientific | 85.00 |
| 3255 | not_prime | Furniture | 22.60 |
| 1672 | prime_eligible | Beauty | 8.50 |
| 4256 | prime_eligible | Furniture | 55.50 |
| 6325 | prime_eligible | Food | 13.20 |
+---------+----------------+---------------+----------------+
Output:
+----------------+-------------+
| item_type | item_count |
+----------------+-------------+
| prime_eligible | 5400 |
| not_prime | 8 |
+----------------+-------------+
Explanation:
- The prime-eligible category comprises a total of 6 items, amounting to a combined square footage of 555.20 (68 + 325 + 85 + 8.50 + 55.50 + 13.20). It is possible to store 900 combinations of these 6 items, totaling 5400 items and occupying 499,680 square footage.
- In the not_prime category, there are a total of 4 items with a combined square footage of 128.50. After deducting the storage used by prime-eligible items (500,000 - 499,680 = 320), there is room for 2 combinations of non-prime items, accommodating a total of 8 non-prime items within the available 320 square footage.
Output table is ordered by item count in descending order.
| null | null | null | null | null | null | null | null | null |
# Write your MySQL query statement below
WITH
T AS (
SELECT SUM(square_footage) AS s
FROM Inventory
WHERE item_type = 'prime_eligible'
)
SELECT
'prime_eligible' AS item_type,
COUNT(1) * FLOOR(500000 / s) AS item_count
FROM
Inventory
JOIN T
WHERE item_type = 'prime_eligible'
UNION ALL
SELECT
'not_prime',
IFNULL(COUNT(1) * FLOOR(IF(s = 0, 500000, 500000 % s) / SUM(square_footage)), 0)
FROM
Inventory
JOIN T
WHERE item_type = 'not_prime';
| null | null | null | null | null | null | null | null | null | null |
Minimum Path Cost in a Grid
|
You are given a
0-indexed
m x n
integer matrix
grid
consisting of
distinct
integers from
0
to
m * n - 1
. You can move in this matrix from a cell to any other cell in the
next
row. That is, if you are in cell
(x, y)
such that
x < m - 1
, you can move to any of the cells
(x + 1, 0)
,
(x + 1, 1)
, ...,
(x + 1, n - 1)
.
Note
that it is not possible to move from cells in the last row.
Each possible move has a cost given by a
0-indexed
2D array
moveCost
of size
(m * n) x n
, where
moveCost[i][j]
is the cost of moving from a cell with value
i
to a cell in column
j
of the next row. The cost of moving from cells in the last row of
grid
can be ignored.
The cost of a path in
grid
is the
sum
of all values of cells visited plus the
sum
of costs of all the moves made. Return
the
minimum
cost of a path that starts from any cell in the
first
row and ends at any cell in the
last
row.
Example 1:
Input:
grid = [[5,3],[4,0],[2,1]], moveCost = [[9,8],[1,5],[10,12],[18,6],[2,4],[14,3]]
Output:
17
Explanation:
The path with the minimum possible cost is the path 5 -> 0 -> 1.
- The sum of the values of cells visited is 5 + 0 + 1 = 6.
- The cost of moving from 5 to 0 is 3.
- The cost of moving from 0 to 1 is 8.
So the total cost of the path is 6 + 3 + 8 = 17.
Example 2:
Input:
grid = [[5,1,2],[4,0,3]], moveCost = [[12,10,15],[20,23,8],[21,7,1],[8,1,13],[9,10,25],[5,3,2]]
Output:
6
Explanation:
The path with the minimum possible cost is the path 2 -> 3.
- The sum of the values of cells visited is 2 + 3 = 5.
- The cost of moving from 2 to 3 is 1.
So the total cost of this path is 5 + 1 = 6.
Constraints:
m == grid.length
n == grid[i].length
2 <= m, n <= 50
grid
consists of distinct integers from
0
to
m * n - 1
.
moveCost.length == m * n
moveCost[i].length == n
1 <= moveCost[i][j] <= 100
| null | null |
class Solution {
public:
int minPathCost(vector<vector<int>>& grid, vector<vector<int>>& moveCost) {
int m = grid.size(), n = grid[0].size();
const int inf = 1 << 30;
vector<int> f = grid[0];
for (int i = 1; i < m; ++i) {
vector<int> g(n, inf);
for (int j = 0; j < n; ++j) {
for (int k = 0; k < n; ++k) {
g[j] = min(g[j], f[k] + moveCost[grid[i - 1][k]][j] + grid[i][j]);
}
}
f = move(g);
}
return *min_element(f.begin(), f.end());
}
};
| null | null |
func minPathCost(grid [][]int, moveCost [][]int) int {
m, n := len(grid), len(grid[0])
f := grid[0]
for i := 1; i < m; i++ {
g := make([]int, n)
for j := 0; j < n; j++ {
g[j] = 1 << 30
for k := 0; k < n; k++ {
g[j] = min(g[j], f[k]+moveCost[grid[i-1][k]][j]+grid[i][j])
}
}
f = g
}
return slices.Min(f)
}
|
class Solution {
public int minPathCost(int[][] grid, int[][] moveCost) {
int m = grid.length, n = grid[0].length;
int[] f = grid[0];
final int inf = 1 << 30;
for (int i = 1; i < m; ++i) {
int[] g = new int[n];
Arrays.fill(g, inf);
for (int j = 0; j < n; ++j) {
for (int k = 0; k < n; ++k) {
g[j] = Math.min(g[j], f[k] + moveCost[grid[i - 1][k]][j] + grid[i][j]);
}
}
f = g;
}
// return Arrays.stream(f).min().getAsInt();
int ans = inf;
for (int v : f) {
ans = Math.min(ans, v);
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def minPathCost(self, grid: List[List[int]], moveCost: List[List[int]]) -> int:
m, n = len(grid), len(grid[0])
f = grid[0]
for i in range(1, m):
g = [inf] * n
for j in range(n):
for k in range(n):
g[j] = min(g[j], f[k] + moveCost[grid[i - 1][k]][j] + grid[i][j])
f = g
return min(f)
| null |
impl Solution {
pub fn min_path_cost(grid: Vec<Vec<i32>>, move_cost: Vec<Vec<i32>>) -> i32 {
let m = grid.len();
let n = grid[0].len();
let mut f = grid[0].clone();
for i in 1..m {
let mut g: Vec<i32> = vec![i32::MAX; n];
for j in 0..n {
for k in 0..n {
g[j] = g[j].min(f[k] + move_cost[grid[i - 1][k] as usize][j] + grid[i][j]);
}
}
f.copy_from_slice(&g);
}
f.iter().cloned().min().unwrap_or(0)
}
}
| null | null | null |
function minPathCost(grid: number[][], moveCost: number[][]): number {
const m = grid.length;
const n = grid[0].length;
const f = grid[0];
for (let i = 1; i < m; ++i) {
const g: number[] = Array(n).fill(Infinity);
for (let j = 0; j < n; ++j) {
for (let k = 0; k < n; ++k) {
g[j] = Math.min(g[j], f[k] + moveCost[grid[i - 1][k]][j] + grid[i][j]);
}
}
f.splice(0, n, ...g);
}
return Math.min(...f);
}
|
Find Closest Number to Zero
|
Given an integer array
nums
of size
n
, return
the number with the value
closest
to
0
in
nums
. If there are multiple answers, return
the number with the
largest
value
.
Example 1:
Input:
nums = [-4,-2,1,4,8]
Output:
1
Explanation:
The distance from -4 to 0 is |-4| = 4.
The distance from -2 to 0 is |-2| = 2.
The distance from 1 to 0 is |1| = 1.
The distance from 4 to 0 is |4| = 4.
The distance from 8 to 0 is |8| = 8.
Thus, the closest number to 0 in the array is 1.
Example 2:
Input:
nums = [2,-1,1]
Output:
1
Explanation:
1 and -1 are both the closest numbers to 0, so 1 being larger is returned.
Constraints:
1 <= n <= 1000
-10
5
<= nums[i] <= 10
5
| null | null |
class Solution {
public:
int findClosestNumber(vector<int>& nums) {
int ans = 0, d = 1 << 30;
for (int x : nums) {
int y = abs(x);
if (y < d || (y == d && x > ans)) {
ans = x;
d = y;
}
}
return ans;
}
};
| null | null |
func findClosestNumber(nums []int) int {
ans, d := 0, 1<<30
for _, x := range nums {
if y := abs(x); y < d || (y == d && x > ans) {
ans, d = x, y
}
}
return ans
}
func abs(x int) int {
if x < 0 {
return -x
}
return x
}
|
class Solution {
public int findClosestNumber(int[] nums) {
int ans = 0, d = 1 << 30;
for (int x : nums) {
int y = Math.abs(x);
if (y < d || (y == d && x > ans)) {
ans = x;
d = y;
}
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def findClosestNumber(self, nums: List[int]) -> int:
ans, d = 0, inf
for x in nums:
if (y := abs(x)) < d or (y == d and x > ans):
ans, d = x, y
return ans
| null | null | null | null | null |
function findClosestNumber(nums: number[]): number {
let [ans, d] = [0, 1 << 30];
for (const x of nums) {
const y = Math.abs(x);
if (y < d || (y == d && x > ans)) {
[ans, d] = [x, y];
}
}
return ans;
}
|
Minimum Number of Operations to Reinitialize a Permutation
|
You are given an
even
integer
n
. You initially have a permutation
perm
of size
n
where
perm[i] == i
(0-indexed)
.
In one operation, you will create a new array
arr
, and for each
i
:
If
i % 2 == 0
, then
arr[i] = perm[i / 2]
.
If
i % 2 == 1
, then
arr[i] = perm[n / 2 + (i - 1) / 2]
.
You will then assign
arr
to
perm
.
Return
the minimum
non-zero
number of operations you need to perform on
perm
to return the permutation to its initial value.
Example 1:
Input:
n = 2
Output:
1
Explanation:
perm = [0,1] initially.
After the 1
st
operation, perm = [0,1]
So it takes only 1 operation.
Example 2:
Input:
n = 4
Output:
2
Explanation:
perm = [0,1,2,3] initially.
After the 1
st
operation, perm = [0,2,1,3]
After the 2
nd
operation, perm = [0,1,2,3]
So it takes only 2 operations.
Example 3:
Input:
n = 6
Output:
4
Constraints:
2 <= n <= 1000
n
is even.
| null | null |
class Solution {
public:
int reinitializePermutation(int n) {
int ans = 0;
for (int i = 1;;) {
++ans;
if (i < (n >> 1)) {
i <<= 1;
} else {
i = (i - (n >> 1)) << 1 | 1;
}
if (i == 1) {
return ans;
}
}
}
};
| null | null |
func reinitializePermutation(n int) (ans int) {
for i := 1; ; {
ans++
if i < (n >> 1) {
i <<= 1
} else {
i = (i-(n>>1))<<1 | 1
}
if i == 1 {
return ans
}
}
}
|
class Solution {
public int reinitializePermutation(int n) {
int ans = 0;
for (int i = 1;;) {
++ans;
if (i < (n >> 1)) {
i <<= 1;
} else {
i = (i - (n >> 1)) << 1 | 1;
}
if (i == 1) {
return ans;
}
}
}
}
| null | null | null | null | null | null |
class Solution:
def reinitializePermutation(self, n: int) -> int:
ans, i = 0, 1
while 1:
ans += 1
if i < n >> 1:
i <<= 1
else:
i = (i - (n >> 1)) << 1 | 1
if i == 1:
return ans
| null | null | null | null | null | null |
Minimum Health to Beat Game 🔒
|
You are playing a game that has
n
levels numbered from
0
to
n - 1
. You are given a
0-indexed
integer array
damage
where
damage[i]
is the amount of health you will lose to complete the
i
th
level.
You are also given an integer
armor
. You may use your armor ability
at most once
during the game on
any
level which will protect you from
at most
armor
damage.
You must complete the levels in order and your health must be
greater than
0
at all times to beat the game.
Return
the
minimum
health you need to start with to beat the game.
Example 1:
Input:
damage = [2,7,4,3], armor = 4
Output:
13
Explanation:
One optimal way to beat the game starting at 13 health is:
On round 1, take 2 damage. You have 13 - 2 = 11 health.
On round 2, take 7 damage. You have 11 - 7 = 4 health.
On round 3, use your armor to protect you from 4 damage. You have 4 - 0 = 4 health.
On round 4, take 3 damage. You have 4 - 3 = 1 health.
Note that 13 is the minimum health you need to start with to beat the game.
Example 2:
Input:
damage = [2,5,3,4], armor = 7
Output:
10
Explanation:
One optimal way to beat the game starting at 10 health is:
On round 1, take 2 damage. You have 10 - 2 = 8 health.
On round 2, use your armor to protect you from 5 damage. You have 8 - 0 = 8 health.
On round 3, take 3 damage. You have 8 - 3 = 5 health.
On round 4, take 4 damage. You have 5 - 4 = 1 health.
Note that 10 is the minimum health you need to start with to beat the game.
Example 3:
Input:
damage = [3,3,3], armor = 0
Output:
10
Explanation:
One optimal way to beat the game starting at 10 health is:
On round 1, take 3 damage. You have 10 - 3 = 7 health.
On round 2, take 3 damage. You have 7 - 3 = 4 health.
On round 3, take 3 damage. You have 4 - 3 = 1 health.
Note that you did not use your armor ability.
Constraints:
n == damage.length
1 <= n <= 10
5
0 <= damage[i] <= 10
5
0 <= armor <= 10
5
| null | null |
class Solution {
public:
long long minimumHealth(vector<int>& damage, int armor) {
long long s = 0;
int mx = damage[0];
for (int& v : damage) {
s += v;
mx = max(mx, v);
}
return s - min(mx, armor) + 1;
}
};
| null | null |
func minimumHealth(damage []int, armor int) int64 {
var s int64
var mx int
for _, v := range damage {
s += int64(v)
mx = max(mx, v)
}
return s - int64(min(mx, armor)) + 1
}
|
class Solution {
public long minimumHealth(int[] damage, int armor) {
long s = 0;
int mx = damage[0];
for (int v : damage) {
s += v;
mx = Math.max(mx, v);
}
return s - Math.min(mx, armor) + 1;
}
}
| null | null | null | null | null | null |
class Solution:
def minimumHealth(self, damage: List[int], armor: int) -> int:
return sum(damage) - min(max(damage), armor) + 1
| null | null | null | null | null |
function minimumHealth(damage: number[], armor: number): number {
let s = 0;
let mx = 0;
for (const v of damage) {
mx = Math.max(mx, v);
s += v;
}
return s - Math.min(mx, armor) + 1;
}
|
Partition Array into Disjoint Intervals
|
Given an integer array
nums
, partition it into two (contiguous) subarrays
left
and
right
so that:
Every element in
left
is less than or equal to every element in
right
.
left
and
right
are non-empty.
left
has the smallest possible size.
Return
the length of
left
after such a partitioning
.
Test cases are generated such that partitioning exists.
Example 1:
Input:
nums = [5,0,3,8,6]
Output:
3
Explanation:
left = [5,0,3], right = [8,6]
Example 2:
Input:
nums = [1,1,1,0,6,12]
Output:
4
Explanation:
left = [1,1,1,0], right = [6,12]
Constraints:
2 <= nums.length <= 10
5
0 <= nums[i] <= 10
6
There is at least one valid answer for the given input.
| null | null |
class Solution {
public:
int partitionDisjoint(vector<int>& nums) {
int n = nums.size();
vector<int> mi(n + 1, INT_MAX);
for (int i = n - 1; ~i; --i) {
mi[i] = min(nums[i], mi[i + 1]);
}
int mx = 0;
for (int i = 1;; ++i) {
int v = nums[i - 1];
mx = max(mx, v);
if (mx <= mi[i]) {
return i;
}
}
}
};
| null | null |
func partitionDisjoint(nums []int) int {
n := len(nums)
mi := make([]int, n+1)
mi[n] = nums[n-1]
for i := n - 1; i >= 0; i-- {
mi[i] = min(nums[i], mi[i+1])
}
mx := 0
for i := 1; ; i++ {
v := nums[i-1]
mx = max(mx, v)
if mx <= mi[i] {
return i
}
}
}
|
class Solution {
public int partitionDisjoint(int[] nums) {
int n = nums.length;
int[] mi = new int[n + 1];
mi[n] = nums[n - 1];
for (int i = n - 1; i >= 0; --i) {
mi[i] = Math.min(nums[i], mi[i + 1]);
}
int mx = 0;
for (int i = 1;; ++i) {
int v = nums[i - 1];
mx = Math.max(mx, v);
if (mx <= mi[i]) {
return i;
}
}
}
}
| null | null | null | null | null | null |
class Solution:
def partitionDisjoint(self, nums: List[int]) -> int:
n = len(nums)
mi = [inf] * (n + 1)
for i in range(n - 1, -1, -1):
mi[i] = min(nums[i], mi[i + 1])
mx = 0
for i, v in enumerate(nums, 1):
mx = max(mx, v)
if mx <= mi[i]:
return i
| null | null | null | null | null | null |
Find the Lexicographically Smallest Valid Sequence
|
You are given two strings
word1
and
word2
.
A string
x
is called
almost equal
to
y
if you can change
at most
one character in
x
to make it
identical
to
y
.
A sequence of indices
seq
is called
valid
if:
The indices are sorted in
ascending
order.
Concatenating
the characters at these indices in
word1
in
the same
order results in a string that is
almost equal
to
word2
.
Return an array of size
word2.length
representing the
lexicographically smallest
valid
sequence of indices. If no such sequence of indices exists, return an
empty
array.
Note
that the answer must represent the
lexicographically smallest array
,
not
the corresponding string formed by those indices.
Example 1:
Input:
word1 = "vbcca", word2 = "abc"
Output:
[0,1,2]
Explanation:
The lexicographically smallest valid sequence of indices is
[0, 1, 2]
:
Change
word1[0]
to
'a'
.
word1[1]
is already
'b'
.
word1[2]
is already
'c'
.
Example 2:
Input:
word1 = "bacdc", word2 = "abc"
Output:
[1,2,4]
Explanation:
The lexicographically smallest valid sequence of indices is
[1, 2, 4]
:
word1[1]
is already
'a'
.
Change
word1[2]
to
'b'
.
word1[4]
is already
'c'
.
Example 3:
Input:
word1 = "aaaaaa", word2 = "aaabc"
Output:
[]
Explanation:
There is no valid sequence of indices.
Example 4:
Input:
word1 = "abc", word2 = "ab"
Output:
[0,1]
Constraints:
1 <= word2.length < word1.length <= 3 * 10
5
word1
and
word2
consist only of lowercase English letters.
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
Median of Two Sorted Arrays
|
Given two sorted arrays
nums1
and
nums2
of size
m
and
n
respectively, return
the median
of the two sorted arrays.
The overall run time complexity should be
O(log (m+n))
.
Example 1:
Input:
nums1 = [1,3], nums2 = [2]
Output:
2.00000
Explanation:
merged array = [1,2,3] and median is 2.
Example 2:
Input:
nums1 = [1,2], nums2 = [3,4]
Output:
2.50000
Explanation:
merged array = [1,2,3,4] and median is (2 + 3) / 2 = 2.5.
Constraints:
nums1.length == m
nums2.length == n
0 <= m <= 1000
0 <= n <= 1000
1 <= m + n <= 2000
-10
6
<= nums1[i], nums2[i] <= 10
6
|
int findKth(int* nums1, int m, int i, int* nums2, int n, int j, int k) {
if (i >= m)
return nums2[j + k - 1];
if (j >= n)
return nums1[i + k - 1];
if (k == 1)
return nums1[i] < nums2[j] ? nums1[i] : nums2[j];
int p = k / 2;
int x = (i + p - 1 < m) ? nums1[i + p - 1] : INT_MAX;
int y = (j + p - 1 < n) ? nums2[j + p - 1] : INT_MAX;
if (x < y)
return findKth(nums1, m, i + p, nums2, n, j, k - p);
else
return findKth(nums1, m, i, nums2, n, j + p, k - p);
}
double findMedianSortedArrays(int* nums1, int m, int* nums2, int n) {
int total = m + n;
int a = findKth(nums1, m, 0, nums2, n, 0, (total + 1) / 2);
int b = findKth(nums1, m, 0, nums2, n, 0, (total + 2) / 2);
return (a + b) / 2.0;
}
|
public class Solution {
private int m;
private int n;
private int[] nums1;
private int[] nums2;
public double FindMedianSortedArrays(int[] nums1, int[] nums2) {
m = nums1.Length;
n = nums2.Length;
this.nums1 = nums1;
this.nums2 = nums2;
int a = f(0, 0, (m + n + 1) / 2);
int b = f(0, 0, (m + n + 2) / 2);
return (a + b) / 2.0;
}
private int f(int i, int j, int k) {
if (i >= m) {
return nums2[j + k - 1];
}
if (j >= n) {
return nums1[i + k - 1];
}
if (k == 1) {
return Math.Min(nums1[i], nums2[j]);
}
int p = k / 2;
int x = i + p - 1 < m ? nums1[i + p - 1] : 1 << 30;
int y = j + p - 1 < n ? nums2[j + p - 1] : 1 << 30;
return x < y ? f(i + p, j, k - p) : f(i, j + p, k - p);
}
}
|
class Solution {
public:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
int m = nums1.size(), n = nums2.size();
function<int(int, int, int)> f = [&](int i, int j, int k) {
if (i >= m) {
return nums2[j + k - 1];
}
if (j >= n) {
return nums1[i + k - 1];
}
if (k == 1) {
return min(nums1[i], nums2[j]);
}
int p = k / 2;
int x = i + p - 1 < m ? nums1[i + p - 1] : 1 << 30;
int y = j + p - 1 < n ? nums2[j + p - 1] : 1 << 30;
return x < y ? f(i + p, j, k - p) : f(i, j + p, k - p);
};
int a = f(0, 0, (m + n + 1) / 2);
int b = f(0, 0, (m + n + 2) / 2);
return (a + b) / 2.0;
}
};
| null | null |
func findMedianSortedArrays(nums1 []int, nums2 []int) float64 {
m, n := len(nums1), len(nums2)
var f func(i, j, k int) int
f = func(i, j, k int) int {
if i >= m {
return nums2[j+k-1]
}
if j >= n {
return nums1[i+k-1]
}
if k == 1 {
return min(nums1[i], nums2[j])
}
p := k / 2
x, y := 1<<30, 1<<30
if ni := i + p - 1; ni < m {
x = nums1[ni]
}
if nj := j + p - 1; nj < n {
y = nums2[nj]
}
if x < y {
return f(i+p, j, k-p)
}
return f(i, j+p, k-p)
}
a, b := f(0, 0, (m+n+1)/2), f(0, 0, (m+n+2)/2)
return float64(a+b) / 2.0
}
|
class Solution {
private int m;
private int n;
private int[] nums1;
private int[] nums2;
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
m = nums1.length;
n = nums2.length;
this.nums1 = nums1;
this.nums2 = nums2;
int a = f(0, 0, (m + n + 1) / 2);
int b = f(0, 0, (m + n + 2) / 2);
return (a + b) / 2.0;
}
private int f(int i, int j, int k) {
if (i >= m) {
return nums2[j + k - 1];
}
if (j >= n) {
return nums1[i + k - 1];
}
if (k == 1) {
return Math.min(nums1[i], nums2[j]);
}
int p = k / 2;
int x = i + p - 1 < m ? nums1[i + p - 1] : 1 << 30;
int y = j + p - 1 < n ? nums2[j + p - 1] : 1 << 30;
return x < y ? f(i + p, j, k - p) : f(i, j + p, k - p);
}
}
|
/**
* @param {number[]} nums1
* @param {number[]} nums2
* @return {number}
*/
var findMedianSortedArrays = function (nums1, nums2) {
const m = nums1.length;
const n = nums2.length;
const f = (i, j, k) => {
if (i >= m) {
return nums2[j + k - 1];
}
if (j >= n) {
return nums1[i + k - 1];
}
if (k == 1) {
return Math.min(nums1[i], nums2[j]);
}
const p = Math.floor(k / 2);
const x = i + p - 1 < m ? nums1[i + p - 1] : 1 << 30;
const y = j + p - 1 < n ? nums2[j + p - 1] : 1 << 30;
return x < y ? f(i + p, j, k - p) : f(i, j + p, k - p);
};
const a = f(0, 0, Math.floor((m + n + 1) / 2));
const b = f(0, 0, Math.floor((m + n + 2) / 2));
return (a + b) / 2;
};
| null | null |
import std/[algorithm, sequtils]
proc medianOfTwoSortedArrays(nums1: seq[int], nums2: seq[int]): float =
var
fullList: seq[int] = concat(nums1, nums2)
value: int = fullList.len div 2
fullList.sort()
if fullList.len mod 2 == 0:
result = (fullList[value - 1] + fullList[value]) / 2
else:
result = fullList[value].toFloat()
# Driver Code
# var
# arrA: seq[int] = @[1, 2]
# arrB: seq[int] = @[3, 4, 5]
# echo medianOfTwoSortedArrays(arrA, arrB)
|
class Solution {
/**
* @param int[] $nums1
* @param int[] $nums2
* @return float
*/
function findMedianSortedArrays($nums1, $nums2) {
$arr = array_merge($nums1, $nums2);
sort($arr);
$cnt_arr = count($arr);
if ($cnt_arr % 2) {
return $arr[$cnt_arr / 2];
} else {
return ($arr[intdiv($cnt_arr, 2) - 1] + $arr[intdiv($cnt_arr, 2)]) / 2;
}
}
}
| null |
class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
def f(i: int, j: int, k: int) -> int:
if i >= m:
return nums2[j + k - 1]
if j >= n:
return nums1[i + k - 1]
if k == 1:
return min(nums1[i], nums2[j])
p = k // 2
x = nums1[i + p - 1] if i + p - 1 < m else inf
y = nums2[j + p - 1] if j + p - 1 < n else inf
return f(i + p, j, k - p) if x < y else f(i, j + p, k - p)
m, n = len(nums1), len(nums2)
a = f(0, 0, (m + n + 1) // 2)
b = f(0, 0, (m + n + 2) // 2)
return (a + b) / 2
| null | null | null | null | null |
function findMedianSortedArrays(nums1: number[], nums2: number[]): number {
const m = nums1.length;
const n = nums2.length;
const f = (i: number, j: number, k: number): number => {
if (i >= m) {
return nums2[j + k - 1];
}
if (j >= n) {
return nums1[i + k - 1];
}
if (k == 1) {
return Math.min(nums1[i], nums2[j]);
}
const p = Math.floor(k / 2);
const x = i + p - 1 < m ? nums1[i + p - 1] : 1 << 30;
const y = j + p - 1 < n ? nums2[j + p - 1] : 1 << 30;
return x < y ? f(i + p, j, k - p) : f(i, j + p, k - p);
};
const a = f(0, 0, Math.floor((m + n + 1) / 2));
const b = f(0, 0, Math.floor((m + n + 2) / 2));
return (a + b) / 2;
}
|
Largest Element in an Array after Merge Operations
|
You are given a
0-indexed
array
nums
consisting of positive integers.
You can do the following operation on the array
any
number of times:
Choose an integer
i
such that
0 <= i < nums.length - 1
and
nums[i] <= nums[i + 1]
. Replace the element
nums[i + 1]
with
nums[i] + nums[i + 1]
and delete the element
nums[i]
from the array.
Return
the value of the
largest
element that you can possibly obtain in the final array.
Example 1:
Input:
nums = [2,3,7,9,3]
Output:
21
Explanation:
We can apply the following operations on the array:
- Choose i = 0. The resulting array will be nums = [
5
,7,9,3].
- Choose i = 1. The resulting array will be nums = [5,
16
,3].
- Choose i = 0. The resulting array will be nums = [
21
,3].
The largest element in the final array is 21. It can be shown that we cannot obtain a larger element.
Example 2:
Input:
nums = [5,3,3]
Output:
11
Explanation:
We can do the following operations on the array:
- Choose i = 1. The resulting array will be nums = [5,
6
].
- Choose i = 0. The resulting array will be nums = [
11
].
There is only one element in the final array, which is 11.
Constraints:
1 <= nums.length <= 10
5
1 <= nums[i] <= 10
6
| null | null |
class Solution {
public:
long long maxArrayValue(vector<int>& nums) {
int n = nums.size();
long long ans = nums[n - 1], t = nums[n - 1];
for (int i = n - 2; ~i; --i) {
if (nums[i] <= t) {
t += nums[i];
} else {
t = nums[i];
}
ans = max(ans, t);
}
return ans;
}
};
| null | null |
func maxArrayValue(nums []int) int64 {
n := len(nums)
ans, t := nums[n-1], nums[n-1]
for i := n - 2; i >= 0; i-- {
if nums[i] <= t {
t += nums[i]
} else {
t = nums[i]
}
ans = max(ans, t)
}
return int64(ans)
}
|
class Solution {
public long maxArrayValue(int[] nums) {
int n = nums.length;
long ans = nums[n - 1], t = nums[n - 1];
for (int i = n - 2; i >= 0; --i) {
if (nums[i] <= t) {
t += nums[i];
} else {
t = nums[i];
}
ans = Math.max(ans, t);
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def maxArrayValue(self, nums: List[int]) -> int:
for i in range(len(nums) - 2, -1, -1):
if nums[i] <= nums[i + 1]:
nums[i] += nums[i + 1]
return max(nums)
| null | null | null | null | null |
function maxArrayValue(nums: number[]): number {
for (let i = nums.length - 2; i >= 0; --i) {
if (nums[i] <= nums[i + 1]) {
nums[i] += nums[i + 1];
}
}
return Math.max(...nums);
}
|
Lonely Pixel I 🔒
|
Given an
m x n
picture
consisting of black
'B'
and white
'W'
pixels, return
the number of
black
lonely pixels
.
A black lonely pixel is a character
'B'
that located at a specific position where the same row and same column don't have
any other
black pixels.
Example 1:
Input:
picture = [["W","W","B"],["W","B","W"],["B","W","W"]]
Output:
3
Explanation:
All the three 'B's are black lonely pixels.
Example 2:
Input:
picture = [["B","B","B"],["B","B","W"],["B","B","B"]]
Output:
0
Constraints:
m == picture.length
n == picture[i].length
1 <= m, n <= 500
picture[i][j]
is
'W'
or
'B'
.
| null | null |
class Solution {
public:
int findLonelyPixel(vector<vector<char>>& picture) {
int m = picture.size(), n = picture[0].size();
vector<int> rows(m);
vector<int> cols(n);
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (picture[i][j] == 'B') {
++rows[i];
++cols[j];
}
}
}
int ans = 0;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (picture[i][j] == 'B' && rows[i] == 1 && cols[j] == 1) {
++ans;
}
}
}
return ans;
}
};
| null | null |
func findLonelyPixel(picture [][]byte) (ans int) {
rows := make([]int, len(picture))
cols := make([]int, len(picture[0]))
for i, row := range picture {
for j, x := range row {
if x == 'B' {
rows[i]++
cols[j]++
}
}
}
for i, row := range picture {
for j, x := range row {
if x == 'B' && rows[i] == 1 && cols[j] == 1 {
ans++
}
}
}
return
}
|
class Solution {
public int findLonelyPixel(char[][] picture) {
int m = picture.length, n = picture[0].length;
int[] rows = new int[m];
int[] cols = new int[n];
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (picture[i][j] == 'B') {
++rows[i];
++cols[j];
}
}
}
int ans = 0;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (picture[i][j] == 'B' && rows[i] == 1 && cols[j] == 1) {
++ans;
}
}
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def findLonelyPixel(self, picture: List[List[str]]) -> int:
rows = [0] * len(picture)
cols = [0] * len(picture[0])
for i, row in enumerate(picture):
for j, x in enumerate(row):
if x == "B":
rows[i] += 1
cols[j] += 1
ans = 0
for i, row in enumerate(picture):
for j, x in enumerate(row):
if x == "B" and rows[i] == 1 and cols[j] == 1:
ans += 1
return ans
| null | null | null | null | null |
function findLonelyPixel(picture: string[][]): number {
const m = picture.length;
const n = picture[0].length;
const rows: number[] = Array(m).fill(0);
const cols: number[] = Array(n).fill(0);
for (let i = 0; i < m; ++i) {
for (let j = 0; j < n; ++j) {
if (picture[i][j] === 'B') {
++rows[i];
++cols[j];
}
}
}
let ans = 0;
for (let i = 0; i < m; ++i) {
for (let j = 0; j < n; ++j) {
if (picture[i][j] === 'B' && rows[i] === 1 && cols[j] === 1) {
++ans;
}
}
}
return ans;
}
|
Count the Number of Good Nodes
|
There is an
undirected
tree with
n
nodes labeled from
0
to
n - 1
, and rooted at node
0
. You are given a 2D integer array
edges
of length
n - 1
, where
edges[i] = [a
i
, b
i
]
indicates that there is an edge between nodes
a
i
and
b
i
in the tree.
A node is
good
if all the
subtrees
rooted at its children have the same size.
Return the number of
good
nodes in the given tree.
A
subtree
of
treeName
is a tree consisting of a node in
treeName
and all of its descendants.
Example 1:
Input:
edges = [[0,1],[0,2],[1,3],[1,4],[2,5],[2,6]]
Output:
7
Explanation:
All of the nodes of the given tree are good.
Example 2:
Input:
edges = [[0,1],[1,2],[2,3],[3,4],[0,5],[1,6],[2,7],[3,8]]
Output:
6
Explanation:
There are 6 good nodes in the given tree. They are colored in the image above.
Example 3:
Input:
edges = [[0,1],[1,2],[1,3],[1,4],[0,5],[5,6],[6,7],[7,8],[0,9],[9,10],[9,12],[10,11]]
Output:
12
Explanation:
All nodes except node 9 are good.
Constraints:
2 <= n <= 10
5
edges.length == n - 1
edges[i].length == 2
0 <= a
i
, b
i
< n
The input is generated such that
edges
represents a valid tree.
| null | null |
class Solution {
public:
int countGoodNodes(vector<vector<int>>& edges) {
int n = edges.size() + 1;
vector<int> g[n];
for (const auto& e : edges) {
int a = e[0], b = e[1];
g[a].push_back(b);
g[b].push_back(a);
}
int ans = 0;
auto dfs = [&](this auto&& dfs, int a, int fa) -> int {
int pre = -1, cnt = 1, ok = 1;
for (int b : g[a]) {
if (b != fa) {
int cur = dfs(b, a);
cnt += cur;
if (pre < 0) {
pre = cur;
} else if (pre != cur) {
ok = 0;
}
}
}
ans += ok;
return cnt;
};
dfs(0, -1);
return ans;
}
};
| null | null |
func countGoodNodes(edges [][]int) (ans int) {
n := len(edges) + 1
g := make([][]int, n)
for _, e := range edges {
a, b := e[0], e[1]
g[a] = append(g[a], b)
g[b] = append(g[b], a)
}
var dfs func(int, int) int
dfs = func(a, fa int) int {
pre, cnt, ok := -1, 1, 1
for _, b := range g[a] {
if b != fa {
cur := dfs(b, a)
cnt += cur
if pre < 0 {
pre = cur
} else if pre != cur {
ok = 0
}
}
}
ans += ok
return cnt
}
dfs(0, -1)
return
}
|
class Solution {
private int ans;
private List<Integer>[] g;
public int countGoodNodes(int[][] edges) {
int n = edges.length + 1;
g = new List[n];
Arrays.setAll(g, k -> new ArrayList<>());
for (var e : edges) {
int a = e[0], b = e[1];
g[a].add(b);
g[b].add(a);
}
dfs(0, -1);
return ans;
}
private int dfs(int a, int fa) {
int pre = -1, cnt = 1, ok = 1;
for (int b : g[a]) {
if (b != fa) {
int cur = dfs(b, a);
cnt += cur;
if (pre < 0) {
pre = cur;
} else if (pre != cur) {
ok = 0;
}
}
}
ans += ok;
return cnt;
}
}
| null | null | null | null | null | null |
class Solution:
def countGoodNodes(self, edges: List[List[int]]) -> int:
def dfs(a: int, fa: int) -> int:
pre = -1
cnt = ok = 1
for b in g[a]:
if b != fa:
cur = dfs(b, a)
cnt += cur
if pre < 0:
pre = cur
elif pre != cur:
ok = 0
nonlocal ans
ans += ok
return cnt
g = defaultdict(list)
for a, b in edges:
g[a].append(b)
g[b].append(a)
ans = 0
dfs(0, -1)
return ans
| null | null | null | null | null |
function countGoodNodes(edges: number[][]): number {
const n = edges.length + 1;
const g: number[][] = Array.from({ length: n }, () => []);
for (const [a, b] of edges) {
g[a].push(b);
g[b].push(a);
}
let ans = 0;
const dfs = (a: number, fa: number): number => {
let [pre, cnt, ok] = [-1, 1, 1];
for (const b of g[a]) {
if (b !== fa) {
const cur = dfs(b, a);
cnt += cur;
if (pre < 0) {
pre = cur;
} else if (pre !== cur) {
ok = 0;
}
}
}
ans += ok;
return cnt;
};
dfs(0, -1);
return ans;
}
|
Count Elements With Maximum Frequency
|
You are given an array
nums
consisting of
positive
integers.
Return
the
total frequencies
of elements in
nums
such that those elements all have the
maximum
frequency
.
The
frequency
of an element is the number of occurrences of that element in the array.
Example 1:
Input:
nums = [1,2,2,3,1,4]
Output:
4
Explanation:
The elements 1 and 2 have a frequency of 2 which is the maximum frequency in the array.
So the number of elements in the array with maximum frequency is 4.
Example 2:
Input:
nums = [1,2,3,4,5]
Output:
5
Explanation:
All elements of the array have a frequency of 1 which is the maximum.
So the number of elements in the array with maximum frequency is 5.
Constraints:
1 <= nums.length <= 100
1 <= nums[i] <= 100
| null | null |
class Solution {
public:
int maxFrequencyElements(vector<int>& nums) {
int cnt[101]{};
for (int x : nums) {
++cnt[x];
}
int ans = 0, mx = -1;
for (int x : cnt) {
if (mx < x) {
mx = x;
ans = x;
} else if (mx == x) {
ans += x;
}
}
return ans;
}
};
| null | null |
func maxFrequencyElements(nums []int) (ans int) {
cnt := [101]int{}
for _, x := range nums {
cnt[x]++
}
mx := -1
for _, x := range cnt {
if mx < x {
mx, ans = x, x
} else if mx == x {
ans += x
}
}
return
}
|
class Solution {
public int maxFrequencyElements(int[] nums) {
int[] cnt = new int[101];
for (int x : nums) {
++cnt[x];
}
int ans = 0, mx = -1;
for (int x : cnt) {
if (mx < x) {
mx = x;
ans = x;
} else if (mx == x) {
ans += x;
}
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def maxFrequencyElements(self, nums: List[int]) -> int:
cnt = Counter(nums)
mx = max(cnt.values())
return sum(x for x in cnt.values() if x == mx)
| null | null | null | null | null |
function maxFrequencyElements(nums: number[]): number {
const cnt: number[] = Array(101).fill(0);
for (const x of nums) {
++cnt[x];
}
let [ans, mx] = [0, -1];
for (const x of cnt) {
if (mx < x) {
mx = x;
ans = x;
} else if (mx === x) {
ans += x;
}
}
return ans;
}
|
Maximum Sum of an Hourglass
|
You are given an
m x n
integer matrix
grid
.
We define an
hourglass
as a part of the matrix with the following form:
Return
the
maximum
sum of the elements of an hourglass
.
Note
that an hourglass cannot be rotated and must be entirely contained within the matrix.
Example 1:
Input:
grid = [[6,2,1,3],[4,2,1,5],[9,2,8,7],[4,1,2,9]]
Output:
30
Explanation:
The cells shown above represent the hourglass with the maximum sum: 6 + 2 + 1 + 2 + 9 + 2 + 8 = 30.
Example 2:
Input:
grid = [[1,2,3],[4,5,6],[7,8,9]]
Output:
35
Explanation:
There is only one hourglass in the matrix, with the sum: 1 + 2 + 3 + 5 + 7 + 8 + 9 = 35.
Constraints:
m == grid.length
n == grid[i].length
3 <= m, n <= 150
0 <= grid[i][j] <= 10
6
| null | null |
class Solution {
public:
int maxSum(vector<vector<int>>& grid) {
int m = grid.size(), n = grid[0].size();
int ans = 0;
for (int i = 1; i < m - 1; ++i) {
for (int j = 1; j < n - 1; ++j) {
int s = -grid[i][j - 1] - grid[i][j + 1];
for (int x = i - 1; x <= i + 1; ++x) {
for (int y = j - 1; y <= j + 1; ++y) {
s += grid[x][y];
}
}
ans = max(ans, s);
}
}
return ans;
}
};
| null | null |
func maxSum(grid [][]int) (ans int) {
m, n := len(grid), len(grid[0])
for i := 1; i < m-1; i++ {
for j := 1; j < n-1; j++ {
s := -grid[i][j-1] - grid[i][j+1]
for x := i - 1; x <= i+1; x++ {
for y := j - 1; y <= j+1; y++ {
s += grid[x][y]
}
}
ans = max(ans, s)
}
}
return
}
|
class Solution {
public int maxSum(int[][] grid) {
int m = grid.length, n = grid[0].length;
int ans = 0;
for (int i = 1; i < m - 1; ++i) {
for (int j = 1; j < n - 1; ++j) {
int s = -grid[i][j - 1] - grid[i][j + 1];
for (int x = i - 1; x <= i + 1; ++x) {
for (int y = j - 1; y <= j + 1; ++y) {
s += grid[x][y];
}
}
ans = Math.max(ans, s);
}
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def maxSum(self, grid: List[List[int]]) -> int:
m, n = len(grid), len(grid[0])
ans = 0
for i in range(1, m - 1):
for j in range(1, n - 1):
s = -grid[i][j - 1] - grid[i][j + 1]
s += sum(
grid[x][y] for x in range(i - 1, i + 2) for y in range(j - 1, j + 2)
)
ans = max(ans, s)
return ans
| null | null | null | null | null |
function maxSum(grid: number[][]): number {
const m = grid.length;
const n = grid[0].length;
let ans = 0;
for (let i = 1; i < m - 1; ++i) {
for (let j = 1; j < n - 1; ++j) {
let s = -grid[i][j - 1] - grid[i][j + 1];
for (let x = i - 1; x <= i + 1; ++x) {
for (let y = j - 1; y <= j + 1; ++y) {
s += grid[x][y];
}
}
ans = Math.max(ans, s);
}
}
return ans;
}
|
Winning Candidate 🔒
|
Table:
Candidate
+-------------+----------+
| Column Name | Type |
+-------------+----------+
| id | int |
| name | varchar |
+-------------+----------+
id is the column with unique values for this table.
Each row of this table contains information about the id and the name of a candidate.
Table:
Vote
+-------------+------+
| Column Name | Type |
+-------------+------+
| id | int |
| candidateId | int |
+-------------+------+
id is an auto-increment primary key (column with unique values).
candidateId is a foreign key (reference column) to id from the Candidate table.
Each row of this table determines the candidate who got the i
th
vote in the elections.
Write a solution to report the name of the winning candidate (i.e., the candidate who got the largest number of votes).
The test cases are generated so that
exactly one candidate wins
the elections.
The result format is in the following example.
Example 1:
Input:
Candidate table:
+----+------+
| id | name |
+----+------+
| 1 | A |
| 2 | B |
| 3 | C |
| 4 | D |
| 5 | E |
+----+------+
Vote table:
+----+-------------+
| id | candidateId |
+----+-------------+
| 1 | 2 |
| 2 | 4 |
| 3 | 3 |
| 4 | 2 |
| 5 | 5 |
+----+-------------+
Output:
+------+
| name |
+------+
| B |
+------+
Explanation:
Candidate B has 2 votes. Candidates C, D, and E have 1 vote each.
The winner is candidate B.
| null | null | null | null | null | null | null | null | null |
# Write your MySQL query statement below
SELECT name
FROM
Candidate AS c
LEFT JOIN Vote AS v ON c.id = v.candidateId
GROUP BY c.id
ORDER BY COUNT(1) DESC
LIMIT 1;
| null | null | null | null | null | null | null | null | null | null |
Find Consistently Improving Employees
|
Table:
employees
+-------------+---------+
| Column Name | Type |
+-------------+---------+
| employee_id | int |
| name | varchar |
+-------------+---------+
employee_id is the unique identifier for this table.
Each row contains information about an employee.
Table:
performance_reviews
+-------------+------+
| Column Name | Type |
+-------------+------+
| review_id | int |
| employee_id | int |
| review_date | date |
| rating | int |
+-------------+------+
review_id is the unique identifier for this table.
Each row represents a performance review for an employee. The rating is on a scale of 1-5 where 5 is excellent and 1 is poor.
Write a solution to find employees who have consistently improved their performance over
their last three reviews
.
An employee must have
at least
3
review
to be considered
The employee's
last
3
reviews
must show
strictly increasing ratings
(each review better than the previous)
Use the most recent
3
reviews based on
review_date
for each employee
Calculate the
improvement score
as the difference between the latest rating and the earliest rating among the last
3
reviews
Return
the result table ordered by
improvement score
in
descending
order, then by
name
in
ascending
order
.
The result format is in the following example.
Example:
Input:
employees table:
+-------------+----------------+
| employee_id | name |
+-------------+----------------+
| 1 | Alice Johnson |
| 2 | Bob Smith |
| 3 | Carol Davis |
| 4 | David Wilson |
| 5 | Emma Brown |
+-------------+----------------+
performance_reviews table:
+-----------+-------------+-------------+--------+
| review_id | employee_id | review_date | rating |
+-----------+-------------+-------------+--------+
| 1 | 1 | 2023-01-15 | 2 |
| 2 | 1 | 2023-04-15 | 3 |
| 3 | 1 | 2023-07-15 | 4 |
| 4 | 1 | 2023-10-15 | 5 |
| 5 | 2 | 2023-02-01 | 3 |
| 6 | 2 | 2023-05-01 | 2 |
| 7 | 2 | 2023-08-01 | 4 |
| 8 | 2 | 2023-11-01 | 5 |
| 9 | 3 | 2023-03-10 | 1 |
| 10 | 3 | 2023-06-10 | 2 |
| 11 | 3 | 2023-09-10 | 3 |
| 12 | 3 | 2023-12-10 | 4 |
| 13 | 4 | 2023-01-20 | 4 |
| 14 | 4 | 2023-04-20 | 4 |
| 15 | 4 | 2023-07-20 | 4 |
| 16 | 5 | 2023-02-15 | 3 |
| 17 | 5 | 2023-05-15 | 2 |
+-----------+-------------+-------------+--------+
Output:
+-------------+----------------+-------------------+
| employee_id | name | improvement_score |
+-------------+----------------+-------------------+
| 2 | Bob Smith | 3 |
| 1 | Alice Johnson | 2 |
| 3 | Carol Davis | 2 |
+-------------+----------------+-------------------+
Explanation:
Alice Johnson (employee_id = 1):
Has 4 reviews with ratings: 2, 3, 4, 5
Last 3 reviews (by date): 2023-04-15 (3), 2023-07-15 (4), 2023-10-15 (5)
Ratings are strictly increasing: 3 → 4 → 5
Improvement score: 5 - 3 = 2
Carol Davis (employee_id = 3):
Has 4 reviews with ratings: 1, 2, 3, 4
Last 3 reviews (by date): 2023-06-10 (2), 2023-09-10 (3), 2023-12-10 (4)
Ratings are strictly increasing: 2 → 3 → 4
Improvement score: 4 - 2 = 2
Bob Smith (employee_id = 2):
Has 4 reviews with ratings: 3, 2, 4, 5
Last 3 reviews (by date): 2023-05-01 (2), 2023-08-01 (4), 2023-11-01 (5)
Ratings are strictly increasing: 2 → 4 → 5
Improvement score: 5 - 2 = 3
Employees not included:
David Wilson (employee_id = 4): Last 3 reviews are all 4 (no improvement)
Emma Brown (employee_id = 5): Only has 2 reviews (needs at least 3)
The output table is ordered by improvement_score in descending order, then by name in ascending order.
| null | null | null | null | null | null | null | null | null |
WITH
recent AS (
SELECT
employee_id,
review_date,
ROW_NUMBER() OVER (
PARTITION BY employee_id
ORDER BY review_date DESC
) AS rn,
(
LAG(rating) OVER (
PARTITION BY employee_id
ORDER BY review_date DESC
) - rating
) AS delta
FROM performance_reviews
)
SELECT
employee_id,
name,
SUM(delta) AS improvement_score
FROM
recent
JOIN employees USING (employee_id)
WHERE rn > 1 AND rn <= 3
GROUP BY 1
HAVING COUNT(*) = 2 AND MIN(delta) > 0
ORDER BY 3 DESC, 2;
| null | null |
import pandas as pd
def find_consistently_improving_employees(
employees: pd.DataFrame, performance_reviews: pd.DataFrame
) -> pd.DataFrame:
performance_reviews = performance_reviews.sort_values(
["employee_id", "review_date"], ascending=[True, False]
)
performance_reviews["rn"] = (
performance_reviews.groupby("employee_id").cumcount() + 1
)
performance_reviews["lag_rating"] = performance_reviews.groupby("employee_id")[
"rating"
].shift(1)
performance_reviews["delta"] = (
performance_reviews["lag_rating"] - performance_reviews["rating"]
)
recent = performance_reviews[
(performance_reviews["rn"] > 1) & (performance_reviews["rn"] <= 3)
]
improvement = (
recent.groupby("employee_id")
.agg(
improvement_score=("delta", "sum"),
count=("delta", "count"),
min_delta=("delta", "min"),
)
.reset_index()
)
improvement = improvement[
(improvement["count"] == 2) & (improvement["min_delta"] > 0)
]
result = improvement.merge(employees[["employee_id", "name"]], on="employee_id")
result = result.sort_values(
by=["improvement_score", "name"], ascending=[False, True]
)
return result[["employee_id", "name", "improvement_score"]]
| null | null | null | null | null | null | null |
Find Median from Data Stream
|
The
median
is the middle value in an ordered integer list. If the size of the list is even, there is no middle value, and the median is the mean of the two middle values.
For example, for
arr = [2,3,4]
, the median is
3
.
For example, for
arr = [2,3]
, the median is
(2 + 3) / 2 = 2.5
.
Implement the MedianFinder class:
MedianFinder()
initializes the
MedianFinder
object.
void addNum(int num)
adds the integer
num
from the data stream to the data structure.
double findMedian()
returns the median of all elements so far. Answers within
10
-5
of the actual answer will be accepted.
Example 1:
Input
["MedianFinder", "addNum", "addNum", "findMedian", "addNum", "findMedian"]
[[], [1], [2], [], [3], []]
Output
[null, null, null, 1.5, null, 2.0]
Explanation
MedianFinder medianFinder = new MedianFinder();
medianFinder.addNum(1); // arr = [1]
medianFinder.addNum(2); // arr = [1, 2]
medianFinder.findMedian(); // return 1.5 (i.e., (1 + 2) / 2)
medianFinder.addNum(3); // arr[1, 2, 3]
medianFinder.findMedian(); // return 2.0
Constraints:
-10
5
<= num <= 10
5
There will be at least one element in the data structure before calling
findMedian
.
At most
5 * 10
4
calls will be made to
addNum
and
findMedian
.
Follow up:
If all integer numbers from the stream are in the range
[0, 100]
, how would you optimize your solution?
If
99%
of all integer numbers from the stream are in the range
[0, 100]
, how would you optimize your solution?
| null |
public class MedianFinder {
private PriorityQueue<int, int> minQ = new PriorityQueue<int, int>();
private PriorityQueue<int, int> maxQ = new PriorityQueue<int, int>(Comparer<int>.Create((a, b) => b.CompareTo(a)));
public MedianFinder() {
}
public void AddNum(int num) {
maxQ.Enqueue(num, num);
minQ.Enqueue(maxQ.Peek(), maxQ.Dequeue());
if (minQ.Count > maxQ.Count + 1) {
maxQ.Enqueue(minQ.Peek(), minQ.Dequeue());
}
}
public double FindMedian() {
return minQ.Count == maxQ.Count ? (minQ.Peek() + maxQ.Peek()) / 2.0 : minQ.Peek();
}
}
/**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.AddNum(num);
* double param_2 = obj.FindMedian();
*/
|
class MedianFinder {
public:
MedianFinder() {
}
void addNum(int num) {
maxQ.push(num);
minQ.push(maxQ.top());
maxQ.pop();
if (minQ.size() > maxQ.size() + 1) {
maxQ.push(minQ.top());
minQ.pop();
}
}
double findMedian() {
return minQ.size() == maxQ.size() ? (minQ.top() + maxQ.top()) / 2.0 : minQ.top();
}
private:
priority_queue<int> maxQ;
priority_queue<int, vector<int>, greater<int>> minQ;
};
/**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder* obj = new MedianFinder();
* obj->addNum(num);
* double param_2 = obj->findMedian();
*/
| null | null |
type MedianFinder struct {
minq hp
maxq hp
}
func Constructor() MedianFinder {
return MedianFinder{hp{}, hp{}}
}
func (this *MedianFinder) AddNum(num int) {
minq, maxq := &this.minq, &this.maxq
heap.Push(maxq, -num)
heap.Push(minq, -heap.Pop(maxq).(int))
if minq.Len()-maxq.Len() > 1 {
heap.Push(maxq, -heap.Pop(minq).(int))
}
}
func (this *MedianFinder) FindMedian() float64 {
minq, maxq := this.minq, this.maxq
if minq.Len() == maxq.Len() {
return float64(minq.IntSlice[0]-maxq.IntSlice[0]) / 2
}
return float64(minq.IntSlice[0])
}
type hp struct{ sort.IntSlice }
func (h hp) Less(i, j int) bool { return h.IntSlice[i] < h.IntSlice[j] }
func (h *hp) Push(v any) { h.IntSlice = append(h.IntSlice, v.(int)) }
func (h *hp) Pop() any {
a := h.IntSlice
v := a[len(a)-1]
h.IntSlice = a[:len(a)-1]
return v
}
/**
* Your MedianFinder object will be instantiated and called as such:
* obj := Constructor();
* obj.AddNum(num);
* param_2 := obj.FindMedian();
*/
|
class MedianFinder {
private PriorityQueue<Integer> minQ = new PriorityQueue<>();
private PriorityQueue<Integer> maxQ = new PriorityQueue<>(Collections.reverseOrder());
public MedianFinder() {
}
public void addNum(int num) {
maxQ.offer(num);
minQ.offer(maxQ.poll());
if (minQ.size() - maxQ.size() > 1) {
maxQ.offer(minQ.poll());
}
}
public double findMedian() {
return minQ.size() == maxQ.size() ? (minQ.peek() + maxQ.peek()) / 2.0 : minQ.peek();
}
}
/**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/
|
var MedianFinder = function () {
this.minQ = new MinPriorityQueue();
this.maxQ = new MaxPriorityQueue();
};
/**
* @param {number} num
* @return {void}
*/
MedianFinder.prototype.addNum = function (num) {
this.maxQ.enqueue(num);
this.minQ.enqueue(this.maxQ.dequeue().element);
if (this.minQ.size() - this.maxQ.size() > 1) {
this.maxQ.enqueue(this.minQ.dequeue().element);
}
};
/**
* @return {number}
*/
MedianFinder.prototype.findMedian = function () {
if (this.minQ.size() === this.maxQ.size()) {
return (this.minQ.front().element + this.maxQ.front().element) / 2;
}
return this.minQ.front().element;
};
/**
* Your MedianFinder object will be instantiated and called as such:
* var obj = new MedianFinder()
* obj.addNum(num)
* var param_2 = obj.findMedian()
*/
| null | null | null | null | null |
class MedianFinder:
def __init__(self):
self.minq = []
self.maxq = []
def addNum(self, num: int) -> None:
heappush(self.minq, -heappushpop(self.maxq, -num))
if len(self.minq) - len(self.maxq) > 1:
heappush(self.maxq, -heappop(self.minq))
def findMedian(self) -> float:
if len(self.minq) == len(self.maxq):
return (self.minq[0] - self.maxq[0]) / 2
return self.minq[0]
# Your MedianFinder object will be instantiated and called as such:
# obj = MedianFinder()
# obj.addNum(num)
# param_2 = obj.findMedian()
| null |
use std::cmp::Reverse;
use std::collections::BinaryHeap;
struct MedianFinder {
minQ: BinaryHeap<Reverse<i32>>,
maxQ: BinaryHeap<i32>,
}
impl MedianFinder {
fn new() -> Self {
MedianFinder {
minQ: BinaryHeap::new(),
maxQ: BinaryHeap::new(),
}
}
fn add_num(&mut self, num: i32) {
self.maxQ.push(num);
self.minQ.push(Reverse(self.maxQ.pop().unwrap()));
if self.minQ.len() > self.maxQ.len() + 1 {
self.maxQ.push(self.minQ.pop().unwrap().0);
}
}
fn find_median(&self) -> f64 {
if self.minQ.len() == self.maxQ.len() {
let min_top = self.minQ.peek().unwrap().0;
let max_top = *self.maxQ.peek().unwrap();
(min_top + max_top) as f64 / 2.0
} else {
self.minQ.peek().unwrap().0 as f64
}
}
}
| null | null |
class MedianFinder {
private var minQ = Heap<Int>(sort: <)
private var maxQ = Heap<Int>(sort: >)
init() {
}
func addNum(_ num: Int) {
maxQ.insert(num)
minQ.insert(maxQ.remove()!)
if maxQ.count < minQ.count {
maxQ.insert(minQ.remove()!)
}
}
func findMedian() -> Double {
if maxQ.count > minQ.count {
return Double(maxQ.peek()!)
}
return (Double(maxQ.peek()!) + Double(minQ.peek()!)) / 2.0
}
}
struct Heap<T> {
var elements: [T]
let sort: (T, T) -> Bool
init(sort: @escaping (T, T) -> Bool, elements: [T] = []) {
self.sort = sort
self.elements = elements
if !elements.isEmpty {
for i in stride(from: elements.count / 2 - 1, through: 0, by: -1) {
siftDown(from: i)
}
}
}
var isEmpty: Bool {
return elements.isEmpty
}
var count: Int {
return elements.count
}
func peek() -> T? {
return elements.first
}
mutating func insert(_ value: T) {
elements.append(value)
siftUp(from: elements.count - 1)
}
mutating func remove() -> T? {
guard !elements.isEmpty else { return nil }
elements.swapAt(0, elements.count - 1)
let removedValue = elements.removeLast()
siftDown(from: 0)
return removedValue
}
private mutating func siftUp(from index: Int) {
var child = index
var parent = parentIndex(ofChildAt: child)
while child > 0 && sort(elements[child], elements[parent]) {
elements.swapAt(child, parent)
child = parent
parent = parentIndex(ofChildAt: child)
}
}
private mutating func siftDown(from index: Int) {
var parent = index
while true {
let left = leftChildIndex(ofParentAt: parent)
let right = rightChildIndex(ofParentAt: parent)
var candidate = parent
if left < count && sort(elements[left], elements[candidate]) {
candidate = left
}
if right < count && sort(elements[right], elements[candidate]) {
candidate = right
}
if candidate == parent {
return
}
elements.swapAt(parent, candidate)
parent = candidate
}
}
private func parentIndex(ofChildAt index: Int) -> Int {
return (index - 1) / 2
}
private func leftChildIndex(ofParentAt index: Int) -> Int {
return 2 * index + 1
}
private func rightChildIndex(ofParentAt index: Int) -> Int {
return 2 * index + 2
}
}
/**
* Your MedianFinder object will be instantiated and called as such:
* let obj = MedianFinder()
* obj.addNum(num)
* let ret_2: Double = obj.findMedian()
*/
|
class MedianFinder {
#minQ = new MinPriorityQueue();
#maxQ = new MaxPriorityQueue();
addNum(num: number): void {
const [minQ, maxQ] = [this.#minQ, this.#maxQ];
maxQ.enqueue(num);
minQ.enqueue(maxQ.dequeue().element);
if (minQ.size() - maxQ.size() > 1) {
maxQ.enqueue(minQ.dequeue().element);
}
}
findMedian(): number {
const [minQ, maxQ] = [this.#minQ, this.#maxQ];
if (minQ.size() === maxQ.size()) {
return (minQ.front().element + maxQ.front().element) / 2;
}
return minQ.front().element;
}
}
/**
* Your MedianFinder object will be instantiated and called as such:
* var obj = new MedianFinder()
* obj.addNum(num)
* var param_2 = obj.findMedian()
*/
|
Array With Elements Not Equal to Average of Neighbors
|
You are given a
0-indexed
array
nums
of
distinct
integers. You want to rearrange the elements in the array such that every element in the rearranged array is
not
equal to the
average
of its neighbors.
More formally, the rearranged array should have the property such that for every
i
in the range
1 <= i < nums.length - 1
,
(nums[i-1] + nums[i+1]) / 2
is
not
equal to
nums[i]
.
Return
any
rearrangement of
nums
that meets the requirements
.
Example 1:
Input:
nums = [1,2,3,4,5]
Output:
[1,2,4,5,3]
Explanation:
When i=1, nums[i] = 2, and the average of its neighbors is (1+4) / 2 = 2.5.
When i=2, nums[i] = 4, and the average of its neighbors is (2+5) / 2 = 3.5.
When i=3, nums[i] = 5, and the average of its neighbors is (4+3) / 2 = 3.5.
Example 2:
Input:
nums = [6,2,0,9,7]
Output:
[9,7,6,2,0]
Explanation:
When i=1, nums[i] = 7, and the average of its neighbors is (9+6) / 2 = 7.5.
When i=2, nums[i] = 6, and the average of its neighbors is (7+2) / 2 = 4.5.
When i=3, nums[i] = 2, and the average of its neighbors is (6+0) / 2 = 3.
Note that the original array [6,2,0,9,7] also satisfies the conditions.
Constraints:
3 <= nums.length <= 10
5
0 <= nums[i] <= 10
5
| null | null |
class Solution {
public:
vector<int> rearrangeArray(vector<int>& nums) {
ranges::sort(nums);
vector<int> ans;
int n = nums.size();
int m = (n + 1) >> 1;
for (int i = 0; i < m; ++i) {
ans.push_back(nums[i]);
if (i + m < n) {
ans.push_back(nums[i + m]);
}
}
return ans;
}
};
| null | null |
func rearrangeArray(nums []int) (ans []int) {
sort.Ints(nums)
n := len(nums)
m := (n + 1) >> 1
for i := 0; i < m; i++ {
ans = append(ans, nums[i])
if i+m < n {
ans = append(ans, nums[i+m])
}
}
return
}
|
class Solution {
public int[] rearrangeArray(int[] nums) {
Arrays.sort(nums);
int n = nums.length;
int m = (n + 1) >> 1;
int[] ans = new int[n];
for (int i = 0, j = 0; i < n; i += 2, j++) {
ans[i] = nums[j];
if (j + m < n) {
ans[i + 1] = nums[j + m];
}
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def rearrangeArray(self, nums: List[int]) -> List[int]:
nums.sort()
n = len(nums)
m = (n + 1) // 2
ans = []
for i in range(m):
ans.append(nums[i])
if i + m < n:
ans.append(nums[i + m])
return ans
| null | null | null | null | null |
function rearrangeArray(nums: number[]): number[] {
nums.sort((a, b) => a - b);
const n = nums.length;
const m = (n + 1) >> 1;
const ans: number[] = [];
for (let i = 0; i < m; i++) {
ans.push(nums[i]);
if (i + m < n) {
ans.push(nums[i + m]);
}
}
return ans;
}
|
Maximum Number of Coins You Can Get
|
There are
3n
piles of coins of varying size, you and your friends will take piles of coins as follows:
In each step, you will choose
any
3
piles of coins (not necessarily consecutive).
Of your choice, Alice will pick the pile with the maximum number of coins.
You will pick the next pile with the maximum number of coins.
Your friend Bob will pick the last pile.
Repeat until there are no more piles of coins.
Given an array of integers
piles
where
piles[i]
is the number of coins in the
i
th
pile.
Return the maximum number of coins that you can have.
Example 1:
Input:
piles = [2,4,1,2,7,8]
Output:
9
Explanation:
Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with
7
coins and Bob the last one.
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with
2
coins and Bob the last one.
The maximum number of coins which you can have are: 7 + 2 = 9.
On the other hand if we choose this arrangement (1,
2
, 8), (2,
4
, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input:
piles = [2,4,5]
Output:
4
Example 3:
Input:
piles = [9,8,7,6,5,1,2,3,4]
Output:
18
Constraints:
3 <= piles.length <= 10
5
piles.length % 3 == 0
1 <= piles[i] <= 10
4
|
int compare(const void* a, const void* b) {
return (*(int*) a - *(int*) b);
}
int maxCoins(int* piles, int pilesSize) {
qsort(piles, pilesSize, sizeof(int), compare);
int ans = 0;
for (int i = pilesSize / 3; i < pilesSize; i += 2) {
ans += piles[i];
}
return ans;
}
| null |
class Solution {
public:
int maxCoins(vector<int>& piles) {
ranges::sort(piles);
int ans = 0;
for (int i = piles.size() / 3; i < piles.size(); i += 2) {
ans += piles[i];
}
return ans;
}
};
| null | null |
func maxCoins(piles []int) (ans int) {
sort.Ints(piles)
for i := len(piles) / 3; i < len(piles); i += 2 {
ans += piles[i]
}
return
}
|
class Solution {
public int maxCoins(int[] piles) {
Arrays.sort(piles);
int ans = 0;
for (int i = piles.length / 3; i < piles.length; i += 2) {
ans += piles[i];
}
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def maxCoins(self, piles: List[int]) -> int:
piles.sort()
return sum(piles[len(piles) // 3 :][::2])
| null |
impl Solution {
pub fn max_coins(mut piles: Vec<i32>) -> i32 {
piles.sort();
let mut ans = 0;
for i in (piles.len() / 3..piles.len()).step_by(2) {
ans += piles[i];
}
ans
}
}
| null | null | null |
function maxCoins(piles: number[]): number {
piles.sort((a, b) => a - b);
let ans = 0;
for (let i = piles.length / 3; i < piles.length; i += 2) {
ans += piles[i];
}
return ans;
}
|
Check If Digits Are Equal in String After Operations I
|
You are given a string
s
consisting of digits. Perform the following operation repeatedly until the string has
exactly
two digits:
For each pair of consecutive digits in
s
, starting from the first digit, calculate a new digit as the sum of the two digits
modulo
10.
Replace
s
with the sequence of newly calculated digits,
maintaining the order
in which they are computed.
Return
true
if the final two digits in
s
are the
same
; otherwise, return
false
.
Example 1:
Input:
s = "3902"
Output:
true
Explanation:
Initially,
s = "3902"
First operation:
(s[0] + s[1]) % 10 = (3 + 9) % 10 = 2
(s[1] + s[2]) % 10 = (9 + 0) % 10 = 9
(s[2] + s[3]) % 10 = (0 + 2) % 10 = 2
s
becomes
"292"
Second operation:
(s[0] + s[1]) % 10 = (2 + 9) % 10 = 1
(s[1] + s[2]) % 10 = (9 + 2) % 10 = 1
s
becomes
"11"
Since the digits in
"11"
are the same, the output is
true
.
Example 2:
Input:
s = "34789"
Output:
false
Explanation:
Initially,
s = "34789"
.
After the first operation,
s = "7157"
.
After the second operation,
s = "862"
.
After the third operation,
s = "48"
.
Since
'4' != '8'
, the output is
false
.
Constraints:
3 <= s.length <= 100
s
consists of only digits.
| null | null |
class Solution {
public:
bool hasSameDigits(string s) {
int n = s.size();
string t = s;
for (int k = n - 1; k > 1; --k) {
for (int i = 0; i < k; ++i) {
t[i] = (t[i] - '0' + t[i + 1] - '0') % 10 + '0';
}
}
return t[0] == t[1];
}
};
| null | null |
func hasSameDigits(s string) bool {
t := []byte(s)
n := len(t)
for k := n - 1; k > 1; k-- {
for i := 0; i < k; i++ {
t[i] = (t[i]-'0'+t[i+1]-'0')%10 + '0'
}
}
return t[0] == t[1]
}
|
class Solution {
public boolean hasSameDigits(String s) {
char[] t = s.toCharArray();
int n = t.length;
for (int k = n - 1; k > 1; --k) {
for (int i = 0; i < k; ++i) {
t[i] = (char) ((t[i] - '0' + t[i + 1] - '0') % 10 + '0');
}
}
return t[0] == t[1];
}
}
| null | null | null | null | null | null |
class Solution:
def hasSameDigits(self, s: str) -> bool:
t = list(map(int, s))
n = len(t)
for k in range(n - 1, 1, -1):
for i in range(k):
t[i] = (t[i] + t[i + 1]) % 10
return t[0] == t[1]
| null | null | null | null | null |
function hasSameDigits(s: string): boolean {
const t = s.split('').map(Number);
const n = t.length;
for (let k = n - 1; k > 1; --k) {
for (let i = 0; i < k; ++i) {
t[i] = (t[i] + t[i + 1]) % 10;
}
}
return t[0] === t[1];
}
|
Complete Binary Tree Inserter
|
A
complete binary tree
is a binary tree in which every level, except possibly the last, is completely filled, and all nodes are as far left as possible.
Design an algorithm to insert a new node to a complete binary tree keeping it complete after the insertion.
Implement the
CBTInserter
class:
CBTInserter(TreeNode root)
Initializes the data structure with the
root
of the complete binary tree.
int insert(int v)
Inserts a
TreeNode
into the tree with value
Node.val == val
so that the tree remains complete, and returns the value of the parent of the inserted
TreeNode
.
TreeNode get_root()
Returns the root node of the tree.
Example 1:
Input
["CBTInserter", "insert", "insert", "get_root"]
[[[1, 2]], [3], [4], []]
Output
[null, 1, 2, [1, 2, 3, 4]]
Explanation
CBTInserter cBTInserter = new CBTInserter([1, 2]);
cBTInserter.insert(3); // return 1
cBTInserter.insert(4); // return 2
cBTInserter.get_root(); // return [1, 2, 3, 4]
Constraints:
The number of nodes in the tree will be in the range
[1, 1000]
.
0 <= Node.val <= 5000
root
is a complete binary tree.
0 <= val <= 5000
At most
10
4
calls will be made to
insert
and
get_root
.
| null | null |
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class CBTInserter {
public:
CBTInserter(TreeNode* root) {
queue<TreeNode*> q{{root}};
while (q.size()) {
for (int i = q.size(); i; --i) {
auto node = q.front();
q.pop();
tree.push_back(node);
if (node->left) {
q.push(node->left);
}
if (node->right) {
q.push(node->right);
}
}
}
}
int insert(int val) {
auto p = tree[(tree.size() - 1) / 2];
auto node = new TreeNode(val);
tree.push_back(node);
if (!p->left) {
p->left = node;
} else {
p->right = node;
}
return p->val;
}
TreeNode* get_root() {
return tree[0];
}
private:
vector<TreeNode*> tree;
};
/**
* Your CBTInserter object will be instantiated and called as such:
* CBTInserter* obj = new CBTInserter(root);
* int param_1 = obj->insert(val);
* TreeNode* param_2 = obj->get_root();
*/
| null | null |
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
type CBTInserter struct {
tree []*TreeNode
}
func Constructor(root *TreeNode) CBTInserter {
q := []*TreeNode{root}
tree := []*TreeNode{}
for len(q) > 0 {
for i := len(q); i > 0; i-- {
node := q[0]
q = q[1:]
tree = append(tree, node)
if node.Left != nil {
q = append(q, node.Left)
}
if node.Right != nil {
q = append(q, node.Right)
}
}
}
return CBTInserter{tree}
}
func (this *CBTInserter) Insert(val int) int {
p := this.tree[(len(this.tree)-1)/2]
node := &TreeNode{val, nil, nil}
this.tree = append(this.tree, node)
if p.Left == nil {
p.Left = node
} else {
p.Right = node
}
return p.Val
}
func (this *CBTInserter) Get_root() *TreeNode {
return this.tree[0]
}
/**
* Your CBTInserter object will be instantiated and called as such:
* obj := Constructor(root);
* param_1 := obj.Insert(val);
* param_2 := obj.Get_root();
*/
|
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class CBTInserter {
private List<TreeNode> tree = new ArrayList<>();
public CBTInserter(TreeNode root) {
Deque<TreeNode> q = new ArrayDeque<>();
q.offer(root);
while (!q.isEmpty()) {
for (int i = q.size(); i > 0; --i) {
TreeNode node = q.poll();
tree.add(node);
if (node.left != null) {
q.offer(node.left);
}
if (node.right != null) {
q.offer(node.right);
}
}
}
}
public int insert(int val) {
TreeNode p = tree.get((tree.size() - 1) / 2);
TreeNode node = new TreeNode(val);
tree.add(node);
if (p.left == null) {
p.left = node;
} else {
p.right = node;
}
return p.val;
}
public TreeNode get_root() {
return tree.get(0);
}
}
/**
* Your CBTInserter object will be instantiated and called as such:
* CBTInserter obj = new CBTInserter(root);
* int param_1 = obj.insert(val);
* TreeNode param_2 = obj.get_root();
*/
|
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
*/
var CBTInserter = function (root) {
this.tree = [];
if (root === null) {
return;
}
const q = [root];
while (q.length) {
const t = [];
for (const node of q) {
this.tree.push(node);
node.left !== null && t.push(node.left);
node.right !== null && t.push(node.right);
}
q.splice(0, q.length, ...t);
}
};
/**
* @param {number} val
* @return {number}
*/
CBTInserter.prototype.insert = function (val) {
const p = this.tree[(this.tree.length - 1) >> 1];
const node = new TreeNode(val);
this.tree.push(node);
if (p.left === null) {
p.left = node;
} else {
p.right = node;
}
return p.val;
};
/**
* @return {TreeNode}
*/
CBTInserter.prototype.get_root = function () {
return this.tree[0];
};
/**
* Your CBTInserter object will be instantiated and called as such:
* var obj = new CBTInserter(root)
* var param_1 = obj.insert(val)
* var param_2 = obj.get_root()
*/
| null | null | null | null | null |
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class CBTInserter:
def __init__(self, root: Optional[TreeNode]):
self.tree = []
q = deque([root])
while q:
for _ in range(len(q)):
node = q.popleft()
self.tree.append(node)
if node.left:
q.append(node.left)
if node.right:
q.append(node.right)
def insert(self, val: int) -> int:
p = self.tree[(len(self.tree) - 1) // 2]
node = TreeNode(val)
self.tree.append(node)
if p.left is None:
p.left = node
else:
p.right = node
return p.val
def get_root(self) -> Optional[TreeNode]:
return self.tree[0]
# Your CBTInserter object will be instantiated and called as such:
# obj = CBTInserter(root)
# param_1 = obj.insert(val)
# param_2 = obj.get_root()
| null | null | null | null | null |
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
class CBTInserter {
private tree: TreeNode[] = [];
constructor(root: TreeNode | null) {
if (root === null) {
return;
}
const q: TreeNode[] = [root];
while (q.length) {
const t: TreeNode[] = [];
for (const node of q) {
this.tree.push(node);
node.left !== null && t.push(node.left);
node.right !== null && t.push(node.right);
}
q.splice(0, q.length, ...t);
}
}
insert(val: number): number {
const p = this.tree[(this.tree.length - 1) >> 1];
const node = new TreeNode(val);
this.tree.push(node);
if (p.left === null) {
p.left = node;
} else {
p.right = node;
}
return p.val;
}
get_root(): TreeNode | null {
return this.tree[0];
}
}
/**
* Your CBTInserter object will be instantiated and called as such:
* var obj = new CBTInserter(root)
* var param_1 = obj.insert(val)
* var param_2 = obj.get_root()
*/
|
Closest Fair Integer 🔒
|
You are given a
positive
integer
n
.
We call an integer
k
fair if the number of
even
digits in
k
is equal to the number of
odd
digits in it.
Return
the
smallest
fair integer that is
greater than or equal
to
n
.
Example 1:
Input:
n = 2
Output:
10
Explanation:
The smallest fair integer that is greater than or equal to 2 is 10.
10 is fair because it has an equal number of even and odd digits (one odd digit and one even digit).
Example 2:
Input:
n = 403
Output:
1001
Explanation:
The smallest fair integer that is greater than or equal to 403 is 1001.
1001 is fair because it has an equal number of even and odd digits (two odd digits and two even digits).
Constraints:
1 <= n <= 10
9
| null | null |
class Solution {
public:
int closestFair(int n) {
int a = 0, b = 0;
int t = n, k = 0;
while (t) {
if ((t % 10) & 1) {
++a;
} else {
++b;
}
++k;
t /= 10;
}
if (a == b) {
return n;
}
if (k % 2 == 1) {
int x = pow(10, k);
int y = 0;
for (int i = 0; i < k >> 1; ++i) {
y = y * 10 + 1;
}
return x + y;
}
return closestFair(n + 1);
}
};
| null | null |
func closestFair(n int) int {
a, b := 0, 0
t, k := n, 0
for t > 0 {
if (t%10)%2 == 1 {
a++
} else {
b++
}
k++
t /= 10
}
if a == b {
return n
}
if k%2 == 1 {
x := int(math.Pow(10, float64(k)))
y := 0
for i := 0; i < k>>1; i++ {
y = y*10 + 1
}
return x + y
}
return closestFair(n + 1)
}
|
class Solution {
public int closestFair(int n) {
int a = 0, b = 0;
int k = 0, t = n;
while (t > 0) {
if ((t % 10) % 2 == 1) {
++a;
} else {
++b;
}
t /= 10;
++k;
}
if (k % 2 == 1) {
int x = (int) Math.pow(10, k);
int y = 0;
for (int i = 0; i < k >> 1; ++i) {
y = y * 10 + 1;
}
return x + y;
}
if (a == b) {
return n;
}
return closestFair(n + 1);
}
}
| null | null | null | null | null | null |
class Solution:
def closestFair(self, n: int) -> int:
a = b = k = 0
t = n
while t:
if (t % 10) & 1:
a += 1
else:
b += 1
t //= 10
k += 1
if k & 1:
x = 10**k
y = int('1' * (k >> 1) or '0')
return x + y
if a == b:
return n
return self.closestFair(n + 1)
| null | null | null | null | null | null |
Minimum Subarrays in a Valid Split 🔒
|
You are given an integer array
nums
.
Splitting of an integer array
nums
into
subarrays
is
valid
if:
the
greatest common divisor
of the first and last elements of each subarray is
greater
than
1
, and
each element of
nums
belongs to exactly one subarray.
Return
the
minimum
number of subarrays in a
valid
subarray splitting of
nums
. If a valid subarray splitting is not possible, return
-1
.
Note
that:
The
greatest common divisor
of two numbers is the largest positive integer that evenly divides both numbers.
A
subarray
is a contiguous non-empty part of an array.
Example 1:
Input:
nums = [2,6,3,4,3]
Output:
2
Explanation:
We can create a valid split in the following way: [2,6] | [3,4,3].
- The starting element of the 1
st
subarray is 2 and the ending is 6. Their greatest common divisor is 2, which is greater than 1.
- The starting element of the 2
nd
subarray is 3 and the ending is 3. Their greatest common divisor is 3, which is greater than 1.
It can be proved that 2 is the minimum number of subarrays that we can obtain in a valid split.
Example 2:
Input:
nums = [3,5]
Output:
2
Explanation:
We can create a valid split in the following way: [3] | [5].
- The starting element of the 1
st
subarray is 3 and the ending is 3. Their greatest common divisor is 3, which is greater than 1.
- The starting element of the 2
nd
subarray is 5 and the ending is 5. Their greatest common divisor is 5, which is greater than 1.
It can be proved that 2 is the minimum number of subarrays that we can obtain in a valid split.
Example 3:
Input:
nums = [1,2,1]
Output:
-1
Explanation:
It is impossible to create valid split.
Constraints:
1 <= nums.length <= 1000
1 <= nums[i] <= 10
5
| null | null |
class Solution {
public:
const int inf = 0x3f3f3f3f;
int validSubarraySplit(vector<int>& nums) {
int n = nums.size();
vector<int> f(n);
function<int(int)> dfs = [&](int i) -> int {
if (i >= n) return 0;
if (f[i]) return f[i];
int ans = inf;
for (int j = i; j < n; ++j) {
if (__gcd(nums[i], nums[j]) > 1) {
ans = min(ans, 1 + dfs(j + 1));
}
}
f[i] = ans;
return ans;
};
int ans = dfs(0);
return ans < inf ? ans : -1;
}
};
| null | null |
func validSubarraySplit(nums []int) int {
n := len(nums)
f := make([]int, n)
var dfs func(int) int
const inf int = 0x3f3f3f3f
dfs = func(i int) int {
if i >= n {
return 0
}
if f[i] > 0 {
return f[i]
}
ans := inf
for j := i; j < n; j++ {
if gcd(nums[i], nums[j]) > 1 {
ans = min(ans, 1+dfs(j+1))
}
}
f[i] = ans
return ans
}
ans := dfs(0)
if ans < inf {
return ans
}
return -1
}
func gcd(a, b int) int {
if b == 0 {
return a
}
return gcd(b, a%b)
}
|
class Solution {
private int n;
private int[] f;
private int[] nums;
private int inf = 0x3f3f3f3f;
public int validSubarraySplit(int[] nums) {
n = nums.length;
f = new int[n];
this.nums = nums;
int ans = dfs(0);
return ans < inf ? ans : -1;
}
private int dfs(int i) {
if (i >= n) {
return 0;
}
if (f[i] > 0) {
return f[i];
}
int ans = inf;
for (int j = i; j < n; ++j) {
if (gcd(nums[i], nums[j]) > 1) {
ans = Math.min(ans, 1 + dfs(j + 1));
}
}
f[i] = ans;
return ans;
}
private int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
}
| null | null | null | null | null | null |
class Solution:
def validSubarraySplit(self, nums: List[int]) -> int:
@cache
def dfs(i):
if i >= n:
return 0
ans = inf
for j in range(i, n):
if gcd(nums[i], nums[j]) > 1:
ans = min(ans, 1 + dfs(j + 1))
return ans
n = len(nums)
ans = dfs(0)
dfs.cache_clear()
return ans if ans < inf else -1
| null | null | null | null | null | null |
Longest Palindrome by Concatenating Two Letter Words
|
You are given an array of strings
words
. Each element of
words
consists of
two
lowercase English letters.
Create the
longest possible palindrome
by selecting some elements from
words
and concatenating them in
any order
. Each element can be selected
at most once
.
Return
the
length
of the longest palindrome that you can create
. If it is impossible to create any palindrome, return
0
.
A
palindrome
is a string that reads the same forward and backward.
Example 1:
Input:
words = ["lc","cl","gg"]
Output:
6
Explanation:
One longest palindrome is "lc" + "gg" + "cl" = "lcggcl", of length 6.
Note that "clgglc" is another longest palindrome that can be created.
Example 2:
Input:
words = ["ab","ty","yt","lc","cl","ab"]
Output:
8
Explanation:
One longest palindrome is "ty" + "lc" + "cl" + "yt" = "tylcclyt", of length 8.
Note that "lcyttycl" is another longest palindrome that can be created.
Example 3:
Input:
words = ["cc","ll","xx"]
Output:
2
Explanation:
One longest palindrome is "cc", of length 2.
Note that "ll" is another longest palindrome that can be created, and so is "xx".
Constraints:
1 <= words.length <= 10
5
words[i].length == 2
words[i]
consists of lowercase English letters.
| null | null |
class Solution {
public:
int longestPalindrome(vector<string>& words) {
unordered_map<string, int> cnt;
for (auto& w : words) cnt[w]++;
int ans = 0, x = 0;
for (auto& [k, v] : cnt) {
string rk = k;
reverse(rk.begin(), rk.end());
if (k[0] == k[1]) {
x += v & 1;
ans += v / 2 * 2 * 2;
} else if (cnt.count(rk)) {
ans += min(v, cnt[rk]) * 2;
}
}
ans += x ? 2 : 0;
return ans;
}
};
| null | null |
func longestPalindrome(words []string) int {
cnt := map[string]int{}
for _, w := range words {
cnt[w]++
}
ans, x := 0, 0
for k, v := range cnt {
if k[0] == k[1] {
x += v & 1
ans += v / 2 * 2 * 2
} else {
rk := string([]byte{k[1], k[0]})
if y, ok := cnt[rk]; ok {
ans += min(v, y) * 2
}
}
}
if x > 0 {
ans += 2
}
return ans
}
|
class Solution {
public int longestPalindrome(String[] words) {
Map<String, Integer> cnt = new HashMap<>();
for (var w : words) {
cnt.merge(w, 1, Integer::sum);
}
int ans = 0, x = 0;
for (var e : cnt.entrySet()) {
var k = e.getKey();
var rk = new StringBuilder(k).reverse().toString();
int v = e.getValue();
if (k.charAt(0) == k.charAt(1)) {
x += v & 1;
ans += v / 2 * 2 * 2;
} else {
ans += Math.min(v, cnt.getOrDefault(rk, 0)) * 2;
}
}
ans += x > 0 ? 2 : 0;
return ans;
}
}
| null | null | null | null | null | null |
class Solution:
def longestPalindrome(self, words: List[str]) -> int:
cnt = Counter(words)
ans = x = 0
for k, v in cnt.items():
if k[0] == k[1]:
x += v & 1
ans += v // 2 * 2 * 2
else:
ans += min(v, cnt[k[::-1]]) * 2
ans += 2 if x else 0
return ans
| null | null | null | null | null |
function longestPalindrome(words: string[]): number {
const cnt = new Map<string, number>();
for (const w of words) cnt.set(w, (cnt.get(w) || 0) + 1);
let [ans, x] = [0, 0];
for (const [k, v] of cnt.entries()) {
if (k[0] === k[1]) {
x += v & 1;
ans += Math.floor(v / 2) * 2 * 2;
} else {
ans += Math.min(v, cnt.get(k[1] + k[0]) || 0) * 2;
}
}
ans += x ? 2 : 0;
return ans;
}
|
Maximum Segment Sum After Removals
|
You are given two
0-indexed
integer arrays
nums
and
removeQueries
, both of length
n
. For the
i
th
query, the element in
nums
at the index
removeQueries[i]
is removed, splitting
nums
into different segments.
A
segment
is a contiguous sequence of
positive
integers in
nums
. A
segment sum
is the sum of every element in a segment.
Return
an integer array
answer
, of length
n
, where
answer[i]
is the
maximum
segment sum after applying the
i
th
removal.
Note:
The same index will
not
be removed more than once.
Example 1:
Input:
nums = [1,2,5,6,1], removeQueries = [0,3,2,4,1]
Output:
[14,7,2,2,0]
Explanation:
Using 0 to indicate a removed element, the answer is as follows:
Query 1: Remove the 0th element, nums becomes [0,2,5,6,1] and the maximum segment sum is 14 for segment [2,5,6,1].
Query 2: Remove the 3rd element, nums becomes [0,2,5,0,1] and the maximum segment sum is 7 for segment [2,5].
Query 3: Remove the 2nd element, nums becomes [0,2,0,0,1] and the maximum segment sum is 2 for segment [2].
Query 4: Remove the 4th element, nums becomes [0,2,0,0,0] and the maximum segment sum is 2 for segment [2].
Query 5: Remove the 1st element, nums becomes [0,0,0,0,0] and the maximum segment sum is 0, since there are no segments.
Finally, we return [14,7,2,2,0].
Example 2:
Input:
nums = [3,2,11,1], removeQueries = [3,2,1,0]
Output:
[16,5,3,0]
Explanation:
Using 0 to indicate a removed element, the answer is as follows:
Query 1: Remove the 3rd element, nums becomes [3,2,11,0] and the maximum segment sum is 16 for segment [3,2,11].
Query 2: Remove the 2nd element, nums becomes [3,2,0,0] and the maximum segment sum is 5 for segment [3,2].
Query 3: Remove the 1st element, nums becomes [3,0,0,0] and the maximum segment sum is 3 for segment [3].
Query 4: Remove the 0th element, nums becomes [0,0,0,0] and the maximum segment sum is 0, since there are no segments.
Finally, we return [16,5,3,0].
Constraints:
n == nums.length == removeQueries.length
1 <= n <= 10
5
1 <= nums[i] <= 10
9
0 <= removeQueries[i] < n
All the values of
removeQueries
are
unique
.
| null | null |
using ll = long long;
class Solution {
public:
vector<int> p;
vector<ll> s;
vector<long long> maximumSegmentSum(vector<int>& nums, vector<int>& removeQueries) {
int n = nums.size();
p.resize(n);
for (int i = 0; i < n; ++i) p[i] = i;
s.assign(n, 0);
vector<ll> ans(n);
ll mx = 0;
for (int j = n - 1; j; --j) {
int i = removeQueries[j];
s[i] = nums[i];
if (i && s[find(i - 1)]) merge(i, i - 1);
if (i < n - 1 && s[find(i + 1)]) merge(i, i + 1);
mx = max(mx, s[find(i)]);
ans[j - 1] = mx;
}
return ans;
}
int find(int x) {
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
void merge(int a, int b) {
int pa = find(a), pb = find(b);
p[pa] = pb;
s[pb] += s[pa];
}
};
| null | null |
func maximumSegmentSum(nums []int, removeQueries []int) []int64 {
n := len(nums)
p := make([]int, n)
s := make([]int, n)
for i := range p {
p[i] = i
}
var find func(x int) int
find = func(x int) int {
if p[x] != x {
p[x] = find(p[x])
}
return p[x]
}
merge := func(a, b int) {
pa, pb := find(a), find(b)
p[pa] = pb
s[pb] += s[pa]
}
mx := 0
ans := make([]int64, n)
for j := n - 1; j > 0; j-- {
i := removeQueries[j]
s[i] = nums[i]
if i > 0 && s[find(i-1)] > 0 {
merge(i, i-1)
}
if i < n-1 && s[find(i+1)] > 0 {
merge(i, i+1)
}
mx = max(mx, s[find(i)])
ans[j-1] = int64(mx)
}
return ans
}
|
class Solution {
private int[] p;
private long[] s;
public long[] maximumSegmentSum(int[] nums, int[] removeQueries) {
int n = nums.length;
p = new int[n];
s = new long[n];
for (int i = 0; i < n; ++i) {
p[i] = i;
}
long[] ans = new long[n];
long mx = 0;
for (int j = n - 1; j > 0; --j) {
int i = removeQueries[j];
s[i] = nums[i];
if (i > 0 && s[find(i - 1)] > 0) {
merge(i, i - 1);
}
if (i < n - 1 && s[find(i + 1)] > 0) {
merge(i, i + 1);
}
mx = Math.max(mx, s[find(i)]);
ans[j - 1] = mx;
}
return ans;
}
private int find(int x) {
if (p[x] != x) {
p[x] = find(p[x]);
}
return p[x];
}
private void merge(int a, int b) {
int pa = find(a), pb = find(b);
p[pa] = pb;
s[pb] += s[pa];
}
}
| null | null | null | null | null | null |
class Solution:
def maximumSegmentSum(self, nums: List[int], removeQueries: List[int]) -> List[int]:
def find(x):
if p[x] != x:
p[x] = find(p[x])
return p[x]
def merge(a, b):
pa, pb = find(a), find(b)
p[pa] = pb
s[pb] += s[pa]
n = len(nums)
p = list(range(n))
s = [0] * n
ans = [0] * n
mx = 0
for j in range(n - 1, 0, -1):
i = removeQueries[j]
s[i] = nums[i]
if i and s[find(i - 1)]:
merge(i, i - 1)
if i < n - 1 and s[find(i + 1)]:
merge(i, i + 1)
mx = max(mx, s[find(i)])
ans[j - 1] = mx
return ans
| null | null | null | null | null | null |
End of preview. Expand
in Data Studio
README.md exists but content is empty.
- Downloads last month
- 4