Title
stringlengths
3
81
Description
stringlengths
219
5.66k
C
stringclasses
154 values
C#
stringclasses
299 values
C++
stringlengths
88
4.55k
Cangjie
stringclasses
3 values
Dart
stringclasses
2 values
Go
stringlengths
47
3.11k
Java
stringlengths
86
5.36k
JavaScript
stringclasses
465 values
Kotlin
stringclasses
15 values
MySQL
stringclasses
282 values
Nim
stringclasses
4 values
PHP
stringclasses
111 values
Pandas
stringclasses
31 values
Python3
stringlengths
82
4.27k
Ruby
stringclasses
8 values
Rust
stringlengths
83
4.8k
Scala
stringclasses
5 values
Shell
stringclasses
4 values
Swift
stringclasses
13 values
TypeScript
stringlengths
65
20.6k
Interval Cancellation
Given a function fn , an array of arguments  args , and an interval time t , return a cancel function cancelFn . After a delay of  cancelTimeMs , the returned cancel function  cancelFn  will be invoked. setTimeout(cancelFn, cancelTimeMs) The function fn should be called with args immediately and then called again every  t milliseconds until  cancelFn  is called at cancelTimeMs ms.   Example 1: Input: fn = (x) => x * 2, args = [4], t = 35 Output: [ {"time": 0, "returned": 8}, {"time": 35, "returned": 8}, {"time": 70, "returned": 8}, {"time": 105, "returned": 8}, {"time": 140, "returned": 8}, {"time": 175, "returned": 8} ] Explanation: const cancelTimeMs = 190; const cancelFn = cancellable((x) => x * 2, [4], 35); setTimeout(cancelFn, cancelTimeMs); Every 35ms, fn(4) is called. Until t=190ms, then it is cancelled. 1st fn call is at 0ms. fn(4) returns 8. 2nd fn call is at 35ms. fn(4) returns 8. 3rd fn call is at 70ms. fn(4) returns 8. 4th fn call is at 105ms. fn(4) returns 8. 5th fn call is at 140ms. fn(4) returns 8. 6th fn call is at 175ms. fn(4) returns 8. Cancelled at 190ms Example 2: Input: fn = (x1, x2) => (x1 * x2), args = [2, 5], t = 30 Output: [ {"time": 0, "returned": 10}, {"time": 30, "returned": 10}, {"time": 60, "returned": 10}, {"time": 90, "returned": 10}, {"time": 120, "returned": 10}, {"time": 150, "returned": 10} ] Explanation: const cancelTimeMs = 165; const cancelFn = cancellable((x1, x2) => (x1 * x2), [2, 5], 30) setTimeout(cancelFn, cancelTimeMs) Every 30ms, fn(2, 5) is called. Until t=165ms, then it is cancelled. 1st fn call is at 0ms  2nd fn call is at 30ms  3rd fn call is at 60ms  4th fn call is at 90ms  5th fn call is at 120ms  6th fn call is at 150ms Cancelled at 165ms Example 3: Input: fn = (x1, x2, x3) => (x1 + x2 + x3), args = [5, 1, 3], t = 50 Output: [ {"time": 0, "returned": 9}, {"time": 50, "returned": 9}, {"time": 100, "returned": 9}, {"time": 150, "returned": 9} ] Explanation: const cancelTimeMs = 180; const cancelFn = cancellable((x1, x2, x3) => (x1 + x2 + x3), [5, 1, 3], 50) setTimeout(cancelFn, cancelTimeMs) Every 50ms, fn(5, 1, 3) is called. Until t=180ms, then it is cancelled. 1st fn call is at 0ms 2nd fn call is at 50ms 3rd fn call is at 100ms 4th fn call is at 150ms Cancelled at 180ms   Constraints: fn is a function args is a valid JSON array 1 <= args.length <= 10 30 <= t <= 100 10 <= cancelTimeMs <= 500
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
function cancellable(fn: Function, args: any[], t: number): Function { fn(...args); const time = setInterval(() => fn(...args), t); return () => clearInterval(time); } /** * const result = [] * * const fn = (x) => x * 2 * const args = [4], t = 20, cancelT = 110 * * const log = (...argsArr) => { * result.push(fn(...argsArr)) * } * * const cancel = cancellable(fn, args, t); * * setTimeout(() => { * cancel() * console.log(result) // [ * // {"time":0,"returned":8}, * // {"time":20,"returned":8}, * // {"time":40,"returned":8}, * // {"time":60,"returned":8}, * // {"time":80,"returned":8}, * // {"time":100,"returned":8} * // ] * }, cancelT) */
Number of Ways to Split Array
You are given a 0-indexed integer array nums of length n . nums contains a valid split at index i if the following are true: The sum of the first i + 1 elements is greater than or equal to the sum of the last n - i - 1 elements. There is at least one element to the right of i . That is, 0 <= i < n - 1 . Return the number of valid splits in nums .   Example 1: Input: nums = [10,4,-8,7] Output: 2 Explanation: There are three ways of splitting nums into two non-empty parts: - Split nums at index 0. Then, the first part is [10], and its sum is 10. The second part is [4,-8,7], and its sum is 3. Since 10 >= 3, i = 0 is a valid split. - Split nums at index 1. Then, the first part is [10,4], and its sum is 14. The second part is [-8,7], and its sum is -1. Since 14 >= -1, i = 1 is a valid split. - Split nums at index 2. Then, the first part is [10,4,-8], and its sum is 6. The second part is [7], and its sum is 7. Since 6 < 7, i = 2 is not a valid split. Thus, the number of valid splits in nums is 2. Example 2: Input: nums = [2,3,1,0] Output: 2 Explanation: There are two valid splits in nums: - Split nums at index 1. Then, the first part is [2,3], and its sum is 5. The second part is [1,0], and its sum is 1. Since 5 >= 1, i = 1 is a valid split. - Split nums at index 2. Then, the first part is [2,3,1], and its sum is 6. The second part is [0], and its sum is 0. Since 6 >= 0, i = 2 is a valid split.   Constraints: 2 <= nums.length <= 10 5 -10 5 <= nums[i] <= 10 5
null
null
class Solution { public: int waysToSplitArray(vector<int>& nums) { long long s = accumulate(nums.begin(), nums.end(), 0LL); long long t = 0; int ans = 0; for (int i = 0; i + 1 < nums.size(); ++i) { t += nums[i]; ans += t >= s - t; } return ans; } };
null
null
func waysToSplitArray(nums []int) (ans int) { var s, t int for _, x := range nums { s += x } for _, x := range nums[:len(nums)-1] { t += x if t >= s-t { ans++ } } return }
class Solution { public int waysToSplitArray(int[] nums) { long s = 0; for (int x : nums) { s += x; } long t = 0; int ans = 0; for (int i = 0; i + 1 < nums.length; ++i) { t += nums[i]; ans += t >= s - t ? 1 : 0; } return ans; } }
null
null
null
null
null
null
class Solution: def waysToSplitArray(self, nums: List[int]) -> int: s = sum(nums) ans = t = 0 for x in nums[:-1]: t += x ans += t >= s - t return ans
null
null
null
null
null
function waysToSplitArray(nums: number[]): number { const s = nums.reduce((acc, cur) => acc + cur, 0); let [ans, t] = [0, 0]; for (const x of nums.slice(0, -1)) { t += x; if (t >= s - t) { ++ans; } } return ans; }
Construct the Minimum Bitwise Array I
You are given an array nums consisting of n prime integers. You need to construct an array ans of length n , such that, for each index i , the bitwise OR of ans[i] and ans[i] + 1 is equal to nums[i] , i.e. ans[i] OR (ans[i] + 1) == nums[i] . Additionally, you must minimize each value of ans[i] in the resulting array. If it is not possible to find such a value for ans[i] that satisfies the condition , then set ans[i] = -1 .   Example 1: Input: nums = [2,3,5,7] Output: [-1,1,4,3] Explanation: For i = 0 , as there is no value for ans[0] that satisfies ans[0] OR (ans[0] + 1) = 2 , so ans[0] = -1 . For i = 1 , the smallest ans[1] that satisfies ans[1] OR (ans[1] + 1) = 3 is 1 , because 1 OR (1 + 1) = 3 . For i = 2 , the smallest ans[2] that satisfies ans[2] OR (ans[2] + 1) = 5 is 4 , because 4 OR (4 + 1) = 5 . For i = 3 , the smallest ans[3] that satisfies ans[3] OR (ans[3] + 1) = 7 is 3 , because 3 OR (3 + 1) = 7 . Example 2: Input: nums = [11,13,31] Output: [9,12,15] Explanation: For i = 0 , the smallest ans[0] that satisfies ans[0] OR (ans[0] + 1) = 11 is 9 , because 9 OR (9 + 1) = 11 . For i = 1 , the smallest ans[1] that satisfies ans[1] OR (ans[1] + 1) = 13 is 12 , because 12 OR (12 + 1) = 13 . For i = 2 , the smallest ans[2] that satisfies ans[2] OR (ans[2] + 1) = 31 is 15 , because 15 OR (15 + 1) = 31 .   Constraints: 1 <= nums.length <= 100 2 <= nums[i] <= 1000 nums[i] is a prime number.
null
null
class Solution { public: vector<int> minBitwiseArray(vector<int>& nums) { vector<int> ans; for (int x : nums) { if (x == 2) { ans.push_back(-1); } else { for (int i = 1; i < 32; ++i) { if (x >> i & 1 ^ 1) { ans.push_back(x ^ 1 << (i - 1)); break; } } } } return ans; } };
null
null
func minBitwiseArray(nums []int) (ans []int) { for _, x := range nums { if x == 2 { ans = append(ans, -1) } else { for i := 1; i < 32; i++ { if x>>i&1 == 0 { ans = append(ans, x^1<<(i-1)) break } } } } return }
class Solution { public int[] minBitwiseArray(List<Integer> nums) { int n = nums.size(); int[] ans = new int[n]; for (int i = 0; i < n; ++i) { int x = nums.get(i); if (x == 2) { ans[i] = -1; } else { for (int j = 1; j < 32; ++j) { if ((x >> j & 1) == 0) { ans[i] = x ^ 1 << (j - 1); break; } } } } return ans; } }
null
null
null
null
null
null
class Solution: def minBitwiseArray(self, nums: List[int]) -> List[int]: ans = [] for x in nums: if x == 2: ans.append(-1) else: for i in range(1, 32): if x >> i & 1 ^ 1: ans.append(x ^ 1 << (i - 1)) break return ans
null
null
null
null
null
function minBitwiseArray(nums: number[]): number[] { const ans: number[] = []; for (const x of nums) { if (x === 2) { ans.push(-1); } else { for (let i = 1; i < 32; ++i) { if (((x >> i) & 1) ^ 1) { ans.push(x ^ (1 << (i - 1))); break; } } } } return ans; }
Reach End of Array With Max Score
You are given an integer array nums of length n . Your goal is to start at index 0 and reach index n - 1 . You can only jump to indices greater than your current index. The score for a jump from index i to index j is calculated as (j - i) * nums[i] . Return the maximum possible total score by the time you reach the last index.   Example 1: Input: nums = [1,3,1,5] Output: 7 Explanation: First, jump to index 1 and then jump to the last index. The final score is 1 * 1 + 2 * 3 = 7 . Example 2: Input: nums = [4,3,1,3,2] Output: 16 Explanation: Jump directly to the last index. The final score is 4 * 4 = 16 .   Constraints: 1 <= nums.length <= 10 5 1 <= nums[i] <= 10 5
null
null
class Solution { public: long long findMaximumScore(vector<int>& nums) { long long ans = 0; int mx = 0; for (int i = 0; i + 1 < nums.size(); ++i) { mx = max(mx, nums[i]); ans += mx; } return ans; } };
null
null
func findMaximumScore(nums []int) (ans int64) { mx := 0 for _, x := range nums[:len(nums)-1] { mx = max(mx, x) ans += int64(mx) } return }
class Solution { public long findMaximumScore(List<Integer> nums) { long ans = 0; int mx = 0; for (int i = 0; i + 1 < nums.size(); ++i) { mx = Math.max(mx, nums.get(i)); ans += mx; } return ans; } }
null
null
null
null
null
null
class Solution: def findMaximumScore(self, nums: List[int]) -> int: ans = mx = 0 for x in nums[:-1]: mx = max(mx, x) ans += mx return ans
null
null
null
null
null
function findMaximumScore(nums: number[]): number { let [ans, mx]: [number, number] = [0, 0]; for (const x of nums.slice(0, -1)) { mx = Math.max(mx, x); ans += mx; } return ans; }
Minimize OR of Remaining Elements Using Operations
You are given a 0-indexed integer array nums and an integer k . In one operation, you can pick any index i of nums such that 0 <= i < nums.length - 1 and replace nums[i] and nums[i + 1] with a single occurrence of nums[i] & nums[i + 1] , where & represents the bitwise AND operator. Return the minimum possible value of the bitwise OR of the remaining elements of nums after applying at most k operations .   Example 1: Input: nums = [3,5,3,2,7], k = 2 Output: 3 Explanation: Let's do the following operations: 1. Replace nums[0] and nums[1] with (nums[0] & nums[1]) so that nums becomes equal to [1,3,2,7]. 2. Replace nums[2] and nums[3] with (nums[2] & nums[3]) so that nums becomes equal to [1,3,2]. The bitwise-or of the final array is 3. It can be shown that 3 is the minimum possible value of the bitwise OR of the remaining elements of nums after applying at most k operations. Example 2: Input: nums = [7,3,15,14,2,8], k = 4 Output: 2 Explanation: Let's do the following operations: 1. Replace nums[0] and nums[1] with (nums[0] & nums[1]) so that nums becomes equal to [3,15,14,2,8]. 2. Replace nums[0] and nums[1] with (nums[0] & nums[1]) so that nums becomes equal to [3,14,2,8]. 3. Replace nums[0] and nums[1] with (nums[0] & nums[1]) so that nums becomes equal to [2,2,8]. 4. Replace nums[1] and nums[2] with (nums[1] & nums[2]) so that nums becomes equal to [2,0]. The bitwise-or of the final array is 2. It can be shown that 2 is the minimum possible value of the bitwise OR of the remaining elements of nums after applying at most k operations. Example 3: Input: nums = [10,7,10,3,9,14,9,4], k = 1 Output: 15 Explanation: Without applying any operations, the bitwise-or of nums is 15. It can be shown that 15 is the minimum possible value of the bitwise OR of the remaining elements of nums after applying at most k operations.   Constraints: 1 <= nums.length <= 10 5 0 <= nums[i] < 2 30 0 <= k < nums.length
null
null
class Solution { public: int minOrAfterOperations(vector<int>& nums, int k) { int ans = 0, rans = 0; for (int i = 29; i >= 0; i--) { int test = ans + (1 << i); int cnt = 0; int val = 0; for (auto it : nums) { if (val == 0) { val = test & it; } else { val &= test & it; } if (val) { cnt++; } } if (cnt > k) { rans += (1 << i); } else { ans += (1 << i); } } return rans; } };
null
null
func minOrAfterOperations(nums []int, k int) int { ans := 0 rans := 0 for i := 29; i >= 0; i-- { test := ans + (1 << i) cnt := 0 val := 0 for _, num := range nums { if val == 0 { val = test & num } else { val &= test & num } if val != 0 { cnt++ } } if cnt > k { rans += (1 << i) } else { ans += (1 << i) } } return rans }
class Solution { public int minOrAfterOperations(int[] nums, int k) { int ans = 0, rans = 0; for (int i = 29; i >= 0; i--) { int test = ans + (1 << i); int cnt = 0; int val = 0; for (int num : nums) { if (val == 0) { val = test & num; } else { val &= test & num; } if (val != 0) { cnt++; } } if (cnt > k) { rans += (1 << i); } else { ans += (1 << i); } } return rans; } }
null
null
null
null
null
null
class Solution: def minOrAfterOperations(self, nums: List[int], k: int) -> int: ans = 0 rans = 0 for i in range(29, -1, -1): test = ans + (1 << i) cnt = 0 val = 0 for num in nums: if val == 0: val = test & num else: val &= test & num if val: cnt += 1 if cnt > k: rans += 1 << i else: ans += 1 << i return rans
null
null
null
null
null
null
Triples with Bitwise AND Equal To Zero
Given an integer array nums, return the number of AND triples . An AND triple is a triple of indices (i, j, k) such that: 0 <= i < nums.length 0 <= j < nums.length 0 <= k < nums.length nums[i] & nums[j] & nums[k] == 0 , where & represents the bitwise-AND operator.   Example 1: Input: nums = [2,1,3] Output: 12 Explanation: We could choose the following i, j, k triples: (i=0, j=0, k=1) : 2 & 2 & 1 (i=0, j=1, k=0) : 2 & 1 & 2 (i=0, j=1, k=1) : 2 & 1 & 1 (i=0, j=1, k=2) : 2 & 1 & 3 (i=0, j=2, k=1) : 2 & 3 & 1 (i=1, j=0, k=0) : 1 & 2 & 2 (i=1, j=0, k=1) : 1 & 2 & 1 (i=1, j=0, k=2) : 1 & 2 & 3 (i=1, j=1, k=0) : 1 & 1 & 2 (i=1, j=2, k=0) : 1 & 3 & 2 (i=2, j=0, k=1) : 3 & 2 & 1 (i=2, j=1, k=0) : 3 & 1 & 2 Example 2: Input: nums = [0,0,0] Output: 27   Constraints: 1 <= nums.length <= 1000 0 <= nums[i] < 2 16
null
null
class Solution { public: int countTriplets(vector<int>& nums) { int mx = ranges::max(nums); int cnt[mx + 1]; memset(cnt, 0, sizeof cnt); for (int& x : nums) { for (int& y : nums) { cnt[x & y]++; } } int ans = 0; for (int xy = 0; xy <= mx; ++xy) { for (int& z : nums) { if ((xy & z) == 0) { ans += cnt[xy]; } } } return ans; } };
null
null
func countTriplets(nums []int) (ans int) { mx := slices.Max(nums) cnt := make([]int, mx+1) for _, x := range nums { for _, y := range nums { cnt[x&y]++ } } for xy := 0; xy <= mx; xy++ { for _, z := range nums { if xy&z == 0 { ans += cnt[xy] } } } return }
class Solution { public int countTriplets(int[] nums) { int mx = 0; for (int x : nums) { mx = Math.max(mx, x); } int[] cnt = new int[mx + 1]; for (int x : nums) { for (int y : nums) { cnt[x & y]++; } } int ans = 0; for (int xy = 0; xy <= mx; ++xy) { for (int z : nums) { if ((xy & z) == 0) { ans += cnt[xy]; } } } return ans; } }
null
null
null
null
null
null
class Solution: def countTriplets(self, nums: List[int]) -> int: cnt = Counter(x & y for x in nums for y in nums) return sum(v for xy, v in cnt.items() for z in nums if xy & z == 0)
null
null
null
null
null
function countTriplets(nums: number[]): number { const mx = Math.max(...nums); const cnt: number[] = Array(mx + 1).fill(0); for (const x of nums) { for (const y of nums) { cnt[x & y]++; } } let ans = 0; for (let xy = 0; xy <= mx; ++xy) { for (const z of nums) { if ((xy & z) === 0) { ans += cnt[xy]; } } } return ans; }
Painting the Walls
You are given two 0-indexed integer arrays,  cost and time , of size n representing the costs and the time taken to paint n different walls respectively. There are two painters available: A  paid painter  that paints the i th wall in time[i] units of time and takes cost[i] units of money. A  free painter that paints  any wall in 1 unit of time at a cost of 0 . But the free painter can only be used if the paid painter is already occupied . Return the minimum amount of money required to paint the n  walls.   Example 1: Input: cost = [1,2,3,2], time = [1,2,3,2] Output: 3 Explanation: The walls at index 0 and 1 will be painted by the paid painter, and it will take 3 units of time; meanwhile, the free painter will paint the walls at index 2 and 3, free of cost in 2 units of time. Thus, the total cost is 1 + 2 = 3. Example 2: Input: cost = [2,3,4,2], time = [1,1,1,1] Output: 4 Explanation: The walls at index 0 and 3 will be painted by the paid painter, and it will take 2 units of time; meanwhile, the free painter will paint the walls at index 1 and 2, free of cost in 2 units of time. Thus, the total cost is 2 + 2 = 4.   Constraints: 1 <= cost.length <= 500 cost.length == time.length 1 <= cost[i] <= 10 6 1 <= time[i] <= 500
null
null
class Solution { public: int paintWalls(vector<int>& cost, vector<int>& time) { int n = cost.size(); int f[n][n << 1 | 1]; memset(f, -1, sizeof(f)); function<int(int, int)> dfs = [&](int i, int j) -> int { if (n - i <= j - n) { return 0; } if (i >= n) { return 1 << 30; } if (f[i][j] == -1) { f[i][j] = min(dfs(i + 1, j + time[i]) + cost[i], dfs(i + 1, j - 1)); } return f[i][j]; }; return dfs(0, n); } };
null
null
func paintWalls(cost []int, time []int) int { n := len(cost) f := make([][]int, n) for i := range f { f[i] = make([]int, n<<1|1) for j := range f[i] { f[i][j] = -1 } } var dfs func(i, j int) int dfs = func(i, j int) int { if n-i <= j-n { return 0 } if i >= n { return 1 << 30 } if f[i][j] == -1 { f[i][j] = min(dfs(i+1, j+time[i])+cost[i], dfs(i+1, j-1)) } return f[i][j] } return dfs(0, n) }
class Solution { private int n; private int[] cost; private int[] time; private Integer[][] f; public int paintWalls(int[] cost, int[] time) { n = cost.length; this.cost = cost; this.time = time; f = new Integer[n][n << 1 | 1]; return dfs(0, n); } private int dfs(int i, int j) { if (n - i <= j - n) { return 0; } if (i >= n) { return 1 << 30; } if (f[i][j] == null) { f[i][j] = Math.min(dfs(i + 1, j + time[i]) + cost[i], dfs(i + 1, j - 1)); } return f[i][j]; } }
null
null
null
null
null
null
class Solution: def paintWalls(self, cost: List[int], time: List[int]) -> int: @cache def dfs(i: int, j: int) -> int: if n - i <= j: return 0 if i >= n: return inf return min(dfs(i + 1, j + time[i]) + cost[i], dfs(i + 1, j - 1)) n = len(cost) return dfs(0, 0)
null
impl Solution { #[allow(dead_code)] pub fn paint_walls(cost: Vec<i32>, time: Vec<i32>) -> i32 { let n = cost.len(); let mut record_vec: Vec<Vec<i32>> = vec![vec![-1; n << 1 | 1]; n]; Self::dfs(&mut record_vec, 0, n as i32, n as i32, &time, &cost) } #[allow(dead_code)] fn dfs( record_vec: &mut Vec<Vec<i32>>, i: i32, j: i32, n: i32, time: &Vec<i32>, cost: &Vec<i32>, ) -> i32 { if n - i <= j - n { // All the remaining walls can be printed at no cost // Just return 0 return 0; } if i >= n { // No way this case can be achieved // Just return +INF return 1 << 30; } if record_vec[i as usize][j as usize] == -1 { // This record hasn't been written record_vec[i as usize][j as usize] = std::cmp::min( Self::dfs(record_vec, i + 1, j + time[i as usize], n, time, cost) + cost[i as usize], Self::dfs(record_vec, i + 1, j - 1, n, time, cost), ); } record_vec[i as usize][j as usize] } }
null
null
null
null
Meeting Rooms 🔒
Given an array of meeting time intervals  where intervals[i] = [start i , end i ] , determine if a person could attend all meetings.   Example 1: Input: intervals = [[0,30],[5,10],[15,20]] Output: false Example 2: Input: intervals = [[7,10],[2,4]] Output: true   Constraints: 0 <= intervals.length <= 10 4 intervals[i].length == 2 0 <= start i < end i <= 10 6
null
null
class Solution { public: bool canAttendMeetings(vector<vector<int>>& intervals) { ranges::sort(intervals, [](const auto& a, const auto& b) { return a[0] < b[0]; }); for (int i = 1; i < intervals.size(); ++i) { if (intervals[i - 1][1] > intervals[i][0]) { return false; } } return true; } };
null
null
func canAttendMeetings(intervals [][]int) bool { sort.Slice(intervals, func(i, j int) bool { return intervals[i][0] < intervals[j][0] }) for i := 1; i < len(intervals); i++ { if intervals[i][0] < intervals[i-1][1] { return false } } return true }
class Solution { public boolean canAttendMeetings(int[][] intervals) { Arrays.sort(intervals, (a, b) -> a[0] - b[0]); for (int i = 1; i < intervals.length; ++i) { if (intervals[i - 1][1] > intervals[i][0]) { return false; } } return true; } }
null
null
null
null
null
null
class Solution: def canAttendMeetings(self, intervals: List[List[int]]) -> bool: intervals.sort() return all(a[1] <= b[0] for a, b in pairwise(intervals))
null
impl Solution { pub fn can_attend_meetings(mut intervals: Vec<Vec<i32>>) -> bool { intervals.sort_by(|a, b| a[0].cmp(&b[0])); for i in 1..intervals.len() { if intervals[i - 1][1] > intervals[i][0] { return false; } } true } }
null
null
null
function canAttendMeetings(intervals: number[][]): boolean { intervals.sort((a, b) => a[0] - b[0]); for (let i = 1; i < intervals.length; ++i) { if (intervals[i][0] < intervals[i - 1][1]) { return false; } } return true; }
Find The Original Array of Prefix Xor
You are given an integer array pref of size n . Find and return the array arr of size n that satisfies : pref[i] = arr[0] ^ arr[1] ^ ... ^ arr[i] . Note that ^ denotes the bitwise-xor operation. It can be proven that the answer is unique .   Example 1: Input: pref = [5,2,0,3,1] Output: [5,7,2,3,2] Explanation: From the array [5,7,2,3,2] we have the following: - pref[0] = 5. - pref[1] = 5 ^ 7 = 2. - pref[2] = 5 ^ 7 ^ 2 = 0. - pref[3] = 5 ^ 7 ^ 2 ^ 3 = 3. - pref[4] = 5 ^ 7 ^ 2 ^ 3 ^ 2 = 1. Example 2: Input: pref = [13] Output: [13] Explanation: We have pref[0] = arr[0] = 13.   Constraints: 1 <= pref.length <= 10 5 0 <= pref[i] <= 10 6
/** * Note: The returned array must be malloced, assume caller calls free(). */ int* findArray(int* pref, int prefSize, int* returnSize) { int* res = (int*) malloc(sizeof(int) * prefSize); res[0] = pref[0]; for (int i = 1; i < prefSize; i++) { res[i] = pref[i - 1] ^ pref[i]; } *returnSize = prefSize; return res; }
null
class Solution { public: vector<int> findArray(vector<int>& pref) { int n = pref.size(); vector<int> ans = {pref[0]}; for (int i = 1; i < n; ++i) { ans.push_back(pref[i - 1] ^ pref[i]); } return ans; } };
null
null
func findArray(pref []int) []int { n := len(pref) ans := []int{pref[0]} for i := 1; i < n; i++ { ans = append(ans, pref[i-1]^pref[i]) } return ans }
class Solution { public int[] findArray(int[] pref) { int n = pref.length; int[] ans = new int[n]; ans[0] = pref[0]; for (int i = 1; i < n; ++i) { ans[i] = pref[i - 1] ^ pref[i]; } return ans; } }
null
null
null
null
null
null
class Solution: def findArray(self, pref: List[int]) -> List[int]: return [a ^ b for a, b in pairwise([0] + pref)]
null
impl Solution { pub fn find_array(pref: Vec<i32>) -> Vec<i32> { let n = pref.len(); let mut res = vec![0; n]; res[0] = pref[0]; for i in 1..n { res[i] = pref[i] ^ pref[i - 1]; } res } }
null
null
null
function findArray(pref: number[]): number[] { let ans = pref.slice(); for (let i = 1; i < pref.length; i++) { ans[i] = pref[i - 1] ^ pref[i]; } return ans; }
Maximum Number of Matching Indices After Right Shifts 🔒
You are given two integer arrays, nums1 and nums2 , of the same length. An index i is considered matching if nums1[i] == nums2[i] . Return the maximum number of matching indices after performing any number of right shifts on nums1 . A right shift is defined as shifting the element at index i to index (i + 1) % n , for all indices.   Example 1: Input: nums1 = [3,1,2,3,1,2], nums2 = [1,2,3,1,2,3] Output: 6 Explanation: If we right shift nums1 2 times, it becomes [1, 2, 3, 1, 2, 3] . Every index matches, so the output is 6. Example 2: Input: nums1 = [1,4,2,5,3,1], nums2 = [2,3,1,2,4,6] Output: 3 Explanation: If we right shift nums1 3 times, it becomes [5, 3, 1, 1, 4, 2] . Indices 1, 2, and 4 match, so the output is 3.   Constraints: nums1.length == nums2.length 1 <= nums1.length, nums2.length <= 3000 1 <= nums1[i], nums2[i] <= 10 9
null
null
class Solution { public: int maximumMatchingIndices(vector<int>& nums1, vector<int>& nums2) { int n = nums1.size(); int ans = 0; for (int k = 0; k < n; ++k) { int t = 0; for (int i = 0; i < n; ++i) { if (nums1[(i + k) % n] == nums2[i]) { ++t; } } ans = max(ans, t); } return ans; } };
null
null
func maximumMatchingIndices(nums1 []int, nums2 []int) (ans int) { n := len(nums1) for k := range nums1 { t := 0 for i, x := range nums2 { if nums1[(i+k)%n] == x { t++ } } ans = max(ans, t) } return }
class Solution { public int maximumMatchingIndices(int[] nums1, int[] nums2) { int n = nums1.length; int ans = 0; for (int k = 0; k < n; ++k) { int t = 0; for (int i = 0; i < n; ++i) { if (nums1[(i + k) % n] == nums2[i]) { ++t; } } ans = Math.max(ans, t); } return ans; } }
null
null
null
null
null
null
class Solution: def maximumMatchingIndices(self, nums1: List[int], nums2: List[int]) -> int: n = len(nums1) ans = 0 for k in range(n): t = sum(nums1[(i + k) % n] == x for i, x in enumerate(nums2)) ans = max(ans, t) return ans
null
null
null
null
null
function maximumMatchingIndices(nums1: number[], nums2: number[]): number { const n = nums1.length; let ans: number = 0; for (let k = 0; k < n; ++k) { let t: number = 0; for (let i = 0; i < n; ++i) { if (nums1[(i + k) % n] === nums2[i]) { ++t; } } ans = Math.max(ans, t); } return ans; }
Maximum Profitable Triplets With Increasing Prices I 🔒
Given the 0-indexed arrays prices and profits of length n . There are n items in an store where the i th item has a price of prices[i] and a profit of profits[i] . We have to pick three items with the following condition: prices[i] < prices[j] < prices[k] where i < j < k . If we pick items with indices i , j and k satisfying the above condition, the profit would be profits[i] + profits[j] + profits[k] . Return the maximum profit we can get, and -1 if it's not possible to pick three items with the given condition.   Example 1: Input: prices = [10,2,3,4], profits = [100,2,7,10] Output: 19 Explanation: We can't pick the item with index i=0 since there are no indices j and k such that the condition holds. So the only triplet we can pick, are the items with indices 1, 2 and 3 and it's a valid pick since prices[1] < prices[2] < prices[3]. The answer would be sum of their profits which is 2 + 7 + 10 = 19. Example 2: Input: prices = [1,2,3,4,5], profits = [1,5,3,4,6] Output: 15 Explanation: We can select any triplet of items since for each triplet of indices i, j and k such that i < j < k, the condition holds. Therefore the maximum profit we can get would be the 3 most profitable items which are indices 1, 3 and 4. The answer would be sum of their profits which is 5 + 4 + 6 = 15. Example 3: Input: prices = [4,3,2,1], profits = [33,20,19,87] Output: -1 Explanation: We can't select any triplet of indices such that the condition holds, so we return -1.   Constraints: 3 <= prices.length == profits.length <= 2000 1 <= prices[i] <= 10 6 1 <= profits[i] <= 10 6
null
null
class BinaryIndexedTree { private: int n; vector<int> c; public: BinaryIndexedTree(int n) { this->n = n; c.resize(n + 1, 0); } void update(int x, int v) { while (x <= n) { c[x] = max(c[x], v); x += x & -x; } } int query(int x) { int mx = 0; while (x > 0) { mx = max(mx, c[x]); x -= x & -x; } return mx; } }; class Solution { public: int maxProfit(vector<int>& prices, vector<int>& profits) { int n = prices.size(); vector<int> left(n); vector<int> right(n); vector<int> s = prices; sort(s.begin(), s.end()); s.erase(unique(s.begin(), s.end()), s.end()); int m = s.size(); BinaryIndexedTree tree1(m + 1); BinaryIndexedTree tree2(m + 1); for (int i = 0; i < n; ++i) { int x = lower_bound(s.begin(), s.end(), prices[i]) - s.begin() + 1; left[i] = tree1.query(x - 1); tree1.update(x, profits[i]); } for (int i = n - 1; i >= 0; --i) { int x = m + 1 - (lower_bound(s.begin(), s.end(), prices[i]) - s.begin() + 1); right[i] = tree2.query(x - 1); tree2.update(x, profits[i]); } int ans = -1; for (int i = 0; i < n; ++i) { if (left[i] > 0 && right[i] > 0) { ans = max(ans, left[i] + profits[i] + right[i]); } } return ans; } };
null
null
type BinaryIndexedTree struct { n int c []int } func NewBinaryIndexedTree(n int) BinaryIndexedTree { c := make([]int, n+1) return BinaryIndexedTree{n: n, c: c} } func (bit *BinaryIndexedTree) update(x, v int) { for x <= bit.n { bit.c[x] = max(bit.c[x], v) x += x & -x } } func (bit *BinaryIndexedTree) query(x int) int { mx := 0 for x > 0 { mx = max(mx, bit.c[x]) x -= x & -x } return mx } func maxProfit(prices []int, profits []int) int { n := len(prices) left := make([]int, n) right := make([]int, n) s := make([]int, n) copy(s, prices) sort.Ints(s) m := 0 for i, x := range s { if i == 0 || x != s[i-1] { s[m] = x m++ } } tree1 := NewBinaryIndexedTree(m + 1) tree2 := NewBinaryIndexedTree(m + 1) for i, x := range prices { x = sort.SearchInts(s[:m], x) + 1 left[i] = tree1.query(x - 1) tree1.update(x, profits[i]) } for i := n - 1; i >= 0; i-- { x := m + 1 - (sort.SearchInts(s[:m], prices[i]) + 1) right[i] = tree2.query(x - 1) tree2.update(x, profits[i]) } ans := -1 for i := 0; i < n; i++ { if left[i] > 0 && right[i] > 0 { ans = max(ans, left[i]+profits[i]+right[i]) } } return ans }
class BinaryIndexedTree { private int n; private int[] c; public BinaryIndexedTree(int n) { this.n = n; c = new int[n + 1]; } public void update(int x, int v) { while (x <= n) { c[x] = Math.max(c[x], v); x += x & -x; } } public int query(int x) { int mx = 0; while (x > 0) { mx = Math.max(mx, c[x]); x -= x & -x; } return mx; } } class Solution { public int maxProfit(int[] prices, int[] profits) { int n = prices.length; int[] left = new int[n]; int[] right = new int[n]; int[] s = prices.clone(); Arrays.sort(s); int m = 0; for (int i = 0; i < n; ++i) { if (i == 0 || s[i] != s[i - 1]) { s[m++] = s[i]; } } BinaryIndexedTree tree1 = new BinaryIndexedTree(m + 1); BinaryIndexedTree tree2 = new BinaryIndexedTree(m + 1); for (int i = 0; i < n; ++i) { int x = search(s, prices[i], m); left[i] = tree1.query(x - 1); tree1.update(x, profits[i]); } for (int i = n - 1; i >= 0; --i) { int x = m + 1 - search(s, prices[i], m); right[i] = tree2.query(x - 1); tree2.update(x, profits[i]); } int ans = -1; for (int i = 0; i < n; ++i) { if (left[i] > 0 && right[i] > 0) { ans = Math.max(ans, left[i] + profits[i] + right[i]); } } return ans; } private int search(int[] nums, int x, int r) { int l = 0; while (l < r) { int mid = (l + r) >> 1; if (nums[mid] >= x) { r = mid; } else { l = mid + 1; } } return l + 1; } }
null
null
null
null
null
null
class BinaryIndexedTree: def __init__(self, n: int): self.n = n self.c = [0] * (n + 1) def update(self, x: int, v: int): while x <= self.n: self.c[x] = max(self.c[x], v) x += x & -x def query(self, x: int) -> int: mx = 0 while x: mx = max(mx, self.c[x]) x -= x & -x return mx class Solution: def maxProfit(self, prices: List[int], profits: List[int]) -> int: n = len(prices) left = [0] * n right = [0] * n s = sorted(set(prices)) m = len(s) tree1 = BinaryIndexedTree(m + 1) tree2 = BinaryIndexedTree(m + 1) for i, x in enumerate(prices): x = bisect_left(s, x) + 1 left[i] = tree1.query(x - 1) tree1.update(x, profits[i]) for i in range(n - 1, -1, -1): x = m + 1 - (bisect_left(s, prices[i]) + 1) right[i] = tree2.query(x - 1) tree2.update(x, profits[i]) return max( (l + x + r for l, x, r in zip(left, profits, right) if l and r), default=-1 )
null
struct BinaryIndexedTree { n: usize, c: Vec<i32>, } impl BinaryIndexedTree { fn new(n: usize) -> BinaryIndexedTree { BinaryIndexedTree { n, c: vec![0; n + 1], } } fn update(&mut self, x: usize, v: i32) { let mut x = x; while x <= self.n { self.c[x] = self.c[x].max(v); x += x & x.wrapping_neg(); } } fn query(&self, x: usize) -> i32 { let mut x = x; let mut mx = 0; while x > 0 { mx = mx.max(self.c[x]); x -= x & x.wrapping_neg(); } mx } } impl Solution { pub fn max_profit(prices: Vec<i32>, profits: Vec<i32>) -> i32 { let n = prices.len(); let mut left = vec![0; n]; let mut right = vec![0; n]; let m = prices.iter().cloned().max().unwrap_or(0); let mut tree1 = BinaryIndexedTree::new((m as usize) + 1); let mut tree2 = BinaryIndexedTree::new((m as usize) + 1); for i in 0..n { let x = prices[i] as usize; left[i] = tree1.query(x - 1); tree1.update(x, profits[i]); } for i in (0..n).rev() { let x = (m + 1 - prices[i]) as usize; right[i] = tree2.query(x - 1); tree2.update(x, profits[i]); } let mut ans = -1; for i in 0..n { if left[i] > 0 && right[i] > 0 { ans = ans.max(left[i] + profits[i] + right[i]); } } ans } }
null
null
null
class BinaryIndexedTree { private n: number; private c: number[]; constructor(n: number) { this.n = n; this.c = Array(n + 1).fill(0); } update(x: number, v: number): void { while (x <= this.n) { this.c[x] = Math.max(this.c[x], v); x += x & -x; } } query(x: number): number { let mx = 0; while (x > 0) { mx = Math.max(mx, this.c[x]); x -= x & -x; } return mx; } } function maxProfit(prices: number[], profits: number[]): number { const n: number = prices.length; const left: number[] = Array(n).fill(0); const right: number[] = Array(n).fill(0); const s = [...prices].sort((a, b) => a - b); let m = 0; for (let i = 0; i < n; ++i) { if (i === 0 || s[i] !== s[i - 1]) { s[m++] = s[i]; } } s.length = m; const tree1: BinaryIndexedTree = new BinaryIndexedTree(m + 1); const tree2: BinaryIndexedTree = new BinaryIndexedTree(m + 1); const search = (nums: number[], x: number): number => { let [l, r] = [0, nums.length]; while (l < r) { const mid = (l + r) >> 1; if (nums[mid] >= x) { r = mid; } else { l = mid + 1; } } return l; }; for (let i = 0; i < n; ++i) { const x = search(s, prices[i]) + 1; left[i] = tree1.query(x - 1); tree1.update(x, profits[i]); } for (let i = n - 1; i >= 0; i--) { const x: number = m + 1 - (search(s, prices[i]) + 1); right[i] = tree2.query(x - 1); tree2.update(x, profits[i]); } let ans: number = -1; for (let i = 0; i < n; i++) { if (left[i] > 0 && right[i] > 0) { ans = Math.max(ans, left[i] + profits[i] + right[i]); } } return ans; }
Paint House IV
You are given an even integer n representing the number of houses arranged in a straight line, and a 2D array cost of size n x 3 , where cost[i][j] represents the cost of painting house i with color j + 1 . The houses will look beautiful if they satisfy the following conditions: No two adjacent houses are painted the same color. Houses equidistant from the ends of the row are not painted the same color. For example, if n = 6 , houses at positions (0, 5) , (1, 4) , and (2, 3) are considered equidistant. Return the minimum cost to paint the houses such that they look beautiful .   Example 1: Input: n = 4, cost = [[3,5,7],[6,2,9],[4,8,1],[7,3,5]] Output: 9 Explanation: The optimal painting sequence is [1, 2, 3, 2] with corresponding costs [3, 2, 1, 3] . This satisfies the following conditions: No adjacent houses have the same color. Houses at positions 0 and 3 (equidistant from the ends) are not painted the same color (1 != 2) . Houses at positions 1 and 2 (equidistant from the ends) are not painted the same color (2 != 3) . The minimum cost to paint the houses so that they look beautiful is 3 + 2 + 1 + 3 = 9 . Example 2: Input: n = 6, cost = [[2,4,6],[5,3,8],[7,1,9],[4,6,2],[3,5,7],[8,2,4]] Output: 18 Explanation: The optimal painting sequence is [1, 3, 2, 3, 1, 2] with corresponding costs [2, 8, 1, 2, 3, 2] . This satisfies the following conditions: No adjacent houses have the same color. Houses at positions 0 and 5 (equidistant from the ends) are not painted the same color (1 != 2) . Houses at positions 1 and 4 (equidistant from the ends) are not painted the same color (3 != 1) . Houses at positions 2 and 3 (equidistant from the ends) are not painted the same color (2 != 3) . The minimum cost to paint the houses so that they look beautiful is 2 + 8 + 1 + 2 + 3 + 2 = 18 .   Constraints: 2 <= n <= 10 5 n is even. cost.length == n cost[i].length == 3 0 <= cost[i][j] <= 10 5
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
Find the Maximum Number of Elements in Subset
You are given an array of positive integers nums . You need to select a subset of nums which satisfies the following condition: You can place the selected elements in a 0-indexed array such that it follows the pattern: [x, x 2 , x 4 , ..., x k/2 , x k , x k/2 , ..., x 4 , x 2 , x] ( Note that k can be be any non-negative power of 2 ). For example, [2, 4, 16, 4, 2] and [3, 9, 3] follow the pattern while [2, 4, 8, 4, 2] does not. Return the maximum number of elements in a subset that satisfies these conditions.   Example 1: Input: nums = [5,4,1,2,2] Output: 3 Explanation: We can select the subset {4,2,2}, which can be placed in the array as [2,4,2] which follows the pattern and 2 2 == 4. Hence the answer is 3. Example 2: Input: nums = [1,3,2,4] Output: 1 Explanation: We can select the subset {1}, which can be placed in the array as [1] which follows the pattern. Hence the answer is 1. Note that we could have also selected the subsets {2}, {3}, or {4}, there may be multiple subsets which provide the same answer.   Constraints: 2 <= nums.length <= 10 5 1 <= nums[i] <= 10 9
null
null
class Solution { public: int maximumLength(vector<int>& nums) { unordered_map<long long, int> cnt; for (int x : nums) { ++cnt[x]; } int ans = cnt[1] - (cnt[1] % 2 ^ 1); cnt.erase(1); for (auto [v, _] : cnt) { int t = 0; long long x = v; while (cnt.count(x) && cnt[x] > 1) { x = x * x; t += 2; } t += cnt.count(x) ? 1 : -1; ans = max(ans, t); } return ans; } };
null
null
func maximumLength(nums []int) (ans int) { cnt := map[int]int{} for _, x := range nums { cnt[x]++ } ans = cnt[1] - (cnt[1]%2 ^ 1) delete(cnt, 1) for x := range cnt { t := 0 for cnt[x] > 1 { x = x * x t += 2 } if cnt[x] > 0 { t += 1 } else { t -= 1 } ans = max(ans, t) } return }
class Solution { public int maximumLength(int[] nums) { Map<Long, Integer> cnt = new HashMap<>(); for (int x : nums) { cnt.merge((long) x, 1, Integer::sum); } Integer t = cnt.remove(1L); int ans = t == null ? 0 : t - (t % 2 ^ 1); for (long x : cnt.keySet()) { t = 0; while (cnt.getOrDefault(x, 0) > 1) { x = x * x; t += 2; } t += cnt.getOrDefault(x, -1); ans = Math.max(ans, t); } return ans; } }
null
null
null
null
null
null
class Solution: def maximumLength(self, nums: List[int]) -> int: cnt = Counter(nums) ans = cnt[1] - (cnt[1] % 2 ^ 1) del cnt[1] for x in cnt: t = 0 while cnt[x] > 1: x = x * x t += 2 t += 1 if cnt[x] else -1 ans = max(ans, t) return ans
null
null
null
null
null
function maximumLength(nums: number[]): number { const cnt: Map<number, number> = new Map(); for (const x of nums) { cnt.set(x, (cnt.get(x) ?? 0) + 1); } let ans = cnt.has(1) ? cnt.get(1)! - (cnt.get(1)! % 2 ^ 1) : 0; cnt.delete(1); for (let [x, _] of cnt) { let t = 0; while (cnt.has(x) && cnt.get(x)! > 1) { x = x * x; t += 2; } t += cnt.has(x) ? 1 : -1; ans = Math.max(ans, t); } return ans; }
Longest Substring with At Least K Repeating Characters
Given a string s and an integer k , return the length of the longest substring of s such that the frequency of each character in this substring is greater than or equal to k . if no such substring exists, return 0.   Example 1: Input: s = "aaabb", k = 3 Output: 3 Explanation: The longest substring is "aaa", as 'a' is repeated 3 times. Example 2: Input: s = "ababbc", k = 2 Output: 5 Explanation: The longest substring is "ababb", as 'a' is repeated 2 times and 'b' is repeated 3 times.   Constraints: 1 <= s.length <= 10 4 s consists of only lowercase English letters. 1 <= k <= 10 5
null
null
class Solution { public: int longestSubstring(string s, int k) { function<int(int, int)> dfs = [&](int l, int r) -> int { int cnt[26] = {0}; for (int i = l; i <= r; ++i) { cnt[s[i] - 'a']++; } char split = 0; for (int i = 0; i < 26; ++i) { if (cnt[i] > 0 && cnt[i] < k) { split = 'a' + i; break; } } if (split == 0) { return r - l + 1; } int i = l; int ans = 0; while (i <= r) { while (i <= r && s[i] == split) { ++i; } if (i >= r) { break; } int j = i; while (j <= r && s[j] != split) { ++j; } int t = dfs(i, j - 1); ans = max(ans, t); i = j; } return ans; }; return dfs(0, s.size() - 1); } };
null
null
func longestSubstring(s string, k int) int { var dfs func(l, r int) int dfs = func(l, r int) int { cnt := [26]int{} for i := l; i <= r; i++ { cnt[s[i]-'a']++ } var split byte for i, v := range cnt { if v > 0 && v < k { split = byte(i + 'a') break } } if split == 0 { return r - l + 1 } i := l ans := 0 for i <= r { for i <= r && s[i] == split { i++ } if i > r { break } j := i for j <= r && s[j] != split { j++ } t := dfs(i, j-1) ans = max(ans, t) i = j } return ans } return dfs(0, len(s)-1) }
class Solution { private String s; private int k; public int longestSubstring(String s, int k) { this.s = s; this.k = k; return dfs(0, s.length() - 1); } private int dfs(int l, int r) { int[] cnt = new int[26]; for (int i = l; i <= r; ++i) { ++cnt[s.charAt(i) - 'a']; } char split = 0; for (int i = 0; i < 26; ++i) { if (cnt[i] > 0 && cnt[i] < k) { split = (char) (i + 'a'); break; } } if (split == 0) { return r - l + 1; } int i = l; int ans = 0; while (i <= r) { while (i <= r && s.charAt(i) == split) { ++i; } if (i > r) { break; } int j = i; while (j <= r && s.charAt(j) != split) { ++j; } int t = dfs(i, j - 1); ans = Math.max(ans, t); i = j; } return ans; } }
null
null
null
null
null
null
class Solution: def longestSubstring(self, s: str, k: int) -> int: def dfs(l, r): cnt = Counter(s[l : r + 1]) split = next((c for c, v in cnt.items() if v < k), '') if not split: return r - l + 1 i = l ans = 0 while i <= r: while i <= r and s[i] == split: i += 1 if i >= r: break j = i while j <= r and s[j] != split: j += 1 t = dfs(i, j - 1) ans = max(ans, t) i = j return ans return dfs(0, len(s) - 1)
null
null
null
null
null
null
Next Greater Element I
The next greater element of some element x in an array is the first greater element that is to the right of x in the same array. You are given two distinct 0-indexed integer arrays nums1 and nums2 , where nums1 is a subset of nums2 . For each 0 <= i < nums1.length , find the index j such that nums1[i] == nums2[j] and determine the next greater element of nums2[j] in nums2 . If there is no next greater element, then the answer for this query is -1 . Return an array ans of length nums1.length such that ans[i] is the next greater element as described above.   Example 1: Input: nums1 = [4,1,2], nums2 = [1,3,4,2] Output: [-1,3,-1] Explanation: The next greater element for each value of nums1 is as follows: - 4 is underlined in nums2 = [1,3, 4 ,2]. There is no next greater element, so the answer is -1. - 1 is underlined in nums2 = [ 1 ,3,4,2]. The next greater element is 3. - 2 is underlined in nums2 = [1,3,4, 2 ]. There is no next greater element, so the answer is -1. Example 2: Input: nums1 = [2,4], nums2 = [1,2,3,4] Output: [3,-1] Explanation: The next greater element for each value of nums1 is as follows: - 2 is underlined in nums2 = [1, 2 ,3,4]. The next greater element is 3. - 4 is underlined in nums2 = [1,2,3, 4 ]. There is no next greater element, so the answer is -1.   Constraints: 1 <= nums1.length <= nums2.length <= 1000 0 <= nums1[i], nums2[i] <= 10 4 All integers in nums1 and nums2 are unique . All the integers of nums1 also appear in nums2 .   Follow up: Could you find an O(nums1.length + nums2.length) solution?
null
null
class Solution { public: vector<int> nextGreaterElement(vector<int>& nums1, vector<int>& nums2) { stack<int> stk; unordered_map<int, int> d; ranges::reverse(nums2); for (int x : nums2) { while (!stk.empty() && stk.top() < x) { stk.pop(); } if (!stk.empty()) { d[x] = stk.top(); } stk.push(x); } vector<int> ans; for (int x : nums1) { ans.push_back(d.contains(x) ? d[x] : -1); } return ans; } };
null
null
func nextGreaterElement(nums1 []int, nums2 []int) (ans []int) { stk := []int{} d := map[int]int{} for i := len(nums2) - 1; i >= 0; i-- { x := nums2[i] for len(stk) > 0 && stk[len(stk)-1] < x { stk = stk[:len(stk)-1] } if len(stk) > 0 { d[x] = stk[len(stk)-1] } stk = append(stk, x) } for _, x := range nums1 { if v, ok := d[x]; ok { ans = append(ans, v) } else { ans = append(ans, -1) } } return }
class Solution { public int[] nextGreaterElement(int[] nums1, int[] nums2) { Deque<Integer> stk = new ArrayDeque<>(); int m = nums1.length, n = nums2.length; Map<Integer, Integer> d = new HashMap(n); for (int i = n - 1; i >= 0; --i) { int x = nums2[i]; while (!stk.isEmpty() && stk.peek() < x) { stk.pop(); } if (!stk.isEmpty()) { d.put(x, stk.peek()); } stk.push(x); } int[] ans = new int[m]; for (int i = 0; i < m; ++i) { ans[i] = d.getOrDefault(nums1[i], -1); } return ans; } }
/** * @param {number[]} nums1 * @param {number[]} nums2 * @return {number[]} */ var nextGreaterElement = function (nums1, nums2) { const stk = []; const d = {}; for (const x of nums2.reverse()) { while (stk.length && stk.at(-1) < x) { stk.pop(); } d[x] = stk.length ? stk.at(-1) : -1; stk.push(x); } return nums1.map(x => d[x]); };
null
null
null
null
null
class Solution: def nextGreaterElement(self, nums1: List[int], nums2: List[int]) -> List[int]: stk = [] d = {} for x in nums2[::-1]: while stk and stk[-1] < x: stk.pop() if stk: d[x] = stk[-1] stk.append(x) return [d.get(x, -1) for x in nums1]
null
use std::collections::HashMap; impl Solution { pub fn next_greater_element(nums1: Vec<i32>, nums2: Vec<i32>) -> Vec<i32> { let mut stk = Vec::new(); let mut d = HashMap::new(); for &x in nums2.iter().rev() { while let Some(&top) = stk.last() { if top <= x { stk.pop(); } else { break; } } if let Some(&top) = stk.last() { d.insert(x, top); } stk.push(x); } nums1 .into_iter() .map(|x| *d.get(&x).unwrap_or(&-1)) .collect() } }
null
null
null
function nextGreaterElement(nums1: number[], nums2: number[]): number[] { const stk: number[] = []; const d: Record<number, number> = {}; for (const x of nums2.reverse()) { while (stk.length && stk.at(-1)! < x) { stk.pop(); } d[x] = stk.length ? stk.at(-1)! : -1; stk.push(x); } return nums1.map(x => d[x]); }
Insert Delete GetRandom O(1) - Duplicates allowed
RandomizedCollection is a data structure that contains a collection of numbers, possibly duplicates (i.e., a multiset). It should support inserting and removing specific elements and also reporting a random element. Implement the RandomizedCollection class: RandomizedCollection() Initializes the empty RandomizedCollection object. bool insert(int val) Inserts an item val into the multiset, even if the item is already present. Returns true if the item is not present, false otherwise. bool remove(int val) Removes an item val from the multiset if present. Returns true if the item is present, false otherwise. Note that if val has multiple occurrences in the multiset, we only remove one of them. int getRandom() Returns a random element from the current multiset of elements. The probability of each element being returned is linearly related to the number of the same values the multiset contains. You must implement the functions of the class such that each function works on average O(1) time complexity. Note: The test cases are generated such that getRandom will only be called if there is at least one item in the RandomizedCollection .   Example 1: Input ["RandomizedCollection", "insert", "insert", "insert", "getRandom", "remove", "getRandom"] [[], [1], [1], [2], [], [1], []] Output [null, true, false, true, 2, true, 1] Explanation RandomizedCollection randomizedCollection = new RandomizedCollection(); randomizedCollection.insert(1); // return true since the collection does not contain 1. // Inserts 1 into the collection. randomizedCollection.insert(1); // return false since the collection contains 1. // Inserts another 1 into the collection. Collection now contains [1,1]. randomizedCollection.insert(2); // return true since the collection does not contain 2. // Inserts 2 into the collection. Collection now contains [1,1,2]. randomizedCollection.getRandom(); // getRandom should: // - return 1 with probability 2/3, or // - return 2 with probability 1/3. randomizedCollection.remove(1); // return true since the collection contains 1. // Removes 1 from the collection. Collection now contains [1,2]. randomizedCollection.getRandom(); // getRandom should return 1 or 2, both equally likely.   Constraints: -2 31 <= val <= 2 31 - 1 At most 2 * 10 5 calls in total will be made to insert , remove , and getRandom . There will be at least one element in the data structure when getRandom is called.
null
null
null
null
null
null
class RandomizedCollection { private Map<Integer, Set<Integer>> m; private List<Integer> l; private Random rnd; /** Initialize your data structure here. */ public RandomizedCollection() { m = new HashMap<>(); l = new ArrayList<>(); rnd = new Random(); } /** * Inserts a value to the collection. Returns true if the collection did not already contain * the specified element. */ public boolean insert(int val) { m.computeIfAbsent(val, k -> new HashSet<>()).add(l.size()); l.add(val); return m.get(val).size() == 1; } /** * Removes a value from the collection. Returns true if the collection contained the specified * element. */ public boolean remove(int val) { if (!m.containsKey(val)) { return false; } Set<Integer> idxSet = m.get(val); int idx = idxSet.iterator().next(); int lastIdx = l.size() - 1; l.set(idx, l.get(lastIdx)); idxSet.remove(idx); Set<Integer> lastIdxSet = m.get(l.get(lastIdx)); lastIdxSet.remove(lastIdx); if (idx < lastIdx) { lastIdxSet.add(idx); } if (idxSet.isEmpty()) { m.remove(val); } l.remove(lastIdx); return true; } /** Get a random element from the collection. */ public int getRandom() { int size = l.size(); return size == 0 ? -1 : l.get(rnd.nextInt(size)); } } /** * Your RandomizedCollection object will be instantiated and called as such: * RandomizedCollection obj = new RandomizedCollection(); * boolean param_1 = obj.insert(val); * boolean param_2 = obj.remove(val); * int param_3 = obj.getRandom(); */
null
null
null
null
null
null
class RandomizedCollection: def __init__(self): """ Initialize your data structure here. """ self.m = {} self.l = [] def insert(self, val: int) -> bool: """ Inserts a value to the collection. Returns true if the collection did not already contain the specified element. """ idx_set = self.m.get(val, set()) idx_set.add(len(self.l)) self.m[val] = idx_set self.l.append(val) return len(idx_set) == 1 def remove(self, val: int) -> bool: """ Removes a value from the collection. Returns true if the collection contained the specified element. """ if val not in self.m: return False idx_set = self.m[val] idx = list(idx_set)[0] last_idx = len(self.l) - 1 self.l[idx] = self.l[last_idx] idx_set.remove(idx) last_idx_set = self.m[self.l[last_idx]] if last_idx in last_idx_set: last_idx_set.remove(last_idx) if idx < last_idx: last_idx_set.add(idx) if not idx_set: self.m.pop(val) self.l.pop() return True def getRandom(self) -> int: """ Get a random element from the collection. """ return -1 if len(self.l) == 0 else random.choice(self.l) # Your RandomizedCollection object will be instantiated and called as such: # obj = RandomizedCollection() # param_1 = obj.insert(val) # param_2 = obj.remove(val) # param_3 = obj.getRandom()
null
null
null
null
null
null
LRU Cache
Design a data structure that follows the constraints of a Least Recently Used (LRU) cache . Implement the LRUCache class: LRUCache(int capacity) Initialize the LRU cache with positive size capacity . int get(int key) Return the value of the key if the key exists, otherwise return -1 . void put(int key, int value) Update the value of the key if the key exists. Otherwise, add the key-value pair to the cache. If the number of keys exceeds the capacity from this operation, evict the least recently used key. The functions get and put must each run in O(1) average time complexity.   Example 1: Input ["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"] [[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]] Output [null, null, null, 1, null, -1, null, -1, 3, 4] Explanation LRUCache lRUCache = new LRUCache(2); lRUCache.put(1, 1); // cache is {1=1} lRUCache.put(2, 2); // cache is {1=1, 2=2} lRUCache.get(1); // return 1 lRUCache.put(3, 3); // LRU key was 2, evicts key 2, cache is {1=1, 3=3} lRUCache.get(2); // returns -1 (not found) lRUCache.put(4, 4); // LRU key was 1, evicts key 1, cache is {4=4, 3=3} lRUCache.get(1); // return -1 (not found) lRUCache.get(3); // return 3 lRUCache.get(4); // return 4   Constraints: 1 <= capacity <= 3000 0 <= key <= 10 4 0 <= value <= 10 5 At most 2 * 10 5 calls will be made to get and put .
null
public class LRUCache { private int size; private int capacity; private Dictionary<int, Node> cache = new Dictionary<int, Node>(); private Node head = new Node(); private Node tail = new Node(); public LRUCache(int capacity) { this.capacity = capacity; head.Next = tail; tail.Prev = head; } public int Get(int key) { if (!cache.ContainsKey(key)) { return -1; } Node node = cache[key]; RemoveNode(node); AddToHead(node); return node.Val; } public void Put(int key, int value) { if (cache.ContainsKey(key)) { Node node = cache[key]; RemoveNode(node); node.Val = value; AddToHead(node); } else { Node node = new Node(key, value); cache[key] = node; AddToHead(node); if (++size > capacity) { node = tail.Prev; cache.Remove(node.Key); RemoveNode(node); --size; } } } private void RemoveNode(Node node) { node.Prev.Next = node.Next; node.Next.Prev = node.Prev; } private void AddToHead(Node node) { node.Next = head.Next; node.Prev = head; head.Next = node; node.Next.Prev = node; } // Node class to represent each entry in the cache. private class Node { public int Key; public int Val; public Node Prev; public Node Next; public Node() {} public Node(int key, int val) { Key = key; Val = val; } } } /** * Your LRUCache object will be instantiated and called as such: * LRUCache obj = new LRUCache(capacity); * int param_1 = obj.Get(key); * obj.Put(key,value); */
class LRUCache { private: struct Node { int key, val; Node* prev; Node* next; Node(int key, int val) : key(key) , val(val) , prev(nullptr) , next(nullptr) {} }; int size; int capacity; Node* head; Node* tail; unordered_map<int, Node*> cache; void removeNode(Node* node) { node->prev->next = node->next; node->next->prev = node->prev; } void addToHead(Node* node) { node->next = head->next; node->prev = head; head->next->prev = node; head->next = node; } public: LRUCache(int capacity) : size(0) , capacity(capacity) { head = new Node(0, 0); tail = new Node(0, 0); head->next = tail; tail->prev = head; } int get(int key) { if (!cache.contains(key)) { return -1; } Node* node = cache[key]; removeNode(node); addToHead(node); return node->val; } void put(int key, int value) { if (cache.contains(key)) { Node* node = cache[key]; removeNode(node); node->val = value; addToHead(node); } else { Node* node = new Node(key, value); cache[key] = node; addToHead(node); if (++size > capacity) { node = tail->prev; cache.erase(node->key); removeNode(node); --size; } } } }; /** * Your LRUCache object will be instantiated and called as such: * LRUCache* obj = new LRUCache(capacity); * int param_1 = obj->get(key); * obj->put(key,value); */
null
null
type Node struct { key, val int prev, next *Node } type LRUCache struct { size, capacity int head, tail *Node cache map[int]*Node } func Constructor(capacity int) LRUCache { head := &Node{} tail := &Node{} head.next = tail tail.prev = head return LRUCache{ capacity: capacity, head: head, tail: tail, cache: make(map[int]*Node), } } func (this *LRUCache) Get(key int) int { if node, exists := this.cache[key]; exists { this.removeNode(node) this.addToHead(node) return node.val } return -1 } func (this *LRUCache) Put(key int, value int) { if node, exists := this.cache[key]; exists { this.removeNode(node) node.val = value this.addToHead(node) } else { node := &Node{key: key, val: value} this.cache[key] = node this.addToHead(node) if this.size++; this.size > this.capacity { node = this.tail.prev delete(this.cache, node.key) this.removeNode(node) this.size-- } } } func (this *LRUCache) removeNode(node *Node) { node.prev.next = node.next node.next.prev = node.prev } func (this *LRUCache) addToHead(node *Node) { node.next = this.head.next node.prev = this.head this.head.next = node node.next.prev = node } /** * Your LRUCache object will be instantiated and called as such: * obj := Constructor(capacity); * param_1 := obj.Get(key); * obj.Put(key,value); */ /** * Your LRUCache object will be instantiated and called as such: * obj := Constructor(capacity); * param_1 := obj.Get(key); * obj.Put(key,value); */
class Node { int key, val; Node prev, next; Node() { } Node(int key, int val) { this.key = key; this.val = val; } } class LRUCache { private int size; private int capacity; private Node head = new Node(); private Node tail = new Node(); private Map<Integer, Node> cache = new HashMap<>(); public LRUCache(int capacity) { this.capacity = capacity; head.next = tail; tail.prev = head; } public int get(int key) { if (!cache.containsKey(key)) { return -1; } Node node = cache.get(key); removeNode(node); addToHead(node); return node.val; } public void put(int key, int value) { if (cache.containsKey(key)) { Node node = cache.get(key); removeNode(node); node.val = value; addToHead(node); } else { Node node = new Node(key, value); cache.put(key, node); addToHead(node); if (++size > capacity) { node = tail.prev; cache.remove(node.key); removeNode(node); --size; } } } private void removeNode(Node node) { node.prev.next = node.next; node.next.prev = node.prev; } private void addToHead(Node node) { node.next = head.next; node.prev = head; head.next = node; node.next.prev = node; } } /** * Your LRUCache object will be instantiated and called as such: * LRUCache obj = new LRUCache(capacity); * int param_1 = obj.get(key); * obj.put(key,value); */
/** * @param {number} capacity */ var LRUCache = function (capacity) { this.size = 0; this.capacity = capacity; this.cache = new Map(); this.head = new Node(0, 0); this.tail = new Node(0, 0); this.head.next = this.tail; this.tail.prev = this.head; }; /** * @param {number} key * @return {number} */ LRUCache.prototype.get = function (key) { if (!this.cache.has(key)) { return -1; } const node = this.cache.get(key); this.removeNode(node); this.addToHead(node); return node.val; }; /** * @param {number} key * @param {number} value * @return {void} */ LRUCache.prototype.put = function (key, value) { if (this.cache.has(key)) { const node = this.cache.get(key); this.removeNode(node); node.val = value; this.addToHead(node); } else { const node = new Node(key, value); this.cache.set(key, node); this.addToHead(node); if (++this.size > this.capacity) { const nodeToRemove = this.tail.prev; this.cache.delete(nodeToRemove.key); this.removeNode(nodeToRemove); --this.size; } } }; LRUCache.prototype.removeNode = function (node) { if (!node) return; node.prev.next = node.next; node.next.prev = node.prev; }; LRUCache.prototype.addToHead = function (node) { node.next = this.head.next; node.prev = this.head; this.head.next.prev = node; this.head.next = node; }; /** * @constructor * @param {number} key * @param {number} val */ function Node(key, val) { this.key = key; this.val = val; this.prev = null; this.next = null; } /** * Your LRUCache object will be instantiated and called as such: * var obj = new LRUCache(capacity) * var param_1 = obj.get(key) * obj.put(key,value) */
null
null
null
null
null
class Node: def __init__(self, key: int = 0, val: int = 0): self.key = key self.val = val self.prev = None self.next = None class LRUCache: def __init__(self, capacity: int): self.size = 0 self.capacity = capacity self.cache = {} self.head = Node() self.tail = Node() self.head.next = self.tail self.tail.prev = self.head def get(self, key: int) -> int: if key not in self.cache: return -1 node = self.cache[key] self.remove_node(node) self.add_to_head(node) return node.val def put(self, key: int, value: int) -> None: if key in self.cache: node = self.cache[key] self.remove_node(node) node.val = value self.add_to_head(node) else: node = Node(key, value) self.cache[key] = node self.add_to_head(node) self.size += 1 if self.size > self.capacity: node = self.tail.prev self.cache.pop(node.key) self.remove_node(node) self.size -= 1 def remove_node(self, node): node.prev.next = node.next node.next.prev = node.prev def add_to_head(self, node): node.next = self.head.next node.prev = self.head self.head.next = node node.next.prev = node # Your LRUCache object will be instantiated and called as such: # obj = LRUCache(capacity) # param_1 = obj.get(key) # obj.put(key,value)
null
use std::cell::RefCell; use std::collections::HashMap; use std::rc::Rc; struct Node { key: i32, value: i32, prev: Option<Rc<RefCell<Node>>>, next: Option<Rc<RefCell<Node>>>, } impl Node { #[inline] fn new(key: i32, value: i32) -> Self { Self { key, value, prev: None, next: None, } } } struct LRUCache { capacity: usize, cache: HashMap<i32, Rc<RefCell<Node>>>, head: Option<Rc<RefCell<Node>>>, tail: Option<Rc<RefCell<Node>>>, } /** * `&self` means the method takes an immutable reference. * If you need a mutable reference, change it to `&mut self` instead. */ impl LRUCache { fn new(capacity: i32) -> Self { Self { capacity: capacity as usize, cache: HashMap::new(), head: None, tail: None, } } fn get(&mut self, key: i32) -> i32 { match self.cache.get(&key) { Some(node) => { let node = Rc::clone(node); self.remove(&node); self.push_front(&node); let value = node.borrow().value; value } None => -1, } } fn put(&mut self, key: i32, value: i32) { match self.cache.get(&key) { Some(node) => { let node = Rc::clone(node); node.borrow_mut().value = value; self.remove(&node); self.push_front(&node); } None => { let node = Rc::new(RefCell::new(Node::new(key, value))); self.cache.insert(key, Rc::clone(&node)); self.push_front(&node); if self.cache.len() > self.capacity { let back_key = self.pop_back().unwrap().borrow().key; self.cache.remove(&back_key); } } }; } fn push_front(&mut self, node: &Rc<RefCell<Node>>) { match self.head.take() { Some(head) => { head.borrow_mut().prev = Some(Rc::clone(node)); node.borrow_mut().prev = None; node.borrow_mut().next = Some(head); self.head = Some(Rc::clone(node)); } None => { self.head = Some(Rc::clone(node)); self.tail = Some(Rc::clone(node)); } }; } fn remove(&mut self, node: &Rc<RefCell<Node>>) { match (node.borrow().prev.as_ref(), node.borrow().next.as_ref()) { (None, None) => { self.head = None; self.tail = None; } (None, Some(next)) => { self.head = Some(Rc::clone(next)); next.borrow_mut().prev = None; } (Some(prev), None) => { self.tail = Some(Rc::clone(prev)); prev.borrow_mut().next = None; } (Some(prev), Some(next)) => { next.borrow_mut().prev = Some(Rc::clone(prev)); prev.borrow_mut().next = Some(Rc::clone(next)); } }; } fn pop_back(&mut self) -> Option<Rc<RefCell<Node>>> { match self.tail.take() { Some(tail) => { self.remove(&tail); Some(tail) } None => None, } } }
null
null
null
class Node { key: number; val: number; prev: Node | null; next: Node | null; constructor(key: number, val: number) { this.key = key; this.val = val; this.prev = null; this.next = null; } } class LRUCache { private size: number; private capacity: number; private head: Node; private tail: Node; private cache: Map<number, Node>; constructor(capacity: number) { this.size = 0; this.capacity = capacity; this.head = new Node(0, 0); this.tail = new Node(0, 0); this.head.next = this.tail; this.tail.prev = this.head; this.cache = new Map(); } get(key: number): number { if (!this.cache.has(key)) { return -1; } const node = this.cache.get(key)!; this.removeNode(node); this.addToHead(node); return node.val; } put(key: number, value: number): void { if (this.cache.has(key)) { const node = this.cache.get(key)!; this.removeNode(node); node.val = value; this.addToHead(node); } else { const node = new Node(key, value); this.cache.set(key, node); this.addToHead(node); if (++this.size > this.capacity) { const nodeToRemove = this.tail.prev!; this.cache.delete(nodeToRemove.key); this.removeNode(nodeToRemove); --this.size; } } } private removeNode(node: Node): void { if (!node) return; node.prev!.next = node.next; node.next!.prev = node.prev; } private addToHead(node: Node): void { node.next = this.head.next; node.prev = this.head; this.head.next!.prev = node; this.head.next = node; } } /** * Your LRUCache object will be instantiated and called as such: * var obj = new LRUCache(capacity) * var param_1 = obj.get(key) * obj.put(key,value) */
Alphabet Board Path
On an alphabet board, we start at position (0, 0) , corresponding to character  board[0][0] . Here, board = ["abcde", "fghij", "klmno", "pqrst", "uvwxy", "z"] , as shown in the diagram below. We may make the following moves: 'U' moves our position up one row, if the position exists on the board; 'D' moves our position down one row, if the position exists on the board; 'L' moves our position left one column, if the position exists on the board; 'R' moves our position right one column, if the position exists on the board; '!'  adds the character board[r][c] at our current position (r, c)  to the answer. (Here, the only positions that exist on the board are positions with letters on them.) Return a sequence of moves that makes our answer equal to target  in the minimum number of moves.  You may return any path that does so.   Example 1: Input: target = "leet" Output: "DDR!UURRR!!DDD!" Example 2: Input: target = "code" Output: "RR!DDRR!UUL!R!"   Constraints: 1 <= target.length <= 100 target consists only of English lowercase letters.
null
null
class Solution { public: string alphabetBoardPath(string target) { string ans; int i = 0, j = 0; for (char& c : target) { int v = c - 'a'; int x = v / 5, y = v % 5; while (j > y) { --j; ans += 'L'; } while (i > x) { --i; ans += 'U'; } while (j < y) { ++j; ans += 'R'; } while (i < x) { ++i; ans += 'D'; } ans += '!'; } return ans; } };
null
null
func alphabetBoardPath(target string) string { ans := []byte{} var i, j int for _, c := range target { v := int(c - 'a') x, y := v/5, v%5 for j > y { j-- ans = append(ans, 'L') } for i > x { i-- ans = append(ans, 'U') } for j < y { j++ ans = append(ans, 'R') } for i < x { i++ ans = append(ans, 'D') } ans = append(ans, '!') } return string(ans) }
class Solution { public String alphabetBoardPath(String target) { StringBuilder ans = new StringBuilder(); int i = 0, j = 0; for (int k = 0; k < target.length(); ++k) { int v = target.charAt(k) - 'a'; int x = v / 5, y = v % 5; while (j > y) { --j; ans.append('L'); } while (i > x) { --i; ans.append('U'); } while (j < y) { ++j; ans.append('R'); } while (i < x) { ++i; ans.append('D'); } ans.append("!"); } return ans.toString(); } }
null
null
null
null
null
null
class Solution: def alphabetBoardPath(self, target: str) -> str: i = j = 0 ans = [] for c in target: v = ord(c) - ord("a") x, y = v // 5, v % 5 while j > y: j -= 1 ans.append("L") while i > x: i -= 1 ans.append("U") while j < y: j += 1 ans.append("R") while i < x: i += 1 ans.append("D") ans.append("!") return "".join(ans)
null
null
null
null
null
null
Count Subarrays With Fixed Bounds
You are given an integer array nums and two integers minK and maxK . A fixed-bound subarray of nums is a subarray that satisfies the following conditions: The minimum value in the subarray is equal to minK . The maximum value in the subarray is equal to maxK . Return the number of fixed-bound subarrays . A subarray is a contiguous part of an array.   Example 1: Input: nums = [1,3,5,2,7,5], minK = 1, maxK = 5 Output: 2 Explanation: The fixed-bound subarrays are [1,3,5] and [1,3,5,2]. Example 2: Input: nums = [1,1,1,1], minK = 1, maxK = 1 Output: 10 Explanation: Every subarray of nums is a fixed-bound subarray. There are 10 possible subarrays.   Constraints: 2 <= nums.length <= 10 5 1 <= nums[i], minK, maxK <= 10 6
long long countSubarrays(int* nums, int numsSize, int minK, int maxK) { long long ans = 0; int j1 = -1, j2 = -1, k = -1; for (int i = 0; i < numsSize; ++i) { if (nums[i] < minK || nums[i] > maxK) k = i; if (nums[i] == minK) j1 = i; if (nums[i] == maxK) j2 = i; int m = j1 < j2 ? j1 : j2; if (m > k) ans += (long long) (m - k); } return ans; }
null
class Solution { public: long long countSubarrays(vector<int>& nums, int minK, int maxK) { long long ans = 0; int j1 = -1, j2 = -1, k = -1; for (int i = 0; i < static_cast<int>(nums.size()); ++i) { if (nums[i] < minK || nums[i] > maxK) { k = i; } if (nums[i] == minK) { j1 = i; } if (nums[i] == maxK) { j2 = i; } ans += max(0, min(j1, j2) - k); } return ans; } };
null
null
func countSubarrays(nums []int, minK int, maxK int) int64 { ans := 0 j1, j2, k := -1, -1, -1 for i, v := range nums { if v < minK || v > maxK { k = i } if v == minK { j1 = i } if v == maxK { j2 = i } ans += max(0, min(j1, j2)-k) } return int64(ans) }
class Solution { public long countSubarrays(int[] nums, int minK, int maxK) { long ans = 0; int j1 = -1, j2 = -1, k = -1; for (int i = 0; i < nums.length; ++i) { if (nums[i] < minK || nums[i] > maxK) { k = i; } if (nums[i] == minK) { j1 = i; } if (nums[i] == maxK) { j2 = i; } ans += Math.max(0, Math.min(j1, j2) - k); } return ans; } }
null
null
null
null
null
null
class Solution: def countSubarrays(self, nums: List[int], minK: int, maxK: int) -> int: j1 = j2 = k = -1 ans = 0 for i, v in enumerate(nums): if v < minK or v > maxK: k = i if v == minK: j1 = i if v == maxK: j2 = i ans += max(0, min(j1, j2) - k) return ans
null
impl Solution { pub fn count_subarrays(nums: Vec<i32>, min_k: i32, max_k: i32) -> i64 { let mut ans: i64 = 0; let mut j1: i64 = -1; let mut j2: i64 = -1; let mut k: i64 = -1; for (i, &v) in nums.iter().enumerate() { let i = i as i64; if v < min_k || v > max_k { k = i; } if v == min_k { j1 = i; } if v == max_k { j2 = i; } let m = j1.min(j2); if m > k { ans += m - k; } } ans } }
null
null
null
function countSubarrays(nums: number[], minK: number, maxK: number): number { let ans = 0; let [j1, j2, k] = [-1, -1, -1]; for (let i = 0; i < nums.length; ++i) { if (nums[i] < minK || nums[i] > maxK) k = i; if (nums[i] === minK) j1 = i; if (nums[i] === maxK) j2 = i; ans += Math.max(0, Math.min(j1, j2) - k); } return ans; }
Customer Purchasing Behavior Analysis 🔒
Table: Transactions +------------------+---------+ | Column Name | Type | +------------------+---------+ | transaction_id | int | | customer_id | int | | product_id | int | | transaction_date | date | | amount | decimal | +------------------+---------+ transaction_id is the unique identifier for this table. Each row of this table contains information about a transaction, including the customer ID, product ID, date, and amount spent. Table: Products +-------------+---------+ | Column Name | Type | +-------------+---------+ | product_id | int | | category | varchar | | price | decimal | +-------------+---------+ product_id is the unique identifier for this table. Each row of this table contains information about a product, including its category and price. Write a solution to analyze customer purchasing behavior. For each customer , calculate: The total amount spent. The number of transactions. The number of unique product categories purchased. The average amount spent.  The most frequently purchased product category (if there is a tie, choose the one with the most recent transaction). A loyalty score  defined as: (Number of transactions * 10) + (Total amount spent / 100). Round total_amount , avg_transaction_amount , and loyalty_score to 2 decimal places. Return the result table ordered by loyalty_score in descending order , then by customer_id in ascending order . The query result format is in the following example.   Example: Input: Transactions table: +----------------+-------------+------------+------------------+--------+ | transaction_id | customer_id | product_id | transaction_date | amount | +----------------+-------------+------------+------------------+--------+ | 1 | 101 | 1 | 2023-01-01 | 100.00 | | 2 | 101 | 2 | 2023-01-15 | 150.00 | | 3 | 102 | 1 | 2023-01-01 | 100.00 | | 4 | 102 | 3 | 2023-01-22 | 200.00 | | 5 | 101 | 3 | 2023-02-10 | 200.00 | +----------------+-------------+------------+------------------+--------+ Products table: +------------+----------+--------+ | product_id | category | price | +------------+----------+--------+ | 1 | A | 100.00 | | 2 | B | 150.00 | | 3 | C | 200.00 | +------------+----------+--------+ Output: +-------------+--------------+-------------------+-------------------+------------------------+--------------+---------------+ | customer_id | total_amount | transaction_count | unique_categories | avg_transaction_amount | top_category | loyalty_score | +-------------+--------------+-------------------+-------------------+------------------------+--------------+---------------+ | 101 | 450.00 | 3 | 3 | 150.00 | C | 34.50 | | 102 | 300.00 | 2 | 2 | 150.00 | C | 23.00 | +-------------+--------------+-------------------+-------------------+------------------------+--------------+---------------+ Explanation: For customer 101: Total amount spent: 100.00 + 150.00 + 200.00 = 450.00 Number of transactions: 3 Unique categories: A, B, C (3 categories) Average transaction amount: 450.00 / 3 = 150.00 Top category: C (Customer 101 made 1 purchase each in categories A, B, and C. Since the count is the same for all categories, we choose the most recent transaction, which is category C on 2023-02-10) Loyalty score: (3 * 10) + (450.00 / 100) = 34.50 For customer 102: Total amount spent: 100.00 + 200.00 = 300.00 Number of transactions: 2 Unique categories: A, C (2 categories) Average transaction amount: 300.00 / 2 = 150.00 Top category: C (Customer 102 made 1 purchase each in categories A and C. Since the count is the same for both categories, we choose the most recent transaction, which is category C on 2023-01-22) Loyalty score: (2 * 10) + (300.00 / 100) = 23.00 Note: The output is ordered by loyalty_score in descending order, then by customer_id in ascending order.
null
null
null
null
null
null
null
null
null
# Write your MySQL query statement below WITH T AS ( SELECT * FROM Transactions JOIN Products USING (product_id) ), P AS ( SELECT customer_id, category, COUNT(1) cnt, MAX(transaction_date) max_date FROM T GROUP BY 1, 2 ), R AS ( SELECT customer_id, category, RANK() OVER ( PARTITION BY customer_id ORDER BY cnt DESC, max_date DESC ) rk FROM P ) SELECT t.customer_id, ROUND(SUM(amount), 2) total_amount, COUNT(1) transaction_count, COUNT(DISTINCT t.category) unique_categories, ROUND(AVG(amount), 2) avg_transaction_amount, r.category top_category, ROUND(COUNT(1) * 10 + SUM(amount) / 100, 2) loyalty_score FROM T t JOIN R r ON t.customer_id = r.customer_id AND r.rk = 1 GROUP BY 1 ORDER BY 7 DESC, 1;
null
null
null
null
null
null
null
null
null
null
Maximum Number of Ways to Partition an Array
You are given a 0-indexed integer array nums of length n . The number of ways to partition nums is the number of pivot indices that satisfy both conditions: 1 <= pivot < n nums[0] + nums[1] + ... + nums[pivot - 1] == nums[pivot] + nums[pivot + 1] + ... + nums[n - 1] You are also given an integer k . You can choose to change the value of one element of nums to k , or to leave the array unchanged . Return the maximum possible number of ways to partition nums to satisfy both conditions after changing at most one element .   Example 1: Input: nums = [2,-1,2], k = 3 Output: 1 Explanation: One optimal approach is to change nums[0] to k. The array becomes [ 3 ,-1,2]. There is one way to partition the array: - For pivot = 2, we have the partition [3,-1 | 2]: 3 + -1 == 2. Example 2: Input: nums = [0,0,0], k = 1 Output: 2 Explanation: The optimal approach is to leave the array unchanged. There are two ways to partition the array: - For pivot = 1, we have the partition [0 | 0,0]: 0 == 0 + 0. - For pivot = 2, we have the partition [0,0 | 0]: 0 + 0 == 0. Example 3: Input: nums = [22,4,-25,-20,-15,15,-16,7,19,-10,0,-13,-14], k = -33 Output: 4 Explanation: One optimal approach is to change nums[2] to k. The array becomes [22,4, -33 ,-20,-15,15,-16,7,19,-10,0,-13,-14]. There are four ways to partition the array.   Constraints: n == nums.length 2 <= n <= 10 5 -10 5 <= k, nums[i] <= 10 5
null
null
class Solution { public: int waysToPartition(vector<int>& nums, int k) { int n = nums.size(); long long s[n]; s[0] = nums[0]; unordered_map<long long, int> right; for (int i = 0; i < n - 1; ++i) { right[s[i]]++; s[i + 1] = s[i] + nums[i + 1]; } int ans = 0; if (s[n - 1] % 2 == 0) { ans = right[s[n - 1] / 2]; } unordered_map<long long, int> left; for (int i = 0; i < n; ++i) { int d = k - nums[i]; if ((s[n - 1] + d) % 2 == 0) { int t = left[(s[n - 1] + d) / 2] + right[(s[n - 1] - d) / 2]; ans = max(ans, t); } left[s[i]]++; right[s[i]]--; } return ans; } };
null
null
func waysToPartition(nums []int, k int) (ans int) { n := len(nums) s := make([]int, n) s[0] = nums[0] right := map[int]int{} for i := range nums[:n-1] { right[s[i]]++ s[i+1] = s[i] + nums[i+1] } if s[n-1]%2 == 0 { ans = right[s[n-1]/2] } left := map[int]int{} for i, x := range nums { d := k - x if (s[n-1]+d)%2 == 0 { t := left[(s[n-1]+d)/2] + right[(s[n-1]-d)/2] if ans < t { ans = t } } left[s[i]]++ right[s[i]]-- } return }
class Solution { public int waysToPartition(int[] nums, int k) { int n = nums.length; int[] s = new int[n]; s[0] = nums[0]; Map<Integer, Integer> right = new HashMap<>(); for (int i = 0; i < n - 1; ++i) { right.merge(s[i], 1, Integer::sum); s[i + 1] = s[i] + nums[i + 1]; } int ans = 0; if (s[n - 1] % 2 == 0) { ans = right.getOrDefault(s[n - 1] / 2, 0); } Map<Integer, Integer> left = new HashMap<>(); for (int i = 0; i < n; ++i) { int d = k - nums[i]; if ((s[n - 1] + d) % 2 == 0) { int t = left.getOrDefault((s[n - 1] + d) / 2, 0) + right.getOrDefault((s[n - 1] - d) / 2, 0); ans = Math.max(ans, t); } left.merge(s[i], 1, Integer::sum); right.merge(s[i], -1, Integer::sum); } return ans; } }
null
null
null
null
null
null
class Solution: def waysToPartition(self, nums: List[int], k: int) -> int: n = len(nums) s = [nums[0]] * n right = defaultdict(int) for i in range(1, n): s[i] = s[i - 1] + nums[i] right[s[i - 1]] += 1 ans = 0 if s[-1] % 2 == 0: ans = right[s[-1] // 2] left = defaultdict(int) for v, x in zip(s, nums): d = k - x if (s[-1] + d) % 2 == 0: t = left[(s[-1] + d) // 2] + right[(s[-1] - d) // 2] if ans < t: ans = t left[v] += 1 right[v] -= 1 return ans
null
null
null
null
null
null
Integer to Roman
Seven different symbols represent Roman numerals with the following values: Symbol Value I 1 V 5 X 10 L 50 C 100 D 500 M 1000 Roman numerals are formed by appending the conversions of decimal place values from highest to lowest. Converting a decimal place value into a Roman numeral has the following rules: If the value does not start with 4 or 9, select the symbol of the maximal value that can be subtracted from the input, append that symbol to the result, subtract its value, and convert the remainder to a Roman numeral. If the value starts with 4 or 9 use the  subtractive form  representing one symbol subtracted from the following symbol, for example, 4 is 1 ( I ) less than 5 ( V ): IV  and 9 is 1 ( I ) less than 10 ( X ): IX . Only the following subtractive forms are used: 4 ( IV ), 9 ( IX ), 40 ( XL ), 90 ( XC ), 400 ( CD ) and 900 ( CM ). Only powers of 10 ( I , X , C , M ) can be appended consecutively at most 3 times to represent multiples of 10. You cannot append 5 ( V ), 50 ( L ), or 500 ( D ) multiple times. If you need to append a symbol 4 times use the subtractive form . Given an integer, convert it to a Roman numeral.   Example 1: Input: num = 3749 Output: "MMMDCCXLIX" Explanation: 3000 = MMM as 1000 (M) + 1000 (M) + 1000 (M) 700 = DCC as 500 (D) + 100 (C) + 100 (C) 40 = XL as 10 (X) less of 50 (L) 9 = IX as 1 (I) less of 10 (X) Note: 49 is not 1 (I) less of 50 (L) because the conversion is based on decimal places Example 2: Input: num = 58 Output: "LVIII" Explanation: 50 = L 8 = VIII Example 3: Input: num = 1994 Output: "MCMXCIV" Explanation: 1000 = M 900 = CM 90 = XC 4 = IV   Constraints: 1 <= num <= 3999
static const char* cs[] = { "M", "CM", "D", "CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I"}; static const int vs[] = { 1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1}; char* intToRoman(int num) { static char ans[20]; ans[0] = '\0'; for (int i = 0; i < 13; ++i) { while (num >= vs[i]) { num -= vs[i]; strcat(ans, cs[i]); } } return ans; }
public class Solution { public string IntToRoman(int num) { List<string> cs = new List<string>{"M", "CM", "D", "CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I"}; List<int> vs = new List<int>{1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1}; StringBuilder ans = new StringBuilder(); for (int i = 0; i < cs.Count; i++) { while (num >= vs[i]) { ans.Append(cs[i]); num -= vs[i]; } } return ans.ToString(); } }
class Solution { public: string intToRoman(int num) { vector<string> cs = {"M", "CM", "D", "CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I"}; vector<int> vs = {1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1}; string ans; for (int i = 0; i < cs.size(); ++i) { while (num >= vs[i]) { num -= vs[i]; ans += cs[i]; } } return ans; } };
null
null
func intToRoman(num int) string { cs := []string{"M", "CM", "D", "CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I"} vs := []int{1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1} ans := &strings.Builder{} for i, v := range vs { for num >= v { num -= v ans.WriteString(cs[i]) } } return ans.String() }
class Solution { public String intToRoman(int num) { List<String> cs = List.of("M", "CM", "D", "CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I"); List<Integer> vs = List.of(1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1); StringBuilder ans = new StringBuilder(); for (int i = 0, n = cs.size(); i < n; ++i) { while (num >= vs.get(i)) { num -= vs.get(i); ans.append(cs.get(i)); } } return ans.toString(); } }
null
null
null
null
class Solution { /** * @param Integer $num * @return String */ function intToRoman($num) { $cs = ['M', 'CM', 'D', 'CD', 'C', 'XC', 'L', 'XL', 'X', 'IX', 'V', 'IV', 'I']; $vs = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]; $ans = ''; foreach ($vs as $i => $v) { while ($num >= $v) { $num -= $v; $ans .= $cs[$i]; } } return $ans; } }
null
class Solution: def intToRoman(self, num: int) -> str: cs = ('M', 'CM', 'D', 'CD', 'C', 'XC', 'L', 'XL', 'X', 'IX', 'V', 'IV', 'I') vs = (1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1) ans = [] for c, v in zip(cs, vs): while num >= v: num -= v ans.append(c) return ''.join(ans)
null
impl Solution { pub fn int_to_roman(num: i32) -> String { let cs = [ "M", "CM", "D", "CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I", ]; let vs = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]; let mut num = num; let mut ans = String::new(); for (i, &v) in vs.iter().enumerate() { while num >= v { num -= v; ans.push_str(cs[i]); } } ans } }
null
null
null
function intToRoman(num: number): string { const cs: string[] = ['M', 'CM', 'D', 'CD', 'C', 'XC', 'L', 'XL', 'X', 'IX', 'V', 'IV', 'I']; const vs: number[] = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]; const ans: string[] = []; for (let i = 0; i < vs.length; ++i) { while (num >= vs[i]) { num -= vs[i]; ans.push(cs[i]); } } return ans.join(''); }
Swap Nodes in Pairs
Given a linked list, swap every two adjacent nodes and return its head. You must solve the problem without modifying the values in the list's nodes (i.e., only nodes themselves may be changed.)   Example 1: Input: head = [1,2,3,4] Output: [2,1,4,3] Explanation: Example 2: Input: head = [] Output: [] Example 3: Input: head = [1] Output: [1] Example 4: Input: head = [1,2,3] Output: [2,1,3]   Constraints: The number of nodes in the list is in the range [0, 100] . 0 <= Node.val <= 100
null
/** * Definition for singly-linked list. * public class ListNode { * public int val; * public ListNode next; * public ListNode(int val=0, ListNode next=null) { * this.val = val; * this.next = next; * } * } */ public class Solution { public ListNode SwapPairs(ListNode head) { ListNode dummy = new ListNode(0, head); ListNode pre = dummy; ListNode cur = head; while (cur is not null && cur.next is not null) { ListNode t = cur.next; cur.next = t.next; t.next = cur; pre.next = t; pre = cur; cur = cur.next; } return dummy.next; } }
/** * Definition for singly-linked list. * struct ListNode { * int val; * ListNode *next; * ListNode() : val(0), next(nullptr) {} * ListNode(int x) : val(x), next(nullptr) {} * ListNode(int x, ListNode *next) : val(x), next(next) {} * }; */ class Solution { public: ListNode* swapPairs(ListNode* head) { ListNode* dummy = new ListNode(0, head); ListNode* pre = dummy; ListNode* cur = head; while (cur && cur->next) { ListNode* t = cur->next; cur->next = t->next; t->next = cur; pre->next = t; pre = cur; cur = cur->next; } return dummy->next; } };
null
null
/** * Definition for singly-linked list. * type ListNode struct { * Val int * Next *ListNode * } */ func swapPairs(head *ListNode) *ListNode { dummy := &ListNode{Next: head} pre, cur := dummy, head for cur != nil && cur.Next != nil { t := cur.Next cur.Next = t.Next t.Next = cur pre.Next = t pre, cur = cur, cur.Next } return dummy.Next }
/** * Definition for singly-linked list. * public class ListNode { * int val; * ListNode next; * ListNode() {} * ListNode(int val) { this.val = val; } * ListNode(int val, ListNode next) { this.val = val; this.next = next; } * } */ class Solution { public ListNode swapPairs(ListNode head) { ListNode dummy = new ListNode(0, head); ListNode pre = dummy; ListNode cur = head; while (cur != null && cur.next != null) { ListNode t = cur.next; cur.next = t.next; t.next = cur; pre.next = t; pre = cur; cur = cur.next; } return dummy.next; } }
/** * Definition for singly-linked list. * function ListNode(val, next) { * this.val = (val===undefined ? 0 : val) * this.next = (next===undefined ? null : next) * } */ /** * @param {ListNode} head * @return {ListNode} */ var swapPairs = function (head) { const dummy = new ListNode(0, head); let [pre, cur] = [dummy, head]; while (cur && cur.next) { const t = cur.next; cur.next = t.next; t.next = cur; pre.next = t; [pre, cur] = [cur, cur.next]; } return dummy.next; };
null
null
null
# Definition for singly-linked list. # class ListNode { # public $val; # public $next; # public function __construct($val = 0, $next = null) # { # $this->val = $val; # $this->next = $next; # } # } class Solution { /** * @param ListNode $head * @return ListNode */ function swapPairs($head) { $dummy = new ListNode(0); $dummy->next = $head; $prev = $dummy; while ($head !== null && $head->next !== null) { $first = $head; $second = $head->next; $first->next = $second->next; $second->next = $first; $prev->next = $second; $prev = $first; $head = $first->next; } return $dummy->next; } }
null
# Definition for singly-linked list. # class ListNode: # def __init__(self, val=0, next=None): # self.val = val # self.next = next class Solution: def swapPairs(self, head: Optional[ListNode]) -> Optional[ListNode]: dummy = ListNode(next=head) pre, cur = dummy, head while cur and cur.next: t = cur.next cur.next = t.next t.next = cur pre.next = t pre, cur = cur, cur.next return dummy.next
# Definition for singly-linked list. # class ListNode # attr_accessor :val, :next # def initialize(val = 0, _next = nil) # @val = val # @next = _next # end # end # @param {ListNode} head # @return {ListNode} def swap_pairs(head) dummy = ListNode.new(0, head) pre = dummy cur = head while !cur.nil? && !cur.next.nil? t = cur.next cur.next = t.next t.next = cur pre.next = t pre = cur cur = cur.next end dummy.next end
// Definition for singly-linked list. // #[derive(PartialEq, Eq, Clone, Debug)] // pub struct ListNode { // pub val: i32, // pub next: Option<Box<ListNode>> // } // // impl ListNode { // #[inline] // fn new(val: i32) -> Self { // ListNode { // next: None, // val // } // } // } impl Solution { pub fn swap_pairs(head: Option<Box<ListNode>>) -> Option<Box<ListNode>> { let mut dummy = Some(Box::new(ListNode { val: 0, next: head })); let mut cur = dummy.as_mut().unwrap(); while cur.next.is_some() && cur.next.as_ref().unwrap().next.is_some() { cur.next = { let mut b = cur.next.as_mut().unwrap().next.take(); cur.next.as_mut().unwrap().next = b.as_mut().unwrap().next.take(); let a = cur.next.take(); b.as_mut().unwrap().next = a; b }; cur = cur.next.as_mut().unwrap().next.as_mut().unwrap(); } dummy.unwrap().next } }
null
null
null
/** * Definition for singly-linked list. * class ListNode { * val: number * next: ListNode | null * constructor(val?: number, next?: ListNode | null) { * this.val = (val===undefined ? 0 : val) * this.next = (next===undefined ? null : next) * } * } */ function swapPairs(head: ListNode | null): ListNode | null { const dummy = new ListNode(0, head); let [pre, cur] = [dummy, head]; while (cur && cur.next) { const t = cur.next; cur.next = t.next; t.next = cur; pre.next = t; [pre, cur] = [cur, cur.next]; } return dummy.next; }
Check if Array Is Sorted and Rotated
Given an array nums , return true if the array was originally sorted in non-decreasing order, then rotated some number of positions (including zero) . Otherwise, return false . There may be duplicates in the original array. Note: An array A rotated by x positions results in an array B of the same length such that B[i] == A[(i+x) % A.length] for every valid index i .   Example 1: Input: nums = [3,4,5,1,2] Output: true Explanation: [1,2,3,4,5] is the original sorted array. You can rotate the array by x = 3 positions to begin on the element of value 3: [3,4,5,1,2]. Example 2: Input: nums = [2,1,3,4] Output: false Explanation: There is no sorted array once rotated that can make nums. Example 3: Input: nums = [1,2,3] Output: true Explanation: [1,2,3] is the original sorted array. You can rotate the array by x = 0 positions (i.e. no rotation) to make nums.           Constraints: 1 <= nums.length <= 100 1 <= nums[i] <= 100
bool check(int* nums, int numsSize) { int count = 0; for (int i = 0; i < numsSize; i++) { if (nums[i] > nums[(i + 1) % numsSize]) { count++; } } return count <= 1; }
null
class Solution { public: bool check(vector<int>& nums) { int cnt = 0; for (int i = 0, n = nums.size(); i < n; ++i) { cnt += nums[i] > (nums[(i + 1) % n]); } return cnt <= 1; } };
null
null
func check(nums []int) bool { cnt := 0 for i, v := range nums { if v > nums[(i+1)%len(nums)] { cnt++ } } return cnt <= 1 }
class Solution { public boolean check(int[] nums) { int cnt = 0; for (int i = 0, n = nums.length; i < n; ++i) { if (nums[i] > nums[(i + 1) % n]) { ++cnt; } } return cnt <= 1; } }
null
null
null
null
null
null
class Solution: def check(self, nums: List[int]) -> bool: return sum(nums[i - 1] > v for i, v in enumerate(nums)) <= 1
null
impl Solution { pub fn check(nums: Vec<i32>) -> bool { let n = nums.len(); let mut count = 0; for i in 0..n { if nums[i] > nums[(i + 1) % n] { count += 1; } } count <= 1 } }
null
null
null
function check(nums: number[]): boolean { const n = nums.length; return nums.reduce((r, v, i) => r + (v > nums[(i + 1) % n] ? 1 : 0), 0) <= 1; }
Maximize Greatness of an Array
You are given a 0-indexed integer array nums . You are allowed to permute nums into a new array perm of your choosing. We define the greatness of nums be the number of indices 0 <= i < nums.length for which perm[i] > nums[i] . Return the maximum possible greatness you can achieve after permuting nums .   Example 1: Input: nums = [1,3,5,2,1,3,1] Output: 4 Explanation: One of the optimal rearrangements is perm = [2,5,1,3,3,1,1]. At indices = 0, 1, 3, and 4, perm[i] > nums[i]. Hence, we return 4. Example 2: Input: nums = [1,2,3,4] Output: 3 Explanation: We can prove the optimal perm is [2,3,4,1]. At indices = 0, 1, and 2, perm[i] > nums[i]. Hence, we return 3.   Constraints: 1 <= nums.length <= 10 5 0 <= nums[i] <= 10 9
null
null
class Solution { public: int maximizeGreatness(vector<int>& nums) { sort(nums.begin(), nums.end()); int i = 0; for (int x : nums) { i += x > nums[i]; } return i; } };
null
null
func maximizeGreatness(nums []int) int { sort.Ints(nums) i := 0 for _, x := range nums { if x > nums[i] { i++ } } return i }
class Solution { public int maximizeGreatness(int[] nums) { Arrays.sort(nums); int i = 0; for (int x : nums) { if (x > nums[i]) { ++i; } } return i; } }
null
null
null
null
null
null
class Solution: def maximizeGreatness(self, nums: List[int]) -> int: nums.sort() i = 0 for x in nums: i += x > nums[i] return i
null
null
null
null
null
function maximizeGreatness(nums: number[]): number { nums.sort((a, b) => a - b); let i = 0; for (const x of nums) { if (x > nums[i]) { i += 1; } } return i; }
Count Substrings That Can Be Rearranged to Contain a String I
You are given two strings word1 and word2 . A string x is called valid if x can be rearranged to have word2 as a prefix . Return the total number of valid substrings of word1 .   Example 1: Input: word1 = "bcca", word2 = "abc" Output: 1 Explanation: The only valid substring is "bcca" which can be rearranged to "abcc" having "abc" as a prefix. Example 2: Input: word1 = "abcabc", word2 = "abc" Output: 10 Explanation: All the substrings except substrings of size 1 and size 2 are valid. Example 3: Input: word1 = "abcabc", word2 = "aaabc" Output: 0   Constraints: 1 <= word1.length <= 10 5 1 <= word2.length <= 10 4 word1 and word2 consist only of lowercase English letters.
null
null
class Solution { public: long long validSubstringCount(string word1, string word2) { if (word1.size() < word2.size()) { return 0; } int cnt[26]{}; int need = 0; for (char& c : word2) { if (++cnt[c - 'a'] == 1) { ++need; } } long long ans = 0; int win[26]{}; int l = 0; for (char& c : word1) { int i = c - 'a'; if (++win[i] == cnt[i]) { --need; } while (need == 0) { i = word1[l] - 'a'; if (win[i] == cnt[i]) { ++need; } --win[i]; ++l; } ans += l; } return ans; } };
null
null
func validSubstringCount(word1 string, word2 string) (ans int64) { if len(word1) < len(word2) { return 0 } cnt := [26]int{} need := 0 for _, c := range word2 { cnt[c-'a']++ if cnt[c-'a'] == 1 { need++ } } win := [26]int{} l := 0 for _, c := range word1 { i := int(c - 'a') win[i]++ if win[i] == cnt[i] { need-- } for need == 0 { i = int(word1[l] - 'a') if win[i] == cnt[i] { need++ } win[i]-- l++ } ans += int64(l) } return }
class Solution { public long validSubstringCount(String word1, String word2) { if (word1.length() < word2.length()) { return 0; } int[] cnt = new int[26]; int need = 0; for (int i = 0; i < word2.length(); ++i) { if (++cnt[word2.charAt(i) - 'a'] == 1) { ++need; } } long ans = 0; int[] win = new int[26]; for (int l = 0, r = 0; r < word1.length(); ++r) { int c = word1.charAt(r) - 'a'; if (++win[c] == cnt[c]) { --need; } while (need == 0) { c = word1.charAt(l) - 'a'; if (win[c] == cnt[c]) { ++need; } --win[c]; ++l; } ans += l; } return ans; } }
null
null
null
null
null
null
class Solution: def validSubstringCount(self, word1: str, word2: str) -> int: if len(word1) < len(word2): return 0 cnt = Counter(word2) need = len(cnt) ans = l = 0 win = Counter() for c in word1: win[c] += 1 if win[c] == cnt[c]: need -= 1 while need == 0: if win[word1[l]] == cnt[word1[l]]: need += 1 win[word1[l]] -= 1 l += 1 ans += l return ans
null
null
null
null
null
function validSubstringCount(word1: string, word2: string): number { if (word1.length < word2.length) { return 0; } const cnt: number[] = Array(26).fill(0); let need: number = 0; for (const c of word2) { if (++cnt[c.charCodeAt(0) - 97] === 1) { ++need; } } const win: number[] = Array(26).fill(0); let [ans, l] = [0, 0]; for (const c of word1) { const i = c.charCodeAt(0) - 97; if (++win[i] === cnt[i]) { --need; } while (need === 0) { const j = word1[l].charCodeAt(0) - 97; if (win[j] === cnt[j]) { ++need; } --win[j]; ++l; } ans += l; } return ans; }
Filter Restaurants by Vegan-Friendly, Price and Distance
Given the array restaurants where   restaurants[i] = [id i , rating i , veganFriendly i , price i , distance i ] . You have to filter the restaurants using three filters. The veganFriendly filter will be either true (meaning you should only include restaurants with veganFriendly i set to true) or false  (meaning you can include any restaurant). In addition, you have the filters  maxPrice and maxDistance  which are the maximum value for price and distance of restaurants you should consider respectively. Return the array of restaurant IDs after filtering, ordered by rating from highest to lowest. For restaurants with the same rating, order them by id from highest to lowest. For simplicity veganFriendly i and veganFriendly take value 1 when it is true , and 0 when it is false .   Example 1: Input: restaurants = [[1,4,1,40,10],[2,8,0,50,5],[3,8,1,30,4],[4,10,0,10,3],[5,1,1,15,1]], veganFriendly = 1, maxPrice = 50, maxDistance = 10 Output: [3,1,5] Explanation: The restaurants are: Restaurant 1 [id=1, rating=4, veganFriendly=1, price=40, distance=10] Restaurant 2 [id=2, rating=8, veganFriendly=0, price=50, distance=5] Restaurant 3 [id=3, rating=8, veganFriendly=1, price=30, distance=4] Restaurant 4 [id=4, rating=10, veganFriendly=0, price=10, distance=3] Restaurant 5 [id=5, rating=1, veganFriendly=1, price=15, distance=1] After filter restaurants with veganFriendly = 1, maxPrice = 50 and maxDistance = 10 we have restaurant 3, restaurant 1 and restaurant 5 (ordered by rating from highest to lowest). Example 2: Input: restaurants = [[1,4,1,40,10],[2,8,0,50,5],[3,8,1,30,4],[4,10,0,10,3],[5,1,1,15,1]], veganFriendly = 0, maxPrice = 50, maxDistance = 10 Output: [4,3,2,1,5] Explanation: The restaurants are the same as in example 1, but in this case the filter veganFriendly = 0, therefore all restaurants are considered. Example 3: Input: restaurants = [[1,4,1,40,10],[2,8,0,50,5],[3,8,1,30,4],[4,10,0,10,3],[5,1,1,15,1]], veganFriendly = 0, maxPrice = 30, maxDistance = 3 Output: [4,5]   Constraints: 1 <= restaurants.length <= 10^4 restaurants[i].length == 5 1 <= id i , rating i , price i , distance i <= 10^5 1 <= maxPrice, maxDistance <= 10^5 veganFriendly i and  veganFriendly  are 0 or 1. All id i are distinct.
null
null
class Solution { public: vector<int> filterRestaurants(vector<vector<int>>& restaurants, int veganFriendly, int maxPrice, int maxDistance) { sort(restaurants.begin(), restaurants.end(), [](const vector<int>& a, const vector<int>& b) { if (a[1] != b[1]) { return a[1] > b[1]; } return a[0] > b[0]; }); vector<int> ans; for (auto& r : restaurants) { if (r[2] >= veganFriendly && r[3] <= maxPrice && r[4] <= maxDistance) { ans.push_back(r[0]); } } return ans; } };
null
null
func filterRestaurants(restaurants [][]int, veganFriendly int, maxPrice int, maxDistance int) (ans []int) { sort.Slice(restaurants, func(i, j int) bool { a, b := restaurants[i], restaurants[j] if a[1] != b[1] { return a[1] > b[1] } return a[0] > b[0] }) for _, r := range restaurants { if r[2] >= veganFriendly && r[3] <= maxPrice && r[4] <= maxDistance { ans = append(ans, r[0]) } } return }
class Solution { public List<Integer> filterRestaurants( int[][] restaurants, int veganFriendly, int maxPrice, int maxDistance) { Arrays.sort(restaurants, (a, b) -> a[1] == b[1] ? b[0] - a[0] : b[1] - a[1]); List<Integer> ans = new ArrayList<>(); for (int[] r : restaurants) { if (r[2] >= veganFriendly && r[3] <= maxPrice && r[4] <= maxDistance) { ans.add(r[0]); } } return ans; } }
null
null
null
null
null
null
class Solution: def filterRestaurants( self, restaurants: List[List[int]], veganFriendly: int, maxPrice: int, maxDistance: int, ) -> List[int]: restaurants.sort(key=lambda x: (-x[1], -x[0])) ans = [] for idx, _, vegan, price, dist in restaurants: if vegan >= veganFriendly and price <= maxPrice and dist <= maxDistance: ans.append(idx) return ans
null
null
null
null
null
function filterRestaurants( restaurants: number[][], veganFriendly: number, maxPrice: number, maxDistance: number, ): number[] { restaurants.sort((a, b) => (a[1] === b[1] ? b[0] - a[0] : b[1] - a[1])); const ans: number[] = []; for (const [id, _, vegan, price, distance] of restaurants) { if (vegan >= veganFriendly && price <= maxPrice && distance <= maxDistance) { ans.push(id); } } return ans; }
Path Sum III
Given the root of a binary tree and an integer targetSum , return the number of paths where the sum of the values along the path equals   targetSum . The path does not need to start or end at the root or a leaf, but it must go downwards (i.e., traveling only from parent nodes to child nodes).   Example 1: Input: root = [10,5,-3,3,2,null,11,3,-2,null,1], targetSum = 8 Output: 3 Explanation: The paths that sum to 8 are shown. Example 2: Input: root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22 Output: 3   Constraints: The number of nodes in the tree is in the range [0, 1000] . -10 9 <= Node.val <= 10 9 -1000 <= targetSum <= 1000
null
/** * Definition for a binary tree node. * public class TreeNode { * public int val; * public TreeNode left; * public TreeNode right; * public TreeNode(int val=0, TreeNode left=null, TreeNode right=null) { * this.val = val; * this.left = left; * this.right = right; * } * } */ public class Solution { public int PathSum(TreeNode root, int targetSum) { Dictionary<long, int> cnt = new Dictionary<long, int>(); int Dfs(TreeNode node, long s) { if (node == null) { return 0; } s += node.val; int ans = cnt.GetValueOrDefault(s - targetSum, 0); cnt[s] = cnt.GetValueOrDefault(s, 0) + 1; ans += Dfs(node.left, s); ans += Dfs(node.right, s); cnt[s]--; return ans; } cnt[0] = 1; return Dfs(root, 0); } }
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode() : val(0), left(nullptr), right(nullptr) {} * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} * }; */ class Solution { public: int pathSum(TreeNode* root, int targetSum) { unordered_map<long long, int> cnt; cnt[0] = 1; auto dfs = [&](this auto&& dfs, TreeNode* node, long long s) -> int { if (!node) { return 0; } s += node->val; int ans = cnt[s - targetSum]; ++cnt[s]; ans += dfs(node->left, s) + dfs(node->right, s); --cnt[s]; return ans; }; return dfs(root, 0); } };
null
null
/** * Definition for a binary tree node. * type TreeNode struct { * Val int * Left *TreeNode * Right *TreeNode * } */ func pathSum(root *TreeNode, targetSum int) int { cnt := map[int]int{0: 1} var dfs func(*TreeNode, int) int dfs = func(node *TreeNode, s int) int { if node == nil { return 0 } s += node.Val ans := cnt[s-targetSum] cnt[s]++ ans += dfs(node.Left, s) + dfs(node.Right, s) cnt[s]-- return ans } return dfs(root, 0) }
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode() {} * TreeNode(int val) { this.val = val; } * TreeNode(int val, TreeNode left, TreeNode right) { * this.val = val; * this.left = left; * this.right = right; * } * } */ class Solution { private Map<Long, Integer> cnt = new HashMap<>(); private int targetSum; public int pathSum(TreeNode root, int targetSum) { cnt.put(0L, 1); this.targetSum = targetSum; return dfs(root, 0); } private int dfs(TreeNode node, long s) { if (node == null) { return 0; } s += node.val; int ans = cnt.getOrDefault(s - targetSum, 0); cnt.merge(s, 1, Integer::sum); ans += dfs(node.left, s); ans += dfs(node.right, s); cnt.merge(s, -1, Integer::sum); return ans; } }
/** * Definition for a binary tree node. * function TreeNode(val, left, right) { * this.val = (val===undefined ? 0 : val) * this.left = (left===undefined ? null : left) * this.right = (right===undefined ? null : right) * } */ /** * @param {TreeNode} root * @param {number} targetSum * @return {number} */ var pathSum = function (root, targetSum) { const cnt = new Map(); const dfs = (node, s) => { if (!node) { return 0; } s += node.val; let ans = cnt.get(s - targetSum) || 0; cnt.set(s, (cnt.get(s) || 0) + 1); ans += dfs(node.left, s); ans += dfs(node.right, s); cnt.set(s, cnt.get(s) - 1); return ans; }; cnt.set(0, 1); return dfs(root, 0); };
null
null
null
null
null
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def pathSum(self, root: Optional[TreeNode], targetSum: int) -> int: def dfs(node, s): if node is None: return 0 s += node.val ans = cnt[s - targetSum] cnt[s] += 1 ans += dfs(node.left, s) ans += dfs(node.right, s) cnt[s] -= 1 return ans cnt = Counter({0: 1}) return dfs(root, 0)
null
// Definition for a binary tree node. // #[derive(Debug, PartialEq, Eq)] // pub struct TreeNode { // pub val: i32, // pub left: Option<Rc<RefCell<TreeNode>>>, // pub right: Option<Rc<RefCell<TreeNode>>>, // } // // impl TreeNode { // #[inline] // pub fn new(val: i32) -> Self { // TreeNode { // val, // left: None, // right: None // } // } // } use std::rc::Rc; use std::cell::RefCell; use std::collections::HashMap; impl Solution { pub fn path_sum(root: Option<Rc<RefCell<TreeNode>>>, target_sum: i32) -> i32 { let mut cnt = HashMap::new(); cnt.insert(0, 1); fn dfs(node: Option<Rc<RefCell<TreeNode>>>, s: i64, target: i64, cnt: &mut HashMap<i64, i32>) -> i32 { if let Some(n) = node { let n = n.borrow(); let s = s + n.val as i64; let ans = cnt.get(&(s - target)).copied().unwrap_or(0); *cnt.entry(s).or_insert(0) += 1; let ans = ans + dfs(n.left.clone(), s, target, cnt) + dfs(n.right.clone(), s, target, cnt); *cnt.get_mut(&s).unwrap() -= 1; ans } else { 0 } } dfs(root, 0, target_sum as i64, &mut cnt) } }
null
null
null
/** * Definition for a binary tree node. * class TreeNode { * val: number * left: TreeNode | null * right: TreeNode | null * constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { * this.val = (val===undefined ? 0 : val) * this.left = (left===undefined ? null : left) * this.right = (right===undefined ? null : right) * } * } */ function pathSum(root: TreeNode | null, targetSum: number): number { const cnt: Map<number, number> = new Map(); const dfs = (node: TreeNode | null, s: number): number => { if (!node) { return 0; } s += node.val; let ans = cnt.get(s - targetSum) ?? 0; cnt.set(s, (cnt.get(s) ?? 0) + 1); ans += dfs(node.left, s); ans += dfs(node.right, s); cnt.set(s, (cnt.get(s) ?? 0) - 1); return ans; }; cnt.set(0, 1); return dfs(root, 0); }
Orderly Queue
You are given a string s and an integer k . You can choose one of the first k letters of s and append it at the end of the string. Return the lexicographically smallest string you could have after applying the mentioned step any number of moves .   Example 1: Input: s = "cba", k = 1 Output: "acb" Explanation: In the first move, we move the 1 st character 'c' to the end, obtaining the string "bac". In the second move, we move the 1 st character 'b' to the end, obtaining the final result "acb". Example 2: Input: s = "baaca", k = 3 Output: "aaabc" Explanation: In the first move, we move the 1 st character 'b' to the end, obtaining the string "aacab". In the second move, we move the 3 rd character 'c' to the end, obtaining the final result "aaabc".   Constraints: 1 <= k <= s.length <= 1000 s consist of lowercase English letters.
null
null
class Solution { public: string orderlyQueue(string s, int k) { if (k == 1) { string ans = s; for (int i = 0; i < s.size() - 1; ++i) { s = s.substr(1) + s[0]; if (s < ans) ans = s; } return ans; } sort(s.begin(), s.end()); return s; } };
null
null
func orderlyQueue(s string, k int) string { if k == 1 { ans := s for i := 0; i < len(s)-1; i++ { s = s[1:] + s[:1] if s < ans { ans = s } } return ans } t := []byte(s) sort.Slice(t, func(i, j int) bool { return t[i] < t[j] }) return string(t) }
class Solution { public String orderlyQueue(String s, int k) { if (k == 1) { String ans = s; StringBuilder sb = new StringBuilder(s); for (int i = 0; i < s.length() - 1; ++i) { sb.append(sb.charAt(0)).deleteCharAt(0); if (sb.toString().compareTo(ans) < 0) { ans = sb.toString(); } } return ans; } char[] cs = s.toCharArray(); Arrays.sort(cs); return String.valueOf(cs); } }
null
null
null
null
null
null
class Solution: def orderlyQueue(self, s: str, k: int) -> str: if k == 1: ans = s for _ in range(len(s) - 1): s = s[1:] + s[0] ans = min(ans, s) return ans return "".join(sorted(s))
null
null
null
null
null
function orderlyQueue(s: string, k: number): string { if (k > 1) { return [...s].sort().join(''); } const n = s.length; let min = s; for (let i = 1; i < n; i++) { const t = s.slice(i) + s.slice(0, i); if (t < min) { min = t; } } return min; }
Maximum Number of Groups Getting Fresh Donuts
There is a donuts shop that bakes donuts in batches of batchSize . They have a rule where they must serve all of the donuts of a batch before serving any donuts of the next batch. You are given an integer batchSize and an integer array groups , where groups[i] denotes that there is a group of groups[i] customers that will visit the shop. Each customer will get exactly one donut. When a group visits the shop, all customers of the group must be served before serving any of the following groups. A group will be happy if they all get fresh donuts. That is, the first customer of the group does not receive a donut that was left over from the previous group. You can freely rearrange the ordering of the groups. Return the maximum possible number of happy groups after rearranging the groups.   Example 1: Input: batchSize = 3, groups = [1,2,3,4,5,6] Output: 4 Explanation: You can arrange the groups as [6,2,4,5,1,3]. Then the 1 st , 2 nd , 4 th , and 6 th groups will be happy. Example 2: Input: batchSize = 4, groups = [1,3,2,5,2,2,1,6] Output: 4   Constraints: 1 <= batchSize <= 9 1 <= groups.length <= 30 1 <= groups[i] <= 10 9
null
null
class Solution { public: int maxHappyGroups(int batchSize, vector<int>& groups) { using ll = long long; unordered_map<ll, int> f; ll state = 0; int ans = 0; for (auto& v : groups) { int i = v % batchSize; ans += i == 0; if (i) { state += 1ll << (i * 5); } } function<int(ll, int)> dfs = [&](ll state, int mod) { if (f.count(state)) { return f[state]; } int res = 0; int x = mod == 0; for (int i = 1; i < batchSize; ++i) { if (state >> (i * 5) & 31) { int t = dfs(state - (1ll << (i * 5)), (mod + i) % batchSize); res = max(res, t + x); } } return f[state] = res; }; ans += dfs(state, 0); return ans; } };
null
null
func maxHappyGroups(batchSize int, groups []int) (ans int) { state := 0 for _, v := range groups { i := v % batchSize if i == 0 { ans++ } else { state += 1 << (i * 5) } } f := map[int]int{} var dfs func(int, int) int dfs = func(state, mod int) int { if v, ok := f[state]; ok { return v } res := 0 x := 0 if mod == 0 { x = 1 } for i := 1; i < batchSize; i++ { if state>>(i*5)&31 != 0 { t := dfs(state-1<<(i*5), (mod+i)%batchSize) res = max(res, t+x) } } f[state] = res return res } ans += dfs(state, 0) return }
class Solution { private Map<Long, Integer> f = new HashMap<>(); private int size; public int maxHappyGroups(int batchSize, int[] groups) { size = batchSize; int ans = 0; long state = 0; for (int g : groups) { int i = g % size; if (i == 0) { ++ans; } else { state += 1l << (i * 5); } } ans += dfs(state, 0); return ans; } private int dfs(long state, int mod) { if (f.containsKey(state)) { return f.get(state); } int res = 0; for (int i = 1; i < size; ++i) { if ((state >> (i * 5) & 31) != 0) { int t = dfs(state - (1l << (i * 5)), (mod + i) % size); res = Math.max(res, t + (mod == 0 ? 1 : 0)); } } f.put(state, res); return res; } }
null
null
null
null
null
null
class Solution: def maxHappyGroups(self, batchSize: int, groups: List[int]) -> int: @cache def dfs(state, x): if state == mask: return 0 vis = [False] * batchSize res = 0 for i, v in enumerate(g): if state >> i & 1 == 0 and not vis[v]: vis[v] = True y = (x + v) % batchSize res = max(res, dfs(state | 1 << i, y)) return res + (x == 0) g = [v % batchSize for v in groups if v % batchSize] mask = (1 << len(g)) - 1 return len(groups) - len(g) + dfs(0, 0)
null
null
null
null
null
null
Find K-Length Substrings With No Repeated Characters 🔒
Given a string s and an integer k , return the number of substrings in s of length k with no repeated characters .   Example 1: Input: s = "havefunonleetcode", k = 5 Output: 6 Explanation: There are 6 substrings they are: 'havef','avefu','vefun','efuno','etcod','tcode'. Example 2: Input: s = "home", k = 5 Output: 0 Explanation: Notice k can be larger than the length of s. In this case, it is not possible to find any substring.   Constraints: 1 <= s.length <= 10 4 s consists of lowercase English letters. 1 <= k <= 10 4
null
null
class Solution { public: int numKLenSubstrNoRepeats(string s, int k) { int n = s.size(); if (n < k) { return 0; } unordered_map<char, int> cnt; for (int i = 0; i < k; ++i) { ++cnt[s[i]]; } int ans = cnt.size() == k; for (int i = k; i < n; ++i) { ++cnt[s[i]]; if (--cnt[s[i - k]] == 0) { cnt.erase(s[i - k]); } ans += cnt.size() == k; } return ans; } };
null
null
func numKLenSubstrNoRepeats(s string, k int) (ans int) { n := len(s) if n < k { return } cnt := map[byte]int{} for i := 0; i < k; i++ { cnt[s[i]]++ } if len(cnt) == k { ans++ } for i := k; i < n; i++ { cnt[s[i]]++ cnt[s[i-k]]-- if cnt[s[i-k]] == 0 { delete(cnt, s[i-k]) } if len(cnt) == k { ans++ } } return }
class Solution { public int numKLenSubstrNoRepeats(String s, int k) { int n = s.length(); if (n < k) { return 0; } Map<Character, Integer> cnt = new HashMap<>(k); for (int i = 0; i < k; ++i) { cnt.merge(s.charAt(i), 1, Integer::sum); } int ans = cnt.size() == k ? 1 : 0; for (int i = k; i < n; ++i) { cnt.merge(s.charAt(i), 1, Integer::sum); if (cnt.merge(s.charAt(i - k), -1, Integer::sum) == 0) { cnt.remove(s.charAt(i - k)); } ans += cnt.size() == k ? 1 : 0; } return ans; } }
null
null
null
null
class Solution { /** * @param String $s * @param Integer $k * @return Integer */ function numKLenSubstrNoRepeats($s, $k) { $n = strlen($s); if ($n < $k) { return 0; } $cnt = []; for ($i = 0; $i < $k; ++$i) { if (!isset($cnt[$s[$i]])) { $cnt[$s[$i]] = 1; } else { $cnt[$s[$i]]++; } } $ans = count($cnt) == $k ? 1 : 0; for ($i = $k; $i < $n; ++$i) { if (!isset($cnt[$s[$i]])) { $cnt[$s[$i]] = 1; } else { $cnt[$s[$i]]++; } if ($cnt[$s[$i - $k]] - 1 == 0) { unset($cnt[$s[$i - $k]]); } else { $cnt[$s[$i - $k]]--; } $ans += count($cnt) == $k ? 1 : 0; } return $ans; } }
null
class Solution: def numKLenSubstrNoRepeats(self, s: str, k: int) -> int: cnt = Counter(s[:k]) ans = int(len(cnt) == k) for i in range(k, len(s)): cnt[s[i]] += 1 cnt[s[i - k]] -= 1 if cnt[s[i - k]] == 0: cnt.pop(s[i - k]) ans += int(len(cnt) == k) return ans
null
null
null
null
null
function numKLenSubstrNoRepeats(s: string, k: number): number { const n = s.length; if (n < k) { return 0; } const cnt: Map<string, number> = new Map(); for (let i = 0; i < k; ++i) { cnt.set(s[i], (cnt.get(s[i]) ?? 0) + 1); } let ans = cnt.size === k ? 1 : 0; for (let i = k; i < n; ++i) { cnt.set(s[i], (cnt.get(s[i]) ?? 0) + 1); cnt.set(s[i - k], (cnt.get(s[i - k]) ?? 0) - 1); if (cnt.get(s[i - k]) === 0) { cnt.delete(s[i - k]); } ans += cnt.size === k ? 1 : 0; } return ans; }
Find All Possible Stable Binary Arrays I
You are given 3 positive integers zero , one , and limit . A binary array arr is called stable if: The number of occurrences of 0 in arr is exactly zero . The number of occurrences of 1 in arr is exactly one . Each subarray of arr with a size greater than limit must contain both 0 and 1. Return the total number of stable binary arrays. Since the answer may be very large, return it modulo 10 9 + 7 .   Example 1: Input: zero = 1, one = 1, limit = 2 Output: 2 Explanation: The two possible stable binary arrays are [1,0] and [0,1] , as both arrays have a single 0 and a single 1, and no subarray has a length greater than 2. Example 2: Input: zero = 1, one = 2, limit = 1 Output: 1 Explanation: The only possible stable binary array is [1,0,1] . Note that the binary arrays [1,1,0] and [0,1,1] have subarrays of length 2 with identical elements, hence, they are not stable. Example 3: Input: zero = 3, one = 3, limit = 2 Output: 14 Explanation: All the possible stable binary arrays are [0,0,1,0,1,1] , [0,0,1,1,0,1] , [0,1,0,0,1,1] , [0,1,0,1,0,1] , [0,1,0,1,1,0] , [0,1,1,0,0,1] , [0,1,1,0,1,0] , [1,0,0,1,0,1] , [1,0,0,1,1,0] , [1,0,1,0,0,1] , [1,0,1,0,1,0] , [1,0,1,1,0,0] , [1,1,0,0,1,0] , and [1,1,0,1,0,0] .   Constraints: 1 <= zero, one, limit <= 200
null
null
class Solution { public: int numberOfStableArrays(int zero, int one, int limit) { const int mod = 1e9 + 7; using ll = long long; ll f[zero + 1][one + 1][2]; memset(f, 0, sizeof(f)); for (int i = 1; i <= min(zero, limit); ++i) { f[i][0][0] = 1; } for (int j = 1; j <= min(one, limit); ++j) { f[0][j][1] = 1; } for (int i = 1; i <= zero; ++i) { for (int j = 1; j <= one; ++j) { ll x = i - limit - 1 < 0 ? 0 : f[i - limit - 1][j][1]; ll y = j - limit - 1 < 0 ? 0 : f[i][j - limit - 1][0]; f[i][j][0] = (f[i - 1][j][0] + f[i - 1][j][1] - x + mod) % mod; f[i][j][1] = (f[i][j - 1][0] + f[i][j - 1][1] - y + mod) % mod; } } return (f[zero][one][0] + f[zero][one][1]) % mod; } };
null
null
func numberOfStableArrays(zero int, one int, limit int) int { const mod int = 1e9 + 7 f := make([][][2]int, zero+1) for i := range f { f[i] = make([][2]int, one+1) } for i := 1; i <= min(zero, limit); i++ { f[i][0][0] = 1 } for j := 1; j <= min(one, limit); j++ { f[0][j][1] = 1 } for i := 1; i <= zero; i++ { for j := 1; j <= one; j++ { f[i][j][0] = (f[i-1][j][0] + f[i-1][j][1]) % mod if i-limit-1 >= 0 { f[i][j][0] = (f[i][j][0] - f[i-limit-1][j][1] + mod) % mod } f[i][j][1] = (f[i][j-1][0] + f[i][j-1][1]) % mod if j-limit-1 >= 0 { f[i][j][1] = (f[i][j][1] - f[i][j-limit-1][0] + mod) % mod } } } return (f[zero][one][0] + f[zero][one][1]) % mod }
class Solution { public int numberOfStableArrays(int zero, int one, int limit) { final int mod = (int) 1e9 + 7; long[][][] f = new long[zero + 1][one + 1][2]; for (int i = 1; i <= Math.min(zero, limit); ++i) { f[i][0][0] = 1; } for (int j = 1; j <= Math.min(one, limit); ++j) { f[0][j][1] = 1; } for (int i = 1; i <= zero; ++i) { for (int j = 1; j <= one; ++j) { long x = i - limit - 1 < 0 ? 0 : f[i - limit - 1][j][1]; long y = j - limit - 1 < 0 ? 0 : f[i][j - limit - 1][0]; f[i][j][0] = (f[i - 1][j][0] + f[i - 1][j][1] - x + mod) % mod; f[i][j][1] = (f[i][j - 1][0] + f[i][j - 1][1] - y + mod) % mod; } } return (int) ((f[zero][one][0] + f[zero][one][1]) % mod); } }
null
null
null
null
null
null
class Solution: def numberOfStableArrays(self, zero: int, one: int, limit: int) -> int: mod = 10**9 + 7 f = [[[0, 0] for _ in range(one + 1)] for _ in range(zero + 1)] for i in range(1, min(limit, zero) + 1): f[i][0][0] = 1 for j in range(1, min(limit, one) + 1): f[0][j][1] = 1 for i in range(1, zero + 1): for j in range(1, one + 1): x = 0 if i - limit - 1 < 0 else f[i - limit - 1][j][1] y = 0 if j - limit - 1 < 0 else f[i][j - limit - 1][0] f[i][j][0] = (f[i - 1][j][0] + f[i - 1][j][1] - x) % mod f[i][j][1] = (f[i][j - 1][0] + f[i][j - 1][1] - y) % mod return sum(f[zero][one]) % mod
null
null
null
null
null
function numberOfStableArrays(zero: number, one: number, limit: number): number { const mod = 1e9 + 7; const f: number[][][] = Array.from({ length: zero + 1 }, () => Array.from({ length: one + 1 }, () => [0, 0]), ); for (let i = 1; i <= Math.min(limit, zero); i++) { f[i][0][0] = 1; } for (let j = 1; j <= Math.min(limit, one); j++) { f[0][j][1] = 1; } for (let i = 1; i <= zero; i++) { for (let j = 1; j <= one; j++) { const x = i - limit - 1 < 0 ? 0 : f[i - limit - 1][j][1]; const y = j - limit - 1 < 0 ? 0 : f[i][j - limit - 1][0]; f[i][j][0] = (f[i - 1][j][0] + f[i - 1][j][1] - x + mod) % mod; f[i][j][1] = (f[i][j - 1][0] + f[i][j - 1][1] - y + mod) % mod; } } return (f[zero][one][0] + f[zero][one][1]) % mod; }
Minimum Number of Vertices to Reach All Nodes
Given a  directed acyclic graph , with  n  vertices numbered from  0  to  n-1 , and an array  edges  where  edges[i] = [from i , to i ]  represents a directed edge from node  from i  to node  to i . Find the smallest set of vertices from which all nodes in the graph are reachable . It's guaranteed that a unique solution exists. Notice that you can return the vertices in any order.   Example 1: Input: n = 6, edges = [[0,1],[0,2],[2,5],[3,4],[4,2]] Output: [0,3] Explanation: It's not possible to reach all the nodes from a single vertex. From 0 we can reach [0,1,2,5]. From 3 we can reach [3,4,2,5]. So we output [0,3]. Example 2: Input: n = 5, edges = [[0,1],[2,1],[3,1],[1,4],[2,4]] Output: [0,2,3] Explanation: Notice that vertices 0, 3 and 2 are not reachable from any other node, so we must include them. Also any of these vertices can reach nodes 1 and 4.   Constraints: 2 <= n <= 10^5 1 <= edges.length <= min(10^5, n * (n - 1) / 2) edges[i].length == 2 0 <= from i,  to i < n All pairs (from i , to i ) are distinct.
null
null
class Solution { public: vector<int> findSmallestSetOfVertices(int n, vector<vector<int>>& edges) { vector<int> cnt(n); for (auto& e : edges) { ++cnt[e[1]]; } vector<int> ans; for (int i = 0; i < n; ++i) { if (cnt[i] == 0) { ans.push_back(i); } } return ans; } };
null
null
func findSmallestSetOfVertices(n int, edges [][]int) (ans []int) { cnt := make([]int, n) for _, e := range edges { cnt[e[1]]++ } for i, c := range cnt { if c == 0 { ans = append(ans, i) } } return }
class Solution { public List<Integer> findSmallestSetOfVertices(int n, List<List<Integer>> edges) { var cnt = new int[n]; for (var e : edges) { ++cnt[e.get(1)]; } List<Integer> ans = new ArrayList<>(); for (int i = 0; i < n; ++i) { if (cnt[i] == 0) { ans.add(i); } } return ans; } }
null
null
null
null
null
null
class Solution: def findSmallestSetOfVertices(self, n: int, edges: List[List[int]]) -> List[int]: cnt = Counter(t for _, t in edges) return [i for i in range(n) if cnt[i] == 0]
null
impl Solution { pub fn find_smallest_set_of_vertices(n: i32, edges: Vec<Vec<i32>>) -> Vec<i32> { let mut arr = vec![true; n as usize]; edges.iter().for_each(|edge| { arr[edge[1] as usize] = false; }); arr.iter() .enumerate() .filter_map(|(i, &v)| if v { Some(i as i32) } else { None }) .collect() } }
null
null
null
function findSmallestSetOfVertices(n: number, edges: number[][]): number[] { const cnt: number[] = new Array(n).fill(0); for (const [_, t] of edges) { cnt[t]++; } const ans: number[] = []; for (let i = 0; i < n; ++i) { if (cnt[i] === 0) { ans.push(i); } } return ans; }
Users That Actively Request Confirmation Messages 🔒
Table: Signups +----------------+----------+ | Column Name | Type | +----------------+----------+ | user_id | int | | time_stamp | datetime | +----------------+----------+ user_id is the column with unique values for this table. Each row contains information about the signup time for the user with ID user_id.   Table: Confirmations +----------------+----------+ | Column Name | Type | +----------------+----------+ | user_id | int | | time_stamp | datetime | | action | ENUM | +----------------+----------+ (user_id, time_stamp) is the primary key (combination of columns with unique values) for this table. user_id is a foreign key (reference column) to the Signups table. action is an ENUM (category) of the type ('confirmed', 'timeout') Each row of this table indicates that the user with ID user_id requested a confirmation message at time_stamp and that confirmation message was either confirmed ('confirmed') or expired without confirming ('timeout').   Write a solution to find the IDs of the users that requested a confirmation message twice within a 24-hour window. Two messages exactly 24 hours apart are considered to be within the window. The action does not affect the answer, only the request time. Return the result table in any order . The result format is in the following example.   Example 1: Input: Signups table: +---------+---------------------+ | user_id | time_stamp | +---------+---------------------+ | 3 | 2020-03-21 10:16:13 | | 7 | 2020-01-04 13:57:59 | | 2 | 2020-07-29 23:09:44 | | 6 | 2020-12-09 10:39:37 | +---------+---------------------+ Confirmations table: +---------+---------------------+-----------+ | user_id | time_stamp | action | +---------+---------------------+-----------+ | 3 | 2021-01-06 03:30:46 | timeout | | 3 | 2021-01-06 03:37:45 | timeout | | 7 | 2021-06-12 11:57:29 | confirmed | | 7 | 2021-06-13 11:57:30 | confirmed | | 2 | 2021-01-22 00:00:00 | confirmed | | 2 | 2021-01-23 00:00:00 | timeout | | 6 | 2021-10-23 14:14:14 | confirmed | | 6 | 2021-10-24 14:14:13 | timeout | +---------+---------------------+-----------+ Output: +---------+ | user_id | +---------+ | 2 | | 3 | | 6 | +---------+ Explanation: User 2 requested two messages within exactly 24 hours of each other, so we include them. User 3 requested two messages within 6 minutes and 59 seconds of each other, so we include them. User 6 requested two messages within 23 hours, 59 minutes, and 59 seconds of each other, so we include them. User 7 requested two messages within 24 hours and 1 second of each other, so we exclude them from the answer.
null
null
null
null
null
null
null
null
null
SELECT DISTINCT user_id FROM Confirmations AS c1 JOIN Confirmations AS c2 USING (user_id) WHERE c1.time_stamp < c2.time_stamp AND TIMESTAMPDIFF(SECOND, c1.time_stamp, c2.time_stamp) <= 24 * 60 * 60;
null
null
null
null
null
null
null
null
null
null
Words Within Two Edits of Dictionary
You are given two string arrays, queries and dictionary . All words in each array comprise of lowercase English letters and have the same length. In one edit you can take a word from queries , and change any letter in it to any other letter. Find all words from queries that, after a maximum of two edits, equal some word from dictionary . Return a list of all words from queries , that match with some word from dictionary after a maximum of two edits . Return the words in the same order they appear in queries .   Example 1: Input: queries = ["word","note","ants","wood"], dictionary = ["wood","joke","moat"] Output: ["word","note","wood"] Explanation: - Changing the 'r' in "word" to 'o' allows it to equal the dictionary word "wood". - Changing the 'n' to 'j' and the 't' to 'k' in "note" changes it to "joke". - It would take more than 2 edits for "ants" to equal a dictionary word. - "wood" can remain unchanged (0 edits) and match the corresponding dictionary word. Thus, we return ["word","note","wood"]. Example 2: Input: queries = ["yes"], dictionary = ["not"] Output: [] Explanation: Applying any two edits to "yes" cannot make it equal to "not". Thus, we return an empty array.   Constraints: 1 <= queries.length, dictionary.length <= 100 n == queries[i].length == dictionary[j].length 1 <= n <= 100 All queries[i] and dictionary[j] are composed of lowercase English letters.
null
public class Solution { public IList<string> TwoEditWords(string[] queries, string[] dictionary) { var ans = new List<string>(); foreach (var s in queries) { foreach (var t in dictionary) { int cnt = 0; for (int i = 0; i < s.Length; i++) { if (s[i] != t[i]) { cnt++; } } if (cnt < 3) { ans.Add(s); break; } } } return ans; } }
class Solution { public: vector<string> twoEditWords(vector<string>& queries, vector<string>& dictionary) { vector<string> ans; for (auto& s : queries) { for (auto& t : dictionary) { int cnt = 0; for (int i = 0; i < s.size(); ++i) { cnt += s[i] != t[i]; } if (cnt < 3) { ans.emplace_back(s); break; } } } return ans; } };
null
null
func twoEditWords(queries []string, dictionary []string) (ans []string) { for _, s := range queries { for _, t := range dictionary { cnt := 0 for i := range s { if s[i] != t[i] { cnt++ } } if cnt < 3 { ans = append(ans, s) break } } } return }
class Solution { public List<String> twoEditWords(String[] queries, String[] dictionary) { List<String> ans = new ArrayList<>(); int n = queries[0].length(); for (var s : queries) { for (var t : dictionary) { int cnt = 0; for (int i = 0; i < n; ++i) { if (s.charAt(i) != t.charAt(i)) { ++cnt; } } if (cnt < 3) { ans.add(s); break; } } } return ans; } }
null
null
null
null
null
null
class Solution: def twoEditWords(self, queries: List[str], dictionary: List[str]) -> List[str]: ans = [] for s in queries: for t in dictionary: if sum(a != b for a, b in zip(s, t)) < 3: ans.append(s) break return ans
null
impl Solution { pub fn two_edit_words(queries: Vec<String>, dictionary: Vec<String>) -> Vec<String> { queries .into_iter() .filter(|s| { dictionary .iter() .any(|t| s.chars().zip(t.chars()).filter(|&(a, b)| a != b).count() < 3) }) .collect() } }
null
null
null
function twoEditWords(queries: string[], dictionary: string[]): string[] { const n = queries[0].length; return queries.filter(s => { for (const t of dictionary) { let diff = 0; for (let i = 0; i < n; ++i) { if (s[i] !== t[i]) { ++diff; } } if (diff < 3) { return true; } } return false; }); }
Minimum Number of Primes to Sum to Target 🔒
You are given two integers n and m . You have to select a multiset of prime numbers from the first m prime numbers such that the sum of the selected primes is exactly n . You may use each prime number multiple times. Return the minimum number of prime numbers needed to sum up to n , or -1 if it is not possible.   Example 1: Input: n = 10, m = 2 Output: 4 Explanation: The first 2 primes are [2, 3]. The sum 10 can be formed as 2 + 2 + 3 + 3, requiring 4 primes. Example 2: Input: n = 15, m = 5 Output: 3 Explanation: The first 5 primes are [2, 3, 5, 7, 11]. The sum 15 can be formed as 5 + 5 + 5, requiring 3 primes. Example 3: Input: n = 7, m = 6 Output: 1 Explanation: The first 6 primes are [2, 3, 5, 7, 11, 13]. The sum 7 can be formed directly by prime 7, requiring only 1 prime.   Constraints: 1 <= n <= 1000 1 <= m <= 1000
null
null
class Solution { public: int minNumberOfPrimes(int n, int m) { static vector<int> primes; if (primes.empty()) { int x = 2; int M = 1000; while ((int) primes.size() < M) { bool is_prime = true; for (int p : primes) { if (p * p > x) break; if (x % p == 0) { is_prime = false; break; } } if (is_prime) primes.push_back(x); x++; } } vector<int> f(n + 1, INT_MAX); f[0] = 0; for (int x : vector<int>(primes.begin(), primes.begin() + m)) { for (int i = x; i <= n; ++i) { if (f[i - x] != INT_MAX) { f[i] = min(f[i], f[i - x] + 1); } } } return f[n] < INT_MAX ? f[n] : -1; } };
null
null
var primes []int func init() { x := 2 M := 1000 for len(primes) < M { is_prime := true for _, p := range primes { if p*p > x { break } if x%p == 0 { is_prime = false break } } if is_prime { primes = append(primes, x) } x++ } } func minNumberOfPrimes(n int, m int) int { const inf = int(1e9) f := make([]int, n+1) for i := 1; i <= n; i++ { f[i] = inf } f[0] = 0 for _, x := range primes[:m] { for i := x; i <= n; i++ { if f[i-x] < inf && f[i-x]+1 < f[i] { f[i] = f[i-x] + 1 } } } if f[n] < inf { return f[n] } return -1 }
class Solution { static List<Integer> primes = new ArrayList<>(); static { int x = 2; int M = 1000; while (primes.size() < M) { boolean is_prime = true; for (int p : primes) { if (p * p > x) { break; } if (x % p == 0) { is_prime = false; break; } } if (is_prime) { primes.add(x); } x++; } } public int minNumberOfPrimes(int n, int m) { int[] f = new int[n + 1]; final int inf = 1 << 30; Arrays.fill(f, inf); f[0] = 0; for (int x : primes.subList(0, m)) { for (int i = x; i <= n; i++) { f[i] = Math.min(f[i], f[i - x] + 1); } } return f[n] < inf ? f[n] : -1; } }
null
null
null
null
null
null
primes = [] x = 2 M = 1000 while len(primes) < M: is_prime = True for p in primes: if p * p > x: break if x % p == 0: is_prime = False break if is_prime: primes.append(x) x += 1 class Solution: def minNumberOfPrimes(self, n: int, m: int) -> int: min = lambda x, y: x if x < y else y f = [0] + [inf] * n for x in primes[:m]: for i in range(x, n + 1): f[i] = min(f[i], f[i - x] + 1) return f[n] if f[n] < inf else -1
null
null
null
null
null
const primes: number[] = []; let x = 2; const M = 1000; while (primes.length < M) { let is_prime = true; for (const p of primes) { if (p * p > x) break; if (x % p === 0) { is_prime = false; break; } } if (is_prime) primes.push(x); x++; } function minNumberOfPrimes(n: number, m: number): number { const inf = 1e9; const f: number[] = Array(n + 1).fill(inf); f[0] = 0; for (const x of primes.slice(0, m)) { for (let i = x; i <= n; i++) { if (f[i - x] < inf) { f[i] = Math.min(f[i], f[i - x] + 1); } } } return f[n] < inf ? f[n] : -1; }
Number of Distinct Islands II 🔒
You are given an m x n binary matrix grid . An island is a group of 1 's (representing land) connected 4-directionally (horizontal or vertical.) You may assume all four edges of the grid are surrounded by water. An island is considered to be the same as another if they have the same shape, or have the same shape after rotation (90, 180, or 270 degrees only) or reflection (left/right direction or up/down direction). Return the number of distinct islands .   Example 1: Input: grid = [[1,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,1]] Output: 1 Explanation: The two islands are considered the same because if we make a 180 degrees clockwise rotation on the first island, then two islands will have the same shapes. Example 2: Input: grid = [[1,1,0,0,0],[1,1,0,0,0],[0,0,0,1,1],[0,0,0,1,1]] Output: 1   Constraints: m == grid.length n == grid[i].length 1 <= m, n <= 50 grid[i][j] is either 0 or 1 .
null
null
typedef pair<int, int> PII; class Solution { public: int numDistinctIslands2(vector<vector<int>>& grid) { set<vector<PII>> s; for (int i = 0; i < grid.size(); ++i) { for (int j = 0; j < grid[0].size(); ++j) { if (grid[i][j]) { vector<PII> shape; dfs(i, j, grid, shape); s.insert(normalize(shape)); } } } return s.size(); } vector<PII> normalize(vector<PII>& shape) { vector<vector<PII>> shapes(8); for (auto& e : shape) { int i = e.first, j = e.second; shapes[0].push_back({i, j}); shapes[1].push_back({i, -j}); shapes[2].push_back({-i, j}); shapes[3].push_back({-i, -j}); shapes[4].push_back({j, i}); shapes[5].push_back({j, -i}); shapes[6].push_back({-j, -i}); shapes[7].push_back({-j, i}); } for (auto& e : shapes) { sort(e.begin(), e.end()); for (int k = e.size() - 1; k >= 0; --k) { e[k].first -= e[0].first; e[k].second -= e[0].second; } } sort(shapes.begin(), shapes.end()); return shapes[0]; } void dfs(int i, int j, vector<vector<int>>& grid, vector<PII>& shape) { shape.push_back({i, j}); grid[i][j] = 0; vector<int> dirs = {-1, 0, 1, 0, -1}; for (int k = 0; k < 4; ++k) { int x = i + dirs[k], y = j + dirs[k + 1]; if (x >= 0 && x < grid.size() && y >= 0 && y < grid[0].size() && grid[x][y] == 1) dfs(x, y, grid, shape); } } };
null
null
null
class Solution { private int m; private int n; private int[][] grid; public int numDistinctIslands2(int[][] grid) { m = grid.length; n = grid[0].length; this.grid = grid; Set<List<List<Integer>>> s = new HashSet<>(); for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { if (grid[i][j] == 1) { List<Integer> shape = new ArrayList<>(); dfs(i, j, shape); s.add(normalize(shape)); } } } return s.size(); } private List<List<Integer>> normalize(List<Integer> shape) { List<int[]>[] shapes = new List[8]; for (int i = 0; i < 8; ++i) { shapes[i] = new ArrayList<>(); } for (int e : shape) { int i = e / n; int j = e % n; shapes[0].add(new int[] {i, j}); shapes[1].add(new int[] {i, -j}); shapes[2].add(new int[] {-i, j}); shapes[3].add(new int[] {-i, -j}); shapes[4].add(new int[] {j, i}); shapes[5].add(new int[] {j, -i}); shapes[6].add(new int[] {-j, i}); shapes[7].add(new int[] {-j, -i}); } for (List<int[]> e : shapes) { e.sort((a, b) -> { int i1 = a[0]; int j1 = a[1]; int i2 = b[0]; int j2 = b[1]; if (i1 == i2) { return j1 - j2; } return i1 - i2; }); int a = e.get(0)[0]; int b = e.get(0)[1]; for (int k = e.size() - 1; k >= 0; --k) { int i = e.get(k)[0]; int j = e.get(k)[1]; e.set(k, new int[] {i - a, j - b}); } } Arrays.sort(shapes, (a, b) -> { for (int k = 0; k < a.size(); ++k) { int i1 = a.get(k)[0]; int j1 = a.get(k)[1]; int i2 = b.get(k)[0]; int j2 = b.get(k)[1]; if (i1 != i2) { return i1 - i2; } if (j1 != j2) { return j1 - j2; } } return 0; }); List<List<Integer>> ans = new ArrayList<>(); for (int[] e : shapes[0]) { ans.add(Arrays.asList(e[0], e[1])); } return ans; } private void dfs(int i, int j, List<Integer> shape) { shape.add(i * n + j); grid[i][j] = 0; int[] dirs = {-1, 0, 1, 0, -1}; for (int k = 0; k < 4; ++k) { int x = i + dirs[k]; int y = j + dirs[k + 1]; if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == 1) { dfs(x, y, shape); } } } }
null
null
null
null
null
null
class Solution: def numDistinctIslands2(self, grid: List[List[int]]) -> int: def dfs(i, j, shape): shape.append([i, j]) grid[i][j] = 0 for a, b in [[1, 0], [-1, 0], [0, 1], [0, -1]]: x, y = i + a, j + b if 0 <= x < m and 0 <= y < n and grid[x][y] == 1: dfs(x, y, shape) def normalize(shape): shapes = [[] for _ in range(8)] for i, j in shape: shapes[0].append([i, j]) shapes[1].append([i, -j]) shapes[2].append([-i, j]) shapes[3].append([-i, -j]) shapes[4].append([j, i]) shapes[5].append([j, -i]) shapes[6].append([-j, i]) shapes[7].append([-j, -i]) for e in shapes: e.sort() for i in range(len(e) - 1, -1, -1): e[i][0] -= e[0][0] e[i][1] -= e[0][1] shapes.sort() return tuple(tuple(e) for e in shapes[0]) m, n = len(grid), len(grid[0]) s = set() for i in range(m): for j in range(n): if grid[i][j]: shape = [] dfs(i, j, shape) s.add(normalize(shape)) return len(s)
null
null
null
null
null
null
Rabbits in Forest
There is a forest with an unknown number of rabbits. We asked n rabbits "How many rabbits have the same color as you?" and collected the answers in an integer array answers where answers[i] is the answer of the i th rabbit. Given the array answers , return the minimum number of rabbits that could be in the forest .   Example 1: Input: answers = [1,1,2] Output: 5 Explanation: The two rabbits that answered "1" could both be the same color, say red. The rabbit that answered "2" can't be red or the answers would be inconsistent. Say the rabbit that answered "2" was blue. Then there should be 2 other blue rabbits in the forest that didn't answer into the array. The smallest possible number of rabbits in the forest is therefore 5: 3 that answered plus 2 that didn't. Example 2: Input: answers = [10,10,10] Output: 11   Constraints: 1 <= answers.length <= 1000 0 <= answers[i] < 1000
null
null
class Solution { public: int numRabbits(vector<int>& answers) { unordered_map<int, int> cnt; for (int x : answers) { ++cnt[x]; } int ans = 0; for (auto& [x, v] : cnt) { int group = x + 1; ans += (v + group - 1) / group * group; } return ans; } };
null
null
func numRabbits(answers []int) (ans int) { cnt := map[int]int{} for _, x := range answers { cnt[x]++ } for x, v := range cnt { group := x + 1 ans += (v + group - 1) / group * group } return }
class Solution { public int numRabbits(int[] answers) { Map<Integer, Integer> cnt = new HashMap<>(); for (int x : answers) { cnt.merge(x, 1, Integer::sum); } int ans = 0; for (var e : cnt.entrySet()) { int group = e.getKey() + 1; ans += (e.getValue() + group - 1) / group * group; } return ans; } }
function numRabbits(answers) { const cnt = {}; let ans = 0; for (const x of answers) { if (cnt[x]) { cnt[x]--; } else { cnt[x] = x; ans += x + 1; } } return ans; }
null
null
null
null
null
class Solution: def numRabbits(self, answers: List[int]) -> int: cnt = Counter(answers) ans = 0 for x, v in cnt.items(): group = x + 1 ans += (v + group - 1) // group * group return ans
null
null
null
null
null
function numRabbits(answers: number[]): number { const cnt: Record<number, number> = {}; let ans = 0; for (const x of answers) { if (cnt[x]) { cnt[x]--; } else { cnt[x] = x; ans += x + 1; } } return ans; }
List the Products Ordered in a Period
Table: Products +------------------+---------+ | Column Name | Type | +------------------+---------+ | product_id | int | | product_name | varchar | | product_category | varchar | +------------------+---------+ product_id is the primary key (column with unique values) for this table. This table contains data about the company's products.   Table: Orders +---------------+---------+ | Column Name | Type | +---------------+---------+ | product_id | int | | order_date | date | | unit | int | +---------------+---------+ This table may have duplicate rows. product_id is a foreign key (reference column) to the Products table. unit is the number of products ordered in order_date.   Write a solution to get the names of products that have at least 100 units ordered in February 2020 and their amount. Return the result table in any order . The result format is in the following example.   Example 1: Input: Products table: +-------------+-----------------------+------------------+ | product_id | product_name | product_category | +-------------+-----------------------+------------------+ | 1 | Leetcode Solutions | Book | | 2 | Jewels of Stringology | Book | | 3 | HP | Laptop | | 4 | Lenovo | Laptop | | 5 | Leetcode Kit | T-shirt | +-------------+-----------------------+------------------+ Orders table: +--------------+--------------+----------+ | product_id | order_date | unit | +--------------+--------------+----------+ | 1 | 2020-02-05 | 60 | | 1 | 2020-02-10 | 70 | | 2 | 2020-01-18 | 30 | | 2 | 2020-02-11 | 80 | | 3 | 2020-02-17 | 2 | | 3 | 2020-02-24 | 3 | | 4 | 2020-03-01 | 20 | | 4 | 2020-03-04 | 30 | | 4 | 2020-03-04 | 60 | | 5 | 2020-02-25 | 50 | | 5 | 2020-02-27 | 50 | | 5 | 2020-03-01 | 50 | +--------------+--------------+----------+ Output: +--------------------+---------+ | product_name | unit | +--------------------+---------+ | Leetcode Solutions | 130 | | Leetcode Kit | 100 | +--------------------+---------+ Explanation: Products with product_id = 1 is ordered in February a total of (60 + 70) = 130. Products with product_id = 2 is ordered in February a total of 80. Products with product_id = 3 is ordered in February a total of (2 + 3) = 5. Products with product_id = 4 was not ordered in February 2020. Products with product_id = 5 is ordered in February a total of (50 + 50) = 100.
null
null
null
null
null
null
null
null
null
# Write your MySQL query statement below SELECT product_name, SUM(unit) AS unit FROM Orders AS o JOIN Products AS p ON o.product_id = p.product_id WHERE DATE_FORMAT(order_date, '%Y-%m') = '2020-02' GROUP BY o.product_id HAVING unit >= 100;
null
null
null
null
null
null
null
null
null
null
Guess Number Higher or Lower II
We are playing the Guessing Game. The game will work as follows: I pick a number between  1  and  n . You guess a number. If you guess the right number, you win the game . If you guess the wrong number, then I will tell you whether the number I picked is higher or lower , and you will continue guessing. Every time you guess a wrong number  x , you will pay  x  dollars. If you run out of money, you lose the game . Given a particular  n , return  the minimum amount of money you need to  guarantee a win regardless of what number I pick .   Example 1: Input: n = 10 Output: 16 Explanation: The winning strategy is as follows: - The range is [1,10]. Guess 7.   - If this is my number, your total is $0. Otherwise, you pay $7.   - If my number is higher, the range is [8,10]. Guess 9.   - If this is my number, your total is $7. Otherwise, you pay $9.   - If my number is higher, it must be 10. Guess 10. Your total is $7 + $9 = $16.   - If my number is lower, it must be 8. Guess 8. Your total is $7 + $9 = $16.   - If my number is lower, the range is [1,6]. Guess 3.   - If this is my number, your total is $7. Otherwise, you pay $3.   - If my number is higher, the range is [4,6]. Guess 5.   - If this is my number, your total is $7 + $3 = $10. Otherwise, you pay $5.   - If my number is higher, it must be 6. Guess 6. Your total is $7 + $3 + $5 = $15.   - If my number is lower, it must be 4. Guess 4. Your total is $7 + $3 + $5 = $15.   - If my number is lower, the range is [1,2]. Guess 1.   - If this is my number, your total is $7 + $3 = $10. Otherwise, you pay $1.   - If my number is higher, it must be 2. Guess 2. Your total is $7 + $3 + $1 = $11. The worst case in all these scenarios is that you pay $16. Hence, you only need $16 to guarantee a win. Example 2: Input: n = 1 Output: 0 Explanation:  There is only one possible number, so you can guess 1 and not have to pay anything. Example 3: Input: n = 2 Output: 1 Explanation:  There are two possible numbers, 1 and 2. - Guess 1.   - If this is my number, your total is $0. Otherwise, you pay $1.   - If my number is higher, it must be 2. Guess 2. Your total is $1. The worst case is that you pay $1.   Constraints: 1 <= n <= 200
null
null
class Solution { public: int getMoneyAmount(int n) { int f[n + 1][n + 1]; memset(f, 0, sizeof(f)); for (int i = n - 1; i; --i) { for (int j = i + 1; j <= n; ++j) { f[i][j] = j + f[i][j - 1]; for (int k = i; k < j; ++k) { f[i][j] = min(f[i][j], max(f[i][k - 1], f[k + 1][j]) + k); } } } return f[1][n]; } };
null
null
func getMoneyAmount(n int) int { f := make([][]int, n+1) for i := range f { f[i] = make([]int, n+1) } for i := n - 1; i > 0; i-- { for j := i + 1; j <= n; j++ { f[i][j] = j + f[i][j-1] for k := i; k < j; k++ { f[i][j] = min(f[i][j], k+max(f[i][k-1], f[k+1][j])) } } } return f[1][n] }
class Solution { public int getMoneyAmount(int n) { int[][] f = new int[n + 1][n + 1]; for (int i = n - 1; i > 0; --i) { for (int j = i + 1; j <= n; ++j) { f[i][j] = j + f[i][j - 1]; for (int k = i; k < j; ++k) { f[i][j] = Math.min(f[i][j], Math.max(f[i][k - 1], f[k + 1][j]) + k); } } } return f[1][n]; } }
null
null
null
null
null
null
class Solution: def getMoneyAmount(self, n: int) -> int: f = [[0] * (n + 1) for _ in range(n + 1)] for i in range(n - 1, 0, -1): for j in range(i + 1, n + 1): f[i][j] = j + f[i][j - 1] for k in range(i, j): f[i][j] = min(f[i][j], max(f[i][k - 1], f[k + 1][j]) + k) return f[1][n]
null
null
null
null
null
function getMoneyAmount(n: number): number { const f: number[][] = Array.from({ length: n + 1 }, () => Array(n + 1).fill(0)); for (let i = n - 1; i; --i) { for (let j = i + 1; j <= n; ++j) { f[i][j] = j + f[i][j - 1]; for (let k = i; k < j; ++k) { f[i][j] = Math.min(f[i][j], k + Math.max(f[i][k - 1], f[k + 1][j])); } } } return f[1][n]; }
Eat Pizzas!
You are given an integer array pizzas of size n , where pizzas[i] represents the weight of the i th pizza. Every day, you eat exactly 4 pizzas. Due to your incredible metabolism, when you eat pizzas of weights W , X , Y , and Z , where W <= X <= Y <= Z , you gain the weight of only 1 pizza! On odd-numbered days (1-indexed) , you gain a weight of Z . On even-numbered days, you gain a weight of Y . Find the maximum total weight you can gain by eating all pizzas optimally. Note : It is guaranteed that n is a multiple of 4, and each pizza can be eaten only once.   Example 1: Input: pizzas = [1,2,3,4,5,6,7,8] Output: 14 Explanation: On day 1, you eat pizzas at indices [1, 2, 4, 7] = [2, 3, 5, 8] . You gain a weight of 8. On day 2, you eat pizzas at indices [0, 3, 5, 6] = [1, 4, 6, 7] . You gain a weight of 6. The total weight gained after eating all the pizzas is 8 + 6 = 14 . Example 2: Input: pizzas = [2,1,1,1,1,1,1,1] Output: 3 Explanation: On day 1, you eat pizzas at indices [4, 5, 6, 0] = [1, 1, 1, 2] . You gain a weight of 2. On day 2, you eat pizzas at indices [1, 2, 3, 7] = [1, 1, 1, 1] . You gain a weight of 1. The total weight gained after eating all the pizzas is 2 + 1 = 3.   Constraints: 4 <= n == pizzas.length <= 2 * 10 5 1 <= pizzas[i] <= 10 5 n is a multiple of 4.
null
null
class Solution { public: long long maxWeight(vector<int>& pizzas) { int n = pizzas.size(); int days = pizzas.size() / 4; ranges::sort(pizzas); int odd = (days + 1) / 2; int even = days - odd; long long ans = accumulate(pizzas.begin() + n - odd, pizzas.end(), 0LL); for (int i = n - odd - 2; even; --even) { ans += pizzas[i]; i -= 2; } return ans; } };
null
null
func maxWeight(pizzas []int) (ans int64) { n := len(pizzas) days := n / 4 sort.Ints(pizzas) odd := (days + 1) / 2 even := days - odd for i := n - odd; i < n; i++ { ans += int64(pizzas[i]) } for i := n - odd - 2; even > 0; even-- { ans += int64(pizzas[i]) i -= 2 } return }
class Solution { public long maxWeight(int[] pizzas) { int n = pizzas.length; int days = n / 4; Arrays.sort(pizzas); int odd = (days + 1) / 2; int even = days / 2; long ans = 0; for (int i = n - odd; i < n; ++i) { ans += pizzas[i]; } for (int i = n - odd - 2; even > 0; --even) { ans += pizzas[i]; i -= 2; } return ans; } }
null
null
null
null
null
null
class Solution: def maxWeight(self, pizzas: List[int]) -> int: days = len(pizzas) // 4 pizzas.sort() odd = (days + 1) // 2 even = days - odd ans = sum(pizzas[-odd:]) i = len(pizzas) - odd - 2 for _ in range(even): ans += pizzas[i] i -= 2 return ans
null
null
null
null
null
function maxWeight(pizzas: number[]): number { const n = pizzas.length; const days = n >> 2; pizzas.sort((a, b) => a - b); const odd = (days + 1) >> 1; let even = days - odd; let ans = 0; for (let i = n - odd; i < n; ++i) { ans += pizzas[i]; } for (let i = n - odd - 2; even; --even) { ans += pizzas[i]; i -= 2; } return ans; }
Minimum Sum of Squared Difference
You are given two positive 0-indexed integer arrays nums1 and nums2 , both of length n . The sum of squared difference of arrays nums1 and nums2 is defined as the sum of (nums1[i] - nums2[i]) 2 for each 0 <= i < n . You are also given two positive integers k1 and k2 . You can modify any of the elements of nums1 by +1 or -1 at most k1 times. Similarly, you can modify any of the elements of nums2 by +1 or -1 at most k2 times. Return the minimum sum of squared difference after modifying array nums1 at most k1 times and modifying array nums2 at most k2 times . Note : You are allowed to modify the array elements to become negative integers.   Example 1: Input: nums1 = [1,2,3,4], nums2 = [2,10,20,19], k1 = 0, k2 = 0 Output: 579 Explanation: The elements in nums1 and nums2 cannot be modified because k1 = 0 and k2 = 0. The sum of square difference will be: (1 - 2) 2 + (2 - 10) 2 + (3 - 20) 2 + (4 - 19) 2  = 579. Example 2: Input: nums1 = [1,4,10,12], nums2 = [5,8,6,9], k1 = 1, k2 = 1 Output: 43 Explanation: One way to obtain the minimum sum of square difference is: - Increase nums1[0] once. - Increase nums2[2] once. The minimum of the sum of square difference will be: (2 - 5) 2 + (4 - 8) 2 + (10 - 7) 2 + (12 - 9) 2  = 43. Note that, there are other ways to obtain the minimum of the sum of square difference, but there is no way to obtain a sum smaller than 43.   Constraints: n == nums1.length == nums2.length 1 <= n <= 10 5 0 <= nums1[i], nums2[i] <= 10 5 0 <= k1, k2 <= 10 9
null
null
using ll = long long; class Solution { public: long long minSumSquareDiff(vector<int>& nums1, vector<int>& nums2, int k1, int k2) { int n = nums1.size(); vector<int> d(n); ll s = 0; int mx = 0; int k = k1 + k2; for (int i = 0; i < n; ++i) { d[i] = abs(nums1[i] - nums2[i]); s += d[i]; mx = max(mx, d[i]); } if (s <= k) return 0; int left = 0, right = mx; while (left < right) { int mid = (left + right) >> 1; ll t = 0; for (int v : d) t += max(v - mid, 0); if (t <= k) right = mid; else left = mid + 1; } for (int i = 0; i < n; ++i) { k -= max(0, d[i] - left); d[i] = min(d[i], left); } for (int i = 0; i < n && k; ++i) { if (d[i] == left) { --k; --d[i]; } } ll ans = 0; for (int v : d) ans += 1ll * v * v; return ans; } };
null
null
func minSumSquareDiff(nums1 []int, nums2 []int, k1 int, k2 int) int64 { k := k1 + k2 s, mx := 0, 0 n := len(nums1) d := make([]int, n) for i, v := range nums1 { d[i] = abs(v - nums2[i]) s += d[i] mx = max(mx, d[i]) } if s <= k { return 0 } left, right := 0, mx for left < right { mid := (left + right) >> 1 t := 0 for _, v := range d { t += max(v-mid, 0) } if t <= k { right = mid } else { left = mid + 1 } } for i, v := range d { k -= max(v-left, 0) d[i] = min(v, left) } for i, v := range d { if k <= 0 { break } if v == left { d[i]-- k-- } } ans := 0 for _, v := range d { ans += v * v } return int64(ans) } func abs(x int) int { if x < 0 { return -x } return x }
class Solution { public long minSumSquareDiff(int[] nums1, int[] nums2, int k1, int k2) { int n = nums1.length; int[] d = new int[n]; long s = 0; int mx = 0; int k = k1 + k2; for (int i = 0; i < n; ++i) { d[i] = Math.abs(nums1[i] - nums2[i]); s += d[i]; mx = Math.max(mx, d[i]); } if (s <= k) { return 0; } int left = 0, right = mx; while (left < right) { int mid = (left + right) >> 1; long t = 0; for (int v : d) { t += Math.max(v - mid, 0); } if (t <= k) { right = mid; } else { left = mid + 1; } } for (int i = 0; i < n; ++i) { k -= Math.max(0, d[i] - left); d[i] = Math.min(d[i], left); } for (int i = 0; i < n && k > 0; ++i) { if (d[i] == left) { --k; --d[i]; } } long ans = 0; for (int v : d) { ans += (long) v * v; } return ans; } }
null
null
null
null
null
null
class Solution: def minSumSquareDiff( self, nums1: List[int], nums2: List[int], k1: int, k2: int ) -> int: d = [abs(a - b) for a, b in zip(nums1, nums2)] k = k1 + k2 if sum(d) <= k: return 0 left, right = 0, max(d) while left < right: mid = (left + right) >> 1 if sum(max(v - mid, 0) for v in d) <= k: right = mid else: left = mid + 1 for i, v in enumerate(d): d[i] = min(left, v) k -= max(0, v - left) for i, v in enumerate(d): if k == 0: break if v == left: k -= 1 d[i] -= 1 return sum(v * v for v in d)
null
null
null
null
null
null
Shopping Offers
In LeetCode Store, there are n items to sell. Each item has a price. However, there are some special offers, and a special offer consists of one or more different kinds of items with a sale price. You are given an integer array price where price[i] is the price of the i th item, and an integer array needs where needs[i] is the number of pieces of the i th item you want to buy. You are also given an array special where special[i] is of size n + 1 where special[i][j] is the number of pieces of the j th item in the i th offer and special[i][n] (i.e., the last integer in the array) is the price of the i th offer. Return the lowest price you have to pay for exactly certain items as given, where you could make optimal use of the special offers . You are not allowed to buy more items than you want, even if that would lower the overall price. You could use any of the special offers as many times as you want.   Example 1: Input: price = [2,5], special = [[3,0,5],[1,2,10]], needs = [3,2] Output: 14 Explanation: There are two kinds of items, A and B. Their prices are $2 and $5 respectively. In special offer 1, you can pay $5 for 3A and 0B In special offer 2, you can pay $10 for 1A and 2B. You need to buy 3A and 2B, so you may pay $10 for 1A and 2B (special offer #2), and $4 for 2A. Example 2: Input: price = [2,3,4], special = [[1,1,0,4],[2,2,1,9]], needs = [1,2,1] Output: 11 Explanation: The price of A is $2, and $3 for B, $4 for C. You may pay $4 for 1A and 1B, and $9 for 2A ,2B and 1C. You need to buy 1A ,2B and 1C, so you may pay $4 for 1A and 1B (special offer #1), and $3 for 1B, $4 for 1C. You cannot add more items, though only $9 for 2A ,2B and 1C.   Constraints: n == price.length == needs.length 1 <= n <= 6 0 <= price[i], needs[i] <= 10 1 <= special.length <= 100 special[i].length == n + 1 0 <= special[i][j] <= 50 The input is generated that at least one of special[i][j] is non-zero for 0 <= j <= n - 1 .
null
null
class Solution { public: int shoppingOffers(vector<int>& price, vector<vector<int>>& special, vector<int>& needs) { const int bits = 4; int n = needs.size(); unordered_map<int, int> f; int mask = 0; for (int i = 0; i < n; ++i) { mask |= needs[i] << (i * bits); } function<int(int)> dfs = [&](int cur) { if (f.contains(cur)) { return f[cur]; } int ans = 0; for (int i = 0; i < n; ++i) { ans += price[i] * ((cur >> (i * bits)) & 0xf); } for (const auto& offer : special) { int nxt = cur; bool ok = true; for (int j = 0; j < n; ++j) { if (((cur >> (j * bits)) & 0xf) < offer[j]) { ok = false; break; } nxt -= offer[j] << (j * bits); } if (ok) { ans = min(ans, offer[n] + dfs(nxt)); } } f[cur] = ans; return ans; }; return dfs(mask); } };
null
null
func shoppingOffers(price []int, special [][]int, needs []int) int { const bits = 4 n := len(needs) f := make(map[int]int) mask := 0 for i, need := range needs { mask |= need << (i * bits) } var dfs func(int) int dfs = func(cur int) int { if v, ok := f[cur]; ok { return v } ans := 0 for i := 0; i < n; i++ { ans += price[i] * ((cur >> (i * bits)) & 0xf) } for _, offer := range special { nxt := cur ok := true for j := 0; j < n; j++ { if ((cur >> (j * bits)) & 0xf) < offer[j] { ok = false break } nxt -= offer[j] << (j * bits) } if ok { ans = min(ans, offer[n]+dfs(nxt)) } } f[cur] = ans return ans } return dfs(mask) }
class Solution { private final int bits = 4; private int n; private List<Integer> price; private List<List<Integer>> special; private Map<Integer, Integer> f = new HashMap<>(); public int shoppingOffers( List<Integer> price, List<List<Integer>> special, List<Integer> needs) { n = needs.size(); this.price = price; this.special = special; int mask = 0; for (int i = 0; i < n; ++i) { mask |= needs.get(i) << (i * bits); } return dfs(mask); } private int dfs(int cur) { if (f.containsKey(cur)) { return f.get(cur); } int ans = 0; for (int i = 0; i < n; ++i) { ans += price.get(i) * (cur >> (i * bits) & 0xf); } for (List<Integer> offer : special) { int nxt = cur; boolean ok = true; for (int j = 0; j < n; ++j) { if ((cur >> (j * bits) & 0xf) < offer.get(j)) { ok = false; break; } nxt -= offer.get(j) << (j * bits); } if (ok) { ans = Math.min(ans, offer.get(n) + dfs(nxt)); } } f.put(cur, ans); return ans; } }
null
null
null
null
null
null
class Solution: def shoppingOffers( self, price: List[int], special: List[List[int]], needs: List[int] ) -> int: @cache def dfs(cur: int) -> int: ans = sum(p * (cur >> (i * bits) & 0xF) for i, p in enumerate(price)) for offer in special: nxt = cur for j in range(len(needs)): if (cur >> (j * bits) & 0xF) < offer[j]: break nxt -= offer[j] << (j * bits) else: ans = min(ans, offer[-1] + dfs(nxt)) return ans bits, mask = 4, 0 for i, need in enumerate(needs): mask |= need << i * bits return dfs(mask)
null
null
null
null
null
function shoppingOffers(price: number[], special: number[][], needs: number[]): number { const bits = 4; const n = needs.length; const f: Map<number, number> = new Map(); let mask = 0; for (let i = 0; i < n; i++) { mask |= needs[i] << (i * bits); } const dfs = (cur: number): number => { if (f.has(cur)) { return f.get(cur)!; } let ans = 0; for (let i = 0; i < n; i++) { ans += price[i] * ((cur >> (i * bits)) & 0xf); } for (const offer of special) { let nxt = cur; let ok = true; for (let j = 0; j < n; j++) { if (((cur >> (j * bits)) & 0xf) < offer[j]) { ok = false; break; } nxt -= offer[j] << (j * bits); } if (ok) { ans = Math.min(ans, offer[n] + dfs(nxt)); } } f.set(cur, ans); return ans; }; return dfs(mask); }
Remove Duplicates from Sorted List
Given the head of a sorted linked list, delete all duplicates such that each element appears only once . Return the linked list sorted as well .   Example 1: Input: head = [1,1,2] Output: [1,2] Example 2: Input: head = [1,1,2,3,3] Output: [1,2,3]   Constraints: The number of nodes in the list is in the range [0, 300] . -100 <= Node.val <= 100 The list is guaranteed to be sorted in ascending order.
null
/** * Definition for singly-linked list. * public class ListNode { * public int val; * public ListNode next; * public ListNode(int val=0, ListNode next=null) { * this.val = val; * this.next = next; * } * } */ public class Solution { public ListNode DeleteDuplicates(ListNode head) { ListNode cur = head; while (cur != null && cur.next != null) { if (cur.val == cur.next.val) { cur.next = cur.next.next; } else { cur = cur.next; } } return head; } }
/** * Definition for singly-linked list. * struct ListNode { * int val; * ListNode *next; * ListNode() : val(0), next(nullptr) {} * ListNode(int x) : val(x), next(nullptr) {} * ListNode(int x, ListNode *next) : val(x), next(next) {} * }; */ class Solution { public: ListNode* deleteDuplicates(ListNode* head) { ListNode* cur = head; while (cur != nullptr && cur->next != nullptr) { if (cur->val == cur->next->val) { cur->next = cur->next->next; } else { cur = cur->next; } } return head; } };
null
null
/** * Definition for singly-linked list. * type ListNode struct { * Val int * Next *ListNode * } */ func deleteDuplicates(head *ListNode) *ListNode { cur := head for cur != nil && cur.Next != nil { if cur.Val == cur.Next.Val { cur.Next = cur.Next.Next } else { cur = cur.Next } } return head }
/** * Definition for singly-linked list. * public class ListNode { * int val; * ListNode next; * ListNode() {} * ListNode(int val) { this.val = val; } * ListNode(int val, ListNode next) { this.val = val; this.next = next; } * } */ class Solution { public ListNode deleteDuplicates(ListNode head) { ListNode cur = head; while (cur != null && cur.next != null) { if (cur.val == cur.next.val) { cur.next = cur.next.next; } else { cur = cur.next; } } return head; } }
/** * Definition for singly-linked list. * function ListNode(val) { * this.val = val; * this.next = null; * } */ /** * @param {ListNode} head * @return {ListNode} */ var deleteDuplicates = function (head) { let cur = head; while (cur && cur.next) { if (cur.next.val === cur.val) { cur.next = cur.next.next; } else { cur = cur.next; } } return head; };
null
null
null
null
null
# Definition for singly-linked list. # class ListNode: # def __init__(self, val=0, next=None): # self.val = val # self.next = next class Solution: def deleteDuplicates(self, head: Optional[ListNode]) -> Optional[ListNode]: cur = head while cur and cur.next: if cur.val == cur.next.val: cur.next = cur.next.next else: cur = cur.next return head
null
// Definition for singly-linked list. // #[derive(PartialEq, Eq, Clone, Debug)] // pub struct ListNode { // pub val: i32, // pub next: Option<Box<ListNode>> // } // // impl ListNode { // #[inline] // fn new(val: i32) -> Self { // ListNode { // next: None, // val // } // } // } impl Solution { pub fn delete_duplicates(head: Option<Box<ListNode>>) -> Option<Box<ListNode>> { let mut dummy = Some(Box::new(ListNode::new(i32::MAX))); let mut p = &mut dummy; let mut current = head; while let Some(mut node) = current { current = node.next.take(); if p.as_mut().unwrap().val != node.val { p.as_mut().unwrap().next = Some(node); p = &mut p.as_mut().unwrap().next; } } dummy.unwrap().next } }
null
null
null
null
Minimum Number of Flips to Convert Binary Matrix to Zero Matrix
Given a m x n binary matrix mat . In one step, you can choose one cell and flip it and all the four neighbors of it if they exist (Flip is changing 1 to 0 and 0 to 1 ). A pair of cells are called neighbors if they share one edge. Return the minimum number of steps required to convert mat to a zero matrix or -1 if you cannot. A binary matrix is a matrix with all cells equal to 0 or 1 only. A zero matrix is a matrix with all cells equal to 0 .   Example 1: Input: mat = [[0,0],[0,1]] Output: 3 Explanation: One possible solution is to flip (1, 0) then (0, 1) and finally (1, 1) as shown. Example 2: Input: mat = [[0]] Output: 0 Explanation: Given matrix is a zero matrix. We do not need to change it. Example 3: Input: mat = [[1,0,0],[1,0,0]] Output: -1 Explanation: Given matrix cannot be a zero matrix.   Constraints: m == mat.length n == mat[i].length 1 <= m, n <= 3 mat[i][j] is either 0 or 1 .
null
null
class Solution { public: int minFlips(vector<vector<int>>& mat) { int m = mat.size(), n = mat[0].size(); int state = 0; for (int i = 0; i < m; ++i) for (int j = 0; j < n; ++j) if (mat[i][j]) state |= (1 << (i * n + j)); queue<int> q{{state}}; unordered_set<int> vis{{state}}; int ans = 0; vector<int> dirs = {0, -1, 0, 1, 0, 0}; while (!q.empty()) { for (int t = q.size(); t; --t) { state = q.front(); if (state == 0) return ans; q.pop(); for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { int nxt = state; for (int k = 0; k < 5; ++k) { int x = i + dirs[k], y = j + dirs[k + 1]; if (x < 0 || x >= m || y < 0 || y >= n) continue; if ((nxt & (1 << (x * n + y))) != 0) nxt -= 1 << (x * n + y); else nxt |= 1 << (x * n + y); } if (!vis.count(nxt)) { vis.insert(nxt); q.push(nxt); } } } } ++ans; } return -1; } };
null
null
func minFlips(mat [][]int) int { m, n := len(mat), len(mat[0]) state := 0 for i, row := range mat { for j, v := range row { if v == 1 { state |= 1 << (i*n + j) } } } q := []int{state} vis := map[int]bool{state: true} ans := 0 dirs := []int{0, -1, 0, 1, 0, 0} for len(q) > 0 { for t := len(q); t > 0; t-- { state = q[0] if state == 0 { return ans } q = q[1:] for i := 0; i < m; i++ { for j := 0; j < n; j++ { nxt := state for k := 0; k < 5; k++ { x, y := i+dirs[k], j+dirs[k+1] if x < 0 || x >= m || y < 0 || y >= n { continue } if (nxt & (1 << (x*n + y))) != 0 { nxt -= 1 << (x*n + y) } else { nxt |= 1 << (x*n + y) } } if !vis[nxt] { vis[nxt] = true q = append(q, nxt) } } } } ans++ } return -1 }
class Solution { public int minFlips(int[][] mat) { int m = mat.length, n = mat[0].length; int state = 0; for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { if (mat[i][j] == 1) { state |= 1 << (i * n + j); } } } Deque<Integer> q = new ArrayDeque<>(); q.offer(state); Set<Integer> vis = new HashSet<>(); vis.add(state); int ans = 0; int[] dirs = {0, -1, 0, 1, 0, 0}; while (!q.isEmpty()) { for (int t = q.size(); t > 0; --t) { state = q.poll(); if (state == 0) { return ans; } for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { int nxt = state; for (int k = 0; k < 5; ++k) { int x = i + dirs[k], y = j + dirs[k + 1]; if (x < 0 || x >= m || y < 0 || y >= n) { continue; } if ((nxt & (1 << (x * n + y))) != 0) { nxt -= 1 << (x * n + y); } else { nxt |= 1 << (x * n + y); } } if (!vis.contains(nxt)) { vis.add(nxt); q.offer(nxt); } } } } ++ans; } return -1; } }
null
null
null
null
null
null
class Solution: def minFlips(self, mat: List[List[int]]) -> int: m, n = len(mat), len(mat[0]) state = sum(1 << (i * n + j) for i in range(m) for j in range(n) if mat[i][j]) q = deque([state]) vis = {state} ans = 0 dirs = [0, -1, 0, 1, 0, 0] while q: for _ in range(len(q)): state = q.popleft() if state == 0: return ans for i in range(m): for j in range(n): nxt = state for k in range(5): x, y = i + dirs[k], j + dirs[k + 1] if not 0 <= x < m or not 0 <= y < n: continue if nxt & (1 << (x * n + y)): nxt -= 1 << (x * n + y) else: nxt |= 1 << (x * n + y) if nxt not in vis: vis.add(nxt) q.append(nxt) ans += 1 return -1
null
null
null
null
null
null
Sort the Students by Their Kth Score
There is a class with m students and n exams. You are given a 0-indexed m x n integer matrix score , where each row represents one student and score[i][j] denotes the score the i th student got in the j th exam. The matrix score contains distinct integers only. You are also given an integer k . Sort the students (i.e., the rows of the matrix) by their scores in the k th  ( 0-indexed ) exam from the highest to the lowest. Return the matrix after sorting it.   Example 1: Input: score = [[10,6,9,1],[7,5,11,2],[4,8,3,15]], k = 2 Output: [[7,5,11,2],[10,6,9,1],[4,8,3,15]] Explanation: In the above diagram, S denotes the student, while E denotes the exam. - The student with index 1 scored 11 in exam 2, which is the highest score, so they got first place. - The student with index 0 scored 9 in exam 2, which is the second highest score, so they got second place. - The student with index 2 scored 3 in exam 2, which is the lowest score, so they got third place. Example 2: Input: score = [[3,4],[5,6]], k = 0 Output: [[5,6],[3,4]] Explanation: In the above diagram, S denotes the student, while E denotes the exam. - The student with index 1 scored 5 in exam 0, which is the highest score, so they got first place. - The student with index 0 scored 3 in exam 0, which is the lowest score, so they got second place.   Constraints: m == score.length n == score[i].length 1 <= m, n <= 250 1 <= score[i][j] <= 10 5 score consists of distinct integers. 0 <= k < n
null
null
class Solution { public: vector<vector<int>> sortTheStudents(vector<vector<int>>& score, int k) { ranges::sort(score, [k](const auto& a, const auto& b) { return a[k] > b[k]; }); return score; } };
null
null
func sortTheStudents(score [][]int, k int) [][]int { sort.Slice(score, func(i, j int) bool { return score[i][k] > score[j][k] }) return score }
class Solution { public int[][] sortTheStudents(int[][] score, int k) { Arrays.sort(score, (a, b) -> b[k] - a[k]); return score; } }
null
null
null
null
null
null
class Solution: def sortTheStudents(self, score: List[List[int]], k: int) -> List[List[int]]: return sorted(score, key=lambda x: -x[k])
null
impl Solution { pub fn sort_the_students(mut score: Vec<Vec<i32>>, k: i32) -> Vec<Vec<i32>> { let k = k as usize; score.sort_by(|a, b| b[k].cmp(&a[k])); score } }
null
null
null
function sortTheStudents(score: number[][], k: number): number[][] { return score.sort((a, b) => b[k] - a[k]); }
Game Play Analysis II 🔒
Table: Activity +--------------+---------+ | Column Name | Type | +--------------+---------+ | player_id | int | | device_id | int | | event_date | date | | games_played | int | +--------------+---------+ (player_id, event_date) is the primary key (combination of columns with unique values) of this table. This table shows the activity of players of some games. Each row is a record of a player who logged in and played a number of games (possibly 0) before logging out on someday using some device.   Write a solution to report the device that is first logged in for each player. Return the result table in any order . The result format is in the following example.   Example 1: Input: Activity table: +-----------+-----------+------------+--------------+ | player_id | device_id | event_date | games_played | +-----------+-----------+------------+--------------+ | 1 | 2 | 2016-03-01 | 5 | | 1 | 2 | 2016-05-02 | 6 | | 2 | 3 | 2017-06-25 | 1 | | 3 | 1 | 2016-03-02 | 0 | | 3 | 4 | 2018-07-03 | 5 | +-----------+-----------+------------+--------------+ Output: +-----------+-----------+ | player_id | device_id | +-----------+-----------+ | 1 | 2 | | 2 | 3 | | 3 | 1 | +-----------+-----------+
null
null
null
null
null
null
null
null
null
# Write your MySQL query statement below WITH T AS ( SELECT *, RANK() OVER ( PARTITION BY player_id ORDER BY event_date ) AS rk FROM Activity ) SELECT player_id, device_id FROM T WHERE rk = 1;
null
null
null
null
null
null
null
null
null
null
Fair Candy Swap
Alice and Bob have a different total number of candies. You are given two integer arrays aliceSizes and bobSizes where aliceSizes[i] is the number of candies of the i th box of candy that Alice has and bobSizes[j] is the number of candies of the j th box of candy that Bob has. Since they are friends, they would like to exchange one candy box each so that after the exchange, they both have the same total amount of candy. The total amount of candy a person has is the sum of the number of candies in each box they have. Return a n integer array answer where answer[0] is the number of candies in the box that Alice must exchange, and answer[1] is the number of candies in the box that Bob must exchange . If there are multiple answers, you may return any one of them. It is guaranteed that at least one answer exists.   Example 1: Input: aliceSizes = [1,1], bobSizes = [2,2] Output: [1,2] Example 2: Input: aliceSizes = [1,2], bobSizes = [2,3] Output: [1,2] Example 3: Input: aliceSizes = [2], bobSizes = [1,3] Output: [2,3]   Constraints: 1 <= aliceSizes.length, bobSizes.length <= 10 4 1 <= aliceSizes[i], bobSizes[j] <= 10 5 Alice and Bob have a different total number of candies. There will be at least one valid answer for the given input.
null
null
class Solution { public: vector<int> fairCandySwap(vector<int>& aliceSizes, vector<int>& bobSizes) { int s1 = accumulate(aliceSizes.begin(), aliceSizes.end(), 0); int s2 = accumulate(bobSizes.begin(), bobSizes.end(), 0); int diff = (s1 - s2) >> 1; unordered_set<int> s(bobSizes.begin(), bobSizes.end()); vector<int> ans; for (int& a : aliceSizes) { int b = a - diff; if (s.count(b)) { ans = vector<int>{a, b}; break; } } return ans; } };
null
null
func fairCandySwap(aliceSizes []int, bobSizes []int) []int { s1, s2 := 0, 0 s := map[int]bool{} for _, a := range aliceSizes { s1 += a } for _, b := range bobSizes { s2 += b s[b] = true } diff := (s1 - s2) / 2 for _, a := range aliceSizes { if b := a - diff; s[b] { return []int{a, b} } } return nil }
class Solution { public int[] fairCandySwap(int[] aliceSizes, int[] bobSizes) { int s1 = 0, s2 = 0; Set<Integer> s = new HashSet<>(); for (int a : aliceSizes) { s1 += a; } for (int b : bobSizes) { s.add(b); s2 += b; } int diff = (s1 - s2) >> 1; for (int a : aliceSizes) { int b = a - diff; if (s.contains(b)) { return new int[] {a, b}; } } return null; } }
null
null
null
null
null
null
class Solution: def fairCandySwap(self, aliceSizes: List[int], bobSizes: List[int]) -> List[int]: diff = (sum(aliceSizes) - sum(bobSizes)) >> 1 s = set(bobSizes) for a in aliceSizes: if (b := (a - diff)) in s: return [a, b]
null
null
null
null
null
function fairCandySwap(aliceSizes: number[], bobSizes: number[]): number[] { const s1 = aliceSizes.reduce((acc, cur) => acc + cur, 0); const s2 = bobSizes.reduce((acc, cur) => acc + cur, 0); const diff = (s1 - s2) >> 1; const s = new Set(bobSizes); for (const a of aliceSizes) { const b = a - diff; if (s.has(b)) { return [a, b]; } } return []; }
Tallest Billboard
You are installing a billboard and want it to have the largest height. The billboard will have two steel supports, one on each side. Each steel support must be an equal height. You are given a collection of rods that can be welded together. For example, if you have rods of lengths 1 , 2 , and 3 , you can weld them together to make a support of length 6 . Return the largest possible height of your billboard installation . If you cannot support the billboard, return 0 .   Example 1: Input: rods = [1,2,3,6] Output: 6 Explanation: We have two disjoint subsets {1,2,3} and {6}, which have the same sum = 6. Example 2: Input: rods = [1,2,3,4,5,6] Output: 10 Explanation: We have two disjoint subsets {2,3,5} and {4,6}, which have the same sum = 10. Example 3: Input: rods = [1,2] Output: 0 Explanation: The billboard cannot be supported, so we return 0.   Constraints: 1 <= rods.length <= 20 1 <= rods[i] <= 1000 sum(rods[i]) <= 5000
null
null
class Solution { public: int tallestBillboard(vector<int>& rods) { int n = rods.size(); int s = accumulate(rods.begin(), rods.end(), 0); int f[n + 1][s + 1]; memset(f, -0x3f, sizeof(f)); f[0][0] = 0; for (int i = 1, t = 0; i <= n; ++i) { int x = rods[i - 1]; t += x; for (int j = 0; j <= t; ++j) { f[i][j] = f[i - 1][j]; if (j >= x) { f[i][j] = max(f[i][j], f[i - 1][j - x]); } if (j + x <= t) { f[i][j] = max(f[i][j], f[i - 1][j + x] + x); } if (j < x) { f[i][j] = max(f[i][j], f[i - 1][x - j] + x - j); } } } return f[n][0]; } };
null
null
func tallestBillboard(rods []int) int { n := len(rods) s := 0 for _, x := range rods { s += x } f := make([][]int, n+1) for i := range f { f[i] = make([]int, s+1) for j := range f[i] { f[i][j] = -(1 << 30) } } f[0][0] = 0 for i, t := 1, 0; i <= n; i++ { x := rods[i-1] t += x for j := 0; j <= t; j++ { f[i][j] = f[i-1][j] if j >= x { f[i][j] = max(f[i][j], f[i-1][j-x]) } if j+x <= t { f[i][j] = max(f[i][j], f[i-1][j+x]+x) } if j < x { f[i][j] = max(f[i][j], f[i-1][x-j]+x-j) } } } return f[n][0] }
class Solution { public int tallestBillboard(int[] rods) { int n = rods.length; int s = 0; for (int x : rods) { s += x; } int[][] f = new int[n + 1][s + 1]; for (var e : f) { Arrays.fill(e, -(1 << 30)); } f[0][0] = 0; for (int i = 1, t = 0; i <= n; ++i) { int x = rods[i - 1]; t += x; for (int j = 0; j <= t; ++j) { f[i][j] = f[i - 1][j]; if (j >= x) { f[i][j] = Math.max(f[i][j], f[i - 1][j - x]); } if (j + x <= t) { f[i][j] = Math.max(f[i][j], f[i - 1][j + x] + x); } if (j < x) { f[i][j] = Math.max(f[i][j], f[i - 1][x - j] + x - j); } } } return f[n][0]; } }
null
null
null
null
null
null
class Solution: def tallestBillboard(self, rods: List[int]) -> int: n = len(rods) s = sum(rods) f = [[-inf] * (s + 1) for _ in range(n + 1)] f[0][0] = 0 t = 0 for i, x in enumerate(rods, 1): t += x for j in range(t + 1): f[i][j] = f[i - 1][j] if j >= x: f[i][j] = max(f[i][j], f[i - 1][j - x]) if j + x <= t: f[i][j] = max(f[i][j], f[i - 1][j + x] + x) if j < x: f[i][j] = max(f[i][j], f[i - 1][x - j] + x - j) return f[n][0]
null
null
null
null
null
function tallestBillboard(rods: number[]): number { const s = rods.reduce((a, b) => a + b, 0); const n = rods.length; const f = new Array(n).fill(0).map(() => new Array(s + 1).fill(-1)); const dfs = (i: number, j: number): number => { if (i >= n) { return j === 0 ? 0 : -(1 << 30); } if (f[i][j] !== -1) { return f[i][j]; } let ans = Math.max(dfs(i + 1, j), dfs(i + 1, j + rods[i])); ans = Math.max(ans, dfs(i + 1, Math.abs(j - rods[i])) + Math.min(j, rods[i])); return (f[i][j] = ans); }; return dfs(0, 0); }
Count All Valid Pickup and Delivery Options
Given n orders, each order consists of a pickup and a delivery service. Count all valid pickup/delivery possible sequences such that delivery(i) is always after of pickup(i).  Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: n = 1 Output: 1 Explanation: Unique order (P1, D1), Delivery 1 always is after of Pickup 1. Example 2: Input: n = 2 Output: 6 Explanation: All possible orders: (P1,P2,D1,D2), (P1,P2,D2,D1), (P1,D1,P2,D2), (P2,P1,D1,D2), (P2,P1,D2,D1) and (P2,D2,P1,D1). This is an invalid order (P1,D2,P2,D1) because Pickup 2 is after of Delivery 2. Example 3: Input: n = 3 Output: 90   Constraints: 1 <= n <= 500
null
null
class Solution { public: int countOrders(int n) { const int mod = 1e9 + 7; long long f = 1; for (int i = 2; i <= n; ++i) { f = f * i * (2 * i - 1) % mod; } return f; } };
null
null
func countOrders(n int) int { const mod = 1e9 + 7 f := 1 for i := 2; i <= n; i++ { f = f * i * (2*i - 1) % mod } return f }
class Solution { public int countOrders(int n) { final int mod = (int) 1e9 + 7; long f = 1; for (int i = 2; i <= n; ++i) { f = f * i * (2 * i - 1) % mod; } return (int) f; } }
null
null
null
null
null
null
class Solution: def countOrders(self, n: int) -> int: mod = 10**9 + 7 f = 1 for i in range(2, n + 1): f = (f * i * (2 * i - 1)) % mod return f
null
const MOD: i64 = (1e9 as i64) + 7; impl Solution { #[allow(dead_code)] pub fn count_orders(n: i32) -> i32 { let mut f = 1; for i in 2..=n as i64 { f = (i * (2 * i - 1) * f) % MOD; } f as i32 } }
null
null
null
null
Build Array Where You Can Find The Maximum Exactly K Comparisons
You are given three integers n , m and k . Consider the following algorithm to find the maximum element of an array of positive integers: You should build the array arr which has the following properties: arr has exactly n integers. 1 <= arr[i] <= m where (0 <= i < n) . After applying the mentioned algorithm to arr , the value search_cost is equal to k . Return the number of ways to build the array arr under the mentioned conditions. As the answer may grow large, the answer must be computed modulo 10 9 + 7 .   Example 1: Input: n = 2, m = 3, k = 1 Output: 6 Explanation: The possible arrays are [1, 1], [2, 1], [2, 2], [3, 1], [3, 2] [3, 3] Example 2: Input: n = 5, m = 2, k = 3 Output: 0 Explanation: There are no possible arrays that satisfy the mentioned conditions. Example 3: Input: n = 9, m = 1, k = 1 Output: 1 Explanation: The only possible array is [1, 1, 1, 1, 1, 1, 1, 1, 1]   Constraints: 1 <= n <= 50 1 <= m <= 100 0 <= k <= n
null
null
class Solution { public: int numOfArrays(int n, int m, int k) { if (k == 0) return 0; int mod = 1e9 + 7; using ll = long long; vector<vector<vector<ll>>> dp(n + 1, vector<vector<ll>>(k + 1, vector<ll>(m + 1))); for (int i = 1; i <= m; ++i) dp[1][1][i] = 1; for (int i = 2; i <= n; ++i) { for (int c = 1; c <= min(i, k); ++c) { for (int j = 1; j <= m; ++j) { dp[i][c][j] = (dp[i - 1][c][j] * j) % mod; for (int j0 = 1; j0 < j; ++j0) { dp[i][c][j] = (dp[i][c][j] + dp[i - 1][c - 1][j0]) % mod; } } } } ll ans = 0; for (int i = 1; i <= m; ++i) ans = (ans + dp[n][k][i]) % mod; return (int) ans; } };
null
null
func numOfArrays(n int, m int, k int) int { if k == 0 { return 0 } mod := int(1e9) + 7 dp := make([][][]int, n+1) for i := range dp { dp[i] = make([][]int, k+1) for j := range dp[i] { dp[i][j] = make([]int, m+1) } } for i := 1; i <= m; i++ { dp[1][1][i] = 1 } for i := 2; i <= n; i++ { for c := 1; c <= k && c <= i; c++ { for j := 1; j <= m; j++ { dp[i][c][j] = (dp[i-1][c][j] * j) % mod for j0 := 1; j0 < j; j0++ { dp[i][c][j] = (dp[i][c][j] + dp[i-1][c-1][j0]) % mod } } } } ans := 0 for i := 1; i <= m; i++ { ans = (ans + dp[n][k][i]) % mod } return ans }
class Solution { private static final int MOD = (int) 1e9 + 7; public int numOfArrays(int n, int m, int k) { if (k == 0) { return 0; } long[][][] dp = new long[n + 1][k + 1][m + 1]; for (int i = 1; i <= m; ++i) { dp[1][1][i] = 1; } for (int i = 2; i <= n; ++i) { for (int c = 1; c <= Math.min(i, k); ++c) { for (int j = 1; j <= m; ++j) { dp[i][c][j] = (dp[i - 1][c][j] * j) % MOD; for (int j0 = 1; j0 < j; ++j0) { dp[i][c][j] = (dp[i][c][j] + dp[i - 1][c - 1][j0]) % MOD; } } } } long ans = 0; for (int i = 1; i <= m; ++i) { ans = (ans + dp[n][k][i]) % MOD; } return (int) ans; } }
null
null
null
null
null
null
class Solution: def numOfArrays(self, n: int, m: int, k: int) -> int: if k == 0: return 0 dp = [[[0] * (m + 1) for _ in range(k + 1)] for _ in range(n + 1)] mod = 10**9 + 7 for i in range(1, m + 1): dp[1][1][i] = 1 for i in range(2, n + 1): for c in range(1, min(k + 1, i + 1)): for j in range(1, m + 1): dp[i][c][j] = dp[i - 1][c][j] * j for j0 in range(1, j): dp[i][c][j] += dp[i - 1][c - 1][j0] dp[i][c][j] %= mod ans = 0 for i in range(1, m + 1): ans += dp[n][k][i] ans %= mod return ans
null
null
null
null
null
null
Circle and Rectangle Overlapping
You are given a circle represented as (radius, xCenter, yCenter) and an axis-aligned rectangle represented as (x1, y1, x2, y2) , where (x1, y1) are the coordinates of the bottom-left corner, and (x2, y2) are the coordinates of the top-right corner of the rectangle. Return true if the circle and rectangle are overlapped otherwise return false . In other words, check if there is any point (x i , y i ) that belongs to the circle and the rectangle at the same time.   Example 1: Input: radius = 1, xCenter = 0, yCenter = 0, x1 = 1, y1 = -1, x2 = 3, y2 = 1 Output: true Explanation: Circle and rectangle share the point (1,0). Example 2: Input: radius = 1, xCenter = 1, yCenter = 1, x1 = 1, y1 = -3, x2 = 2, y2 = -1 Output: false Example 3: Input: radius = 1, xCenter = 0, yCenter = 0, x1 = -1, y1 = 0, x2 = 0, y2 = 1 Output: true   Constraints: 1 <= radius <= 2000 -10 4 <= xCenter, yCenter <= 10 4 -10 4 <= x1 < x2 <= 10 4 -10 4 <= y1 < y2 <= 10 4
null
null
class Solution { public: bool checkOverlap(int radius, int xCenter, int yCenter, int x1, int y1, int x2, int y2) { auto f = [](int i, int j, int k) -> int { if (i <= k && k <= j) { return 0; } return k < i ? i - k : k - j; }; int a = f(x1, x2, xCenter); int b = f(y1, y2, yCenter); return a * a + b * b <= radius * radius; } };
null
null
func checkOverlap(radius int, xCenter int, yCenter int, x1 int, y1 int, x2 int, y2 int) bool { f := func(i, j, k int) int { if i <= k && k <= j { return 0 } if k < i { return i - k } return k - j } a := f(x1, x2, xCenter) b := f(y1, y2, yCenter) return a*a+b*b <= radius*radius }
class Solution { public boolean checkOverlap( int radius, int xCenter, int yCenter, int x1, int y1, int x2, int y2) { int a = f(x1, x2, xCenter); int b = f(y1, y2, yCenter); return a * a + b * b <= radius * radius; } private int f(int i, int j, int k) { if (i <= k && k <= j) { return 0; } return k < i ? i - k : k - j; } }
null
null
null
null
null
null
class Solution: def checkOverlap( self, radius: int, xCenter: int, yCenter: int, x1: int, y1: int, x2: int, y2: int, ) -> bool: def f(i: int, j: int, k: int) -> int: if i <= k <= j: return 0 return i - k if k < i else k - j a = f(x1, x2, xCenter) b = f(y1, y2, yCenter) return a * a + b * b <= radius * radius
null
null
null
null
null
function checkOverlap( radius: number, xCenter: number, yCenter: number, x1: number, y1: number, x2: number, y2: number, ): boolean { const f = (i: number, j: number, k: number) => { if (i <= k && k <= j) { return 0; } return k < i ? i - k : k - j; }; const a = f(x1, x2, xCenter); const b = f(y1, y2, yCenter); return a * a + b * b <= radius * radius; }
Most Profitable Path in a Tree
There is an undirected tree with n nodes labeled from 0 to n - 1 , rooted at node 0 . You are given a 2D integer array edges of length n - 1 where edges[i] = [a i , b i ] indicates that there is an edge between nodes a i and b i in the tree. At every node i , there is a gate. You are also given an array of even integers amount , where amount[i] represents: the price needed to open the gate at node i , if amount[i] is negative, or, the cash reward obtained on opening the gate at node i , otherwise. The game goes on as follows: Initially, Alice is at node 0 and Bob is at node bob . At every second, Alice and Bob each move to an adjacent node. Alice moves towards some leaf node , while Bob moves towards node 0 . For every node along their path, Alice and Bob either spend money to open the gate at that node, or accept the reward. Note that: If the gate is already open , no price will be required, nor will there be any cash reward. If Alice and Bob reach the node simultaneously , they share the price/reward for opening the gate there. In other words, if the price to open the gate is c , then both Alice and Bob pay  c / 2 each. Similarly, if the reward at the gate is c , both of them receive c / 2 each. If Alice reaches a leaf node, she stops moving. Similarly, if Bob reaches node 0 , he stops moving. Note that these events are independent of each other. Return the maximum net income Alice can have if she travels towards the optimal leaf node.   Example 1: Input: edges = [[0,1],[1,2],[1,3],[3,4]], bob = 3, amount = [-2,4,2,-4,6] Output: 6 Explanation: The above diagram represents the given tree. The game goes as follows: - Alice is initially on node 0, Bob on node 3. They open the gates of their respective nodes. Alice's net income is now -2. - Both Alice and Bob move to node 1.   Since they reach here simultaneously, they open the gate together and share the reward.   Alice's net income becomes -2 + (4 / 2) = 0. - Alice moves on to node 3. Since Bob already opened its gate, Alice's income remains unchanged.   Bob moves on to node 0, and stops moving. - Alice moves on to node 4 and opens the gate there. Her net income becomes 0 + 6 = 6. Now, neither Alice nor Bob can make any further moves, and the game ends. It is not possible for Alice to get a higher net income. Example 2: Input: edges = [[0,1]], bob = 1, amount = [-7280,2350] Output: -7280 Explanation: Alice follows the path 0->1 whereas Bob follows the path 1->0. Thus, Alice opens the gate at node 0 only. Hence, her net income is -7280.   Constraints: 2 <= n <= 10 5 edges.length == n - 1 edges[i].length == 2 0 <= a i , b i < n a i != b i edges represents a valid tree. 1 <= bob < n amount.length == n amount[i] is an even integer in the range [-10 4 , 10 4 ] .
null
null
class Solution { public: int mostProfitablePath(vector<vector<int>>& edges, int bob, vector<int>& amount) { int n = edges.size() + 1; vector<vector<int>> g(n); for (auto& e : edges) { int a = e[0], b = e[1]; g[a].emplace_back(b); g[b].emplace_back(a); } vector<int> ts(n, n); function<bool(int i, int fa, int t)> dfs1 = [&](int i, int fa, int t) -> bool { if (i == 0) { ts[i] = t; return true; } for (int j : g[i]) { if (j != fa && dfs1(j, i, t + 1)) { ts[j] = min(ts[j], t + 1); return true; } } return false; }; dfs1(bob, -1, 0); ts[bob] = 0; int ans = INT_MIN; function<void(int i, int fa, int t, int v)> dfs2 = [&](int i, int fa, int t, int v) { if (t == ts[i]) v += amount[i] >> 1; else if (t < ts[i]) v += amount[i]; if (g[i].size() == 1 && g[i][0] == fa) { ans = max(ans, v); return; } for (int j : g[i]) if (j != fa) dfs2(j, i, t + 1, v); }; dfs2(0, -1, 0, 0); return ans; } };
null
null
func mostProfitablePath(edges [][]int, bob int, amount []int) int { n := len(edges) + 1 g := make([][]int, n) for _, e := range edges { a, b := e[0], e[1] g[a] = append(g[a], b) g[b] = append(g[b], a) } ts := make([]int, n) for i := range ts { ts[i] = n } var dfs1 func(int, int, int) bool dfs1 = func(i, fa, t int) bool { if i == 0 { ts[i] = min(ts[i], t) return true } for _, j := range g[i] { if j != fa && dfs1(j, i, t+1) { ts[j] = min(ts[j], t+1) return true } } return false } dfs1(bob, -1, 0) ts[bob] = 0 ans := -0x3f3f3f3f var dfs2 func(int, int, int, int) dfs2 = func(i, fa, t, v int) { if t == ts[i] { v += amount[i] >> 1 } else if t < ts[i] { v += amount[i] } if len(g[i]) == 1 && g[i][0] == fa { ans = max(ans, v) return } for _, j := range g[i] { if j != fa { dfs2(j, i, t+1, v) } } } dfs2(0, -1, 0, 0) return ans }
class Solution { private List<Integer>[] g; private int[] amount; private int[] ts; private int ans = Integer.MIN_VALUE; public int mostProfitablePath(int[][] edges, int bob, int[] amount) { int n = edges.length + 1; g = new List[n]; ts = new int[n]; this.amount = amount; Arrays.setAll(g, k -> new ArrayList<>()); Arrays.fill(ts, n); for (var e : edges) { int a = e[0], b = e[1]; g[a].add(b); g[b].add(a); } dfs1(bob, -1, 0); ts[bob] = 0; dfs2(0, -1, 0, 0); return ans; } private boolean dfs1(int i, int fa, int t) { if (i == 0) { ts[i] = Math.min(ts[i], t); return true; } for (int j : g[i]) { if (j != fa && dfs1(j, i, t + 1)) { ts[j] = Math.min(ts[j], t + 1); return true; } } return false; } private void dfs2(int i, int fa, int t, int v) { if (t == ts[i]) { v += amount[i] >> 1; } else if (t < ts[i]) { v += amount[i]; } if (g[i].size() == 1 && g[i].get(0) == fa) { ans = Math.max(ans, v); return; } for (int j : g[i]) { if (j != fa) { dfs2(j, i, t + 1, v); } } } }
null
null
null
null
null
null
class Solution: def mostProfitablePath( self, edges: List[List[int]], bob: int, amount: List[int] ) -> int: def dfs1(i, fa, t): if i == 0: ts[i] = min(ts[i], t) return True for j in g[i]: if j != fa and dfs1(j, i, t + 1): ts[j] = min(ts[j], t + 1) return True return False def dfs2(i, fa, t, v): if t == ts[i]: v += amount[i] // 2 elif t < ts[i]: v += amount[i] nonlocal ans if len(g[i]) == 1 and g[i][0] == fa: ans = max(ans, v) return for j in g[i]: if j != fa: dfs2(j, i, t + 1, v) n = len(edges) + 1 g = defaultdict(list) ts = [n] * n for a, b in edges: g[a].append(b) g[b].append(a) dfs1(bob, -1, 0) ts[bob] = 0 ans = -inf dfs2(0, -1, 0, 0) return ans
null
null
null
null
null
null
Minimum Seconds to Equalize a Circular Array
You are given a 0-indexed array nums containing n integers. At each second, you perform the following operation on the array: For every index i in the range [0, n - 1] , replace nums[i] with either nums[i] , nums[(i - 1 + n) % n] , or nums[(i + 1) % n] . Note that all the elements get replaced simultaneously. Return the minimum number of seconds needed to make all elements in the array nums equal .   Example 1: Input: nums = [1,2,1,2] Output: 1 Explanation: We can equalize the array in 1 second in the following way: - At 1 st second, replace values at each index with [nums[3],nums[1],nums[3],nums[3]]. After replacement, nums = [2,2,2,2]. It can be proven that 1 second is the minimum amount of seconds needed for equalizing the array. Example 2: Input: nums = [2,1,3,3,2] Output: 2 Explanation: We can equalize the array in 2 seconds in the following way: - At 1 st second, replace values at each index with [nums[0],nums[2],nums[2],nums[2],nums[3]]. After replacement, nums = [2,3,3,3,3]. - At 2 nd second, replace values at each index with [nums[1],nums[1],nums[2],nums[3],nums[4]]. After replacement, nums = [3,3,3,3,3]. It can be proven that 2 seconds is the minimum amount of seconds needed for equalizing the array. Example 3: Input: nums = [5,5,5,5] Output: 0 Explanation: We don't need to perform any operations as all elements in the initial array are the same.   Constraints: 1 <= n == nums.length <= 10 5 1 <= nums[i] <= 10 9
null
null
class Solution { public: int minimumSeconds(vector<int>& nums) { unordered_map<int, vector<int>> d; int n = nums.size(); for (int i = 0; i < n; ++i) { d[nums[i]].push_back(i); } int ans = 1 << 30; for (auto& [_, idx] : d) { int m = idx.size(); int t = idx[0] + n - idx[m - 1]; for (int i = 1; i < m; ++i) { t = max(t, idx[i] - idx[i - 1]); } ans = min(ans, t / 2); } return ans; } };
null
null
func minimumSeconds(nums []int) int { d := map[int][]int{} for i, x := range nums { d[x] = append(d[x], i) } ans := 1 << 30 n := len(nums) for _, idx := range d { m := len(idx) t := idx[0] + n - idx[m-1] for i := 1; i < m; i++ { t = max(t, idx[i]-idx[i-1]) } ans = min(ans, t/2) } return ans }
class Solution { public int minimumSeconds(List<Integer> nums) { Map<Integer, List<Integer>> d = new HashMap<>(); int n = nums.size(); for (int i = 0; i < n; ++i) { d.computeIfAbsent(nums.get(i), k -> new ArrayList<>()).add(i); } int ans = 1 << 30; for (List<Integer> idx : d.values()) { int m = idx.size(); int t = idx.get(0) + n - idx.get(m - 1); for (int i = 1; i < m; ++i) { t = Math.max(t, idx.get(i) - idx.get(i - 1)); } ans = Math.min(ans, t / 2); } return ans; } }
null
null
null
null
null
null
class Solution: def minimumSeconds(self, nums: List[int]) -> int: d = defaultdict(list) for i, x in enumerate(nums): d[x].append(i) ans = inf n = len(nums) for idx in d.values(): t = idx[0] + n - idx[-1] for i, j in pairwise(idx): t = max(t, j - i) ans = min(ans, t // 2) return ans
null
null
null
null
null
function minimumSeconds(nums: number[]): number { const d: Map<number, number[]> = new Map(); const n = nums.length; for (let i = 0; i < n; ++i) { if (!d.has(nums[i])) { d.set(nums[i], []); } d.get(nums[i])!.push(i); } let ans = 1 << 30; for (const [_, idx] of d) { const m = idx.length; let t = idx[0] + n - idx[m - 1]; for (let i = 1; i < m; ++i) { t = Math.max(t, idx[i] - idx[i - 1]); } ans = Math.min(ans, t >> 1); } return ans; }
Minimum Number of Days to Disconnect Island
You are given an m x n binary grid grid where 1 represents land and 0 represents water. An island is a maximal 4-directionally (horizontal or vertical) connected group of 1 's. The grid is said to be connected if we have exactly one island , otherwise is said disconnected . In one day, we are allowed to change any single land cell (1) into a water cell (0) . Return the minimum number of days to disconnect the grid .   Example 1: Input: grid = [[0,1,1,0],[0,1,1,0],[0,0,0,0]] Output: 2 Explanation: We need at least 2 days to get a disconnected grid. Change land grid[1][1] and grid[0][2] to water and get 2 disconnected island. Example 2: Input: grid = [[1,1]] Output: 2 Explanation: Grid of full water is also disconnected ([[1,1]] -> [[0,0]]), 0 islands.   Constraints: m == grid.length n == grid[i].length 1 <= m, n <= 30 grid[i][j] is either 0 or 1 .
null
null
class Solution { public: const vector<int> dirs = {-1, 0, 1, 0, -1}; int m, n; int minDays(vector<vector<int>>& grid) { m = grid.size(), n = grid[0].size(); if (count(grid) != 1) { return 0; } for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { if (grid[i][j] == 1) { grid[i][j] = 0; if (count(grid) != 1) { return 1; } grid[i][j] = 1; } } } return 2; } int count(vector<vector<int>>& grid) { int cnt = 0; for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { if (grid[i][j] == 1) { dfs(i, j, grid); ++cnt; } } } for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { if (grid[i][j] == 2) { grid[i][j] = 1; } } } return cnt; } void dfs(int i, int j, vector<vector<int>>& grid) { grid[i][j] = 2; for (int k = 0; k < 4; ++k) { int x = i + dirs[k], y = j + dirs[k + 1]; if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == 1) { dfs(x, y, grid); } } } };
null
null
func minDays(grid [][]int) int { m, n := len(grid), len(grid[0]) dirs := []int{-1, 0, 1, 0, -1} var dfs func(i, j int) dfs = func(i, j int) { grid[i][j] = 2 for k := 0; k < 4; k++ { x, y := i+dirs[k], j+dirs[k+1] if x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == 1 { dfs(x, y) } } } count := func() int { cnt := 0 for i := 0; i < m; i++ { for j := 0; j < n; j++ { if grid[i][j] == 1 { dfs(i, j) cnt++ } } } for i := 0; i < m; i++ { for j := 0; j < n; j++ { if grid[i][j] == 2 { grid[i][j] = 1 } } } return cnt } if count() != 1 { return 0 } for i := 0; i < m; i++ { for j := 0; j < n; j++ { if grid[i][j] == 1 { grid[i][j] = 0 if count() != 1 { return 1 } grid[i][j] = 1 } } } return 2 }
class Solution { private static final int[] DIRS = new int[] {-1, 0, 1, 0, -1}; private int[][] grid; private int m; private int n; public int minDays(int[][] grid) { this.grid = grid; m = grid.length; n = grid[0].length; if (count() != 1) { return 0; } for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { if (grid[i][j] == 1) { grid[i][j] = 0; if (count() != 1) { return 1; } grid[i][j] = 1; } } } return 2; } private int count() { int cnt = 0; for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { if (grid[i][j] == 1) { dfs(i, j); ++cnt; } } } for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { if (grid[i][j] == 2) { grid[i][j] = 1; } } } return cnt; } private void dfs(int i, int j) { grid[i][j] = 2; for (int k = 0; k < 4; ++k) { int x = i + DIRS[k], y = j + DIRS[k + 1]; if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == 1) { dfs(x, y); } } } }
/** * @param {number[][]} grid * @return {number} */ var minDays = function (grid) { const dirs = [-1, 0, 1, 0, -1]; const [m, n] = [grid.length, grid[0].length]; const dfs = (i, j, visited) => { if (i < 0 || m <= i || j < 0 || n <= j || grid[i][j] === 0 || visited[i][j]) { return; } visited[i][j] = true; for (let d = 0; d < 4; d++) { const [y, x] = [i + dirs[d], j + dirs[d + 1]]; dfs(y, x, visited); } }; const count = () => { const vis = Array.from({ length: m }, () => Array(n).fill(false)); let c = 0; for (let i = 0; i < m; i++) { for (let j = 0; j < n; j++) { if (grid[i][j] === 1 && !vis[i][j]) { c++; dfs(i, j, vis); } } } return c; }; if (count() !== 1) return 0; for (let i = 0; i < m; i++) { for (let j = 0; j < n; j++) { if (grid[i][j] === 1) { grid[i][j] = 0; if (count() !== 1) return 1; grid[i][j] = 1; } } } return 2; };
null
null
null
null
null
class Solution: def minDays(self, grid: List[List[int]]) -> int: if self.count(grid) != 1: return 0 m, n = len(grid), len(grid[0]) for i in range(m): for j in range(n): if grid[i][j] == 1: grid[i][j] = 0 if self.count(grid) != 1: return 1 grid[i][j] = 1 return 2 def count(self, grid): def dfs(i, j): grid[i][j] = 2 for a, b in [[0, -1], [0, 1], [1, 0], [-1, 0]]: x, y = i + a, j + b if 0 <= x < m and 0 <= y < n and grid[x][y] == 1: dfs(x, y) m, n = len(grid), len(grid[0]) cnt = 0 for i in range(m): for j in range(n): if grid[i][j] == 1: dfs(i, j) cnt += 1 for i in range(m): for j in range(n): if grid[i][j] == 2: grid[i][j] = 1 return cnt
null
null
null
null
null
function minDays(grid: number[][]): number { const [m, n] = [grid.length, grid[0].length]; const dfs = (i: number, j: number) => { if (i < 0 || m <= i || j < 0 || n <= j || [0, 2].includes(grid[i][j])) return; grid[i][j] = 2; const dir = [-1, 0, 1, 0, -1]; for (let k = 0; k < 4; k++) { const [y, x] = [i + dir[k], j + dir[k + 1]]; dfs(y, x); } }; const count = () => { let c = 0; for (let i = 0; i < m; i++) { for (let j = 0; j < n; j++) { if (grid[i][j] === 1) { dfs(i, j); c++; } } } for (let i = 0; i < m; i++) { for (let j = 0; j < n; j++) { if (grid[i][j] === 2) { grid[i][j] = 1; } } } return c; }; if (count() !== 1) return 0; for (let i = 0; i < m; i++) { for (let j = 0; j < n; j++) { if (grid[i][j] === 1) { grid[i][j] = 0; if (count() !== 1) return 1; grid[i][j] = 1; } } } return 2; }
Burst Balloons
You are given n balloons, indexed from 0 to n - 1 . Each balloon is painted with a number on it represented by an array nums . You are asked to burst all the balloons. If you burst the i th balloon, you will get nums[i - 1] * nums[i] * nums[i + 1] coins. If i - 1 or i + 1 goes out of bounds of the array, then treat it as if there is a balloon with a 1 painted on it. Return the maximum coins you can collect by bursting the balloons wisely .   Example 1: Input: nums = [3,1,5,8] Output: 167 Explanation: nums = [3,1,5,8] --> [3,5,8] --> [3,8] --> [8] --> [] coins = 3*1*5 + 3*5*8 + 1*3*8 + 1*8*1 = 167 Example 2: Input: nums = [1,5] Output: 10   Constraints: n == nums.length 1 <= n <= 300 0 <= nums[i] <= 100
null
null
class Solution { public: int maxCoins(vector<int>& nums) { int n = nums.size(); vector<int> arr(n + 2, 1); for (int i = 0; i < n; ++i) { arr[i + 1] = nums[i]; } vector<vector<int>> f(n + 2, vector<int>(n + 2, 0)); for (int i = n - 1; i >= 0; --i) { for (int j = i + 2; j <= n + 1; ++j) { for (int k = i + 1; k < j; ++k) { f[i][j] = max(f[i][j], f[i][k] + f[k][j] + arr[i] * arr[k] * arr[j]); } } } return f[0][n + 1]; } };
null
null
func maxCoins(nums []int) int { n := len(nums) arr := make([]int, n+2) arr[0] = 1 arr[n+1] = 1 copy(arr[1:], nums) f := make([][]int, n+2) for i := range f { f[i] = make([]int, n+2) } for i := n - 1; i >= 0; i-- { for j := i + 2; j <= n+1; j++ { for k := i + 1; k < j; k++ { f[i][j] = max(f[i][j], f[i][k] + f[k][j] + arr[i]*arr[k]*arr[j]) } } } return f[0][n+1] }
class Solution { public int maxCoins(int[] nums) { int n = nums.length; int[] arr = new int[n + 2]; arr[0] = 1; arr[n + 1] = 1; System.arraycopy(nums, 0, arr, 1, n); int[][] f = new int[n + 2][n + 2]; for (int i = n - 1; i >= 0; i--) { for (int j = i + 2; j <= n + 1; j++) { for (int k = i + 1; k < j; k++) { f[i][j] = Math.max(f[i][j], f[i][k] + f[k][j] + arr[i] * arr[k] * arr[j]); } } } return f[0][n + 1]; } }
null
null
null
null
null
null
class Solution: def maxCoins(self, nums: List[int]) -> int: n = len(nums) arr = [1] + nums + [1] f = [[0] * (n + 2) for _ in range(n + 2)] for i in range(n - 1, -1, -1): for j in range(i + 2, n + 2): for k in range(i + 1, j): f[i][j] = max(f[i][j], f[i][k] + f[k][j] + arr[i] * arr[k] * arr[j]) return f[0][-1]
null
impl Solution { pub fn max_coins(nums: Vec<i32>) -> i32 { let n = nums.len(); let mut arr = vec![1; n + 2]; for i in 0..n { arr[i + 1] = nums[i]; } let mut f = vec![vec![0; n + 2]; n + 2]; for i in (0..n).rev() { for j in i + 2..n + 2 { for k in i + 1..j { f[i][j] = f[i][j].max(f[i][k] + f[k][j] + arr[i] * arr[k] * arr[j]); } } } f[0][n + 1] } }
null
null
null
function maxCoins(nums: number[]): number { const n = nums.length; const arr = Array(n + 2).fill(1); for (let i = 0; i < n; i++) { arr[i + 1] = nums[i]; } const f: number[][] = Array.from({ length: n + 2 }, () => Array(n + 2).fill(0)); for (let i = n - 1; i >= 0; i--) { for (let j = i + 2; j <= n + 1; j++) { for (let k = i + 1; k < j; k++) { f[i][j] = Math.max(f[i][j], f[i][k] + f[k][j] + arr[i] * arr[k] * arr[j]); } } } return f[0][n + 1]; }
Bomb Enemy 🔒
Given an m x n matrix grid where each cell is either a wall 'W' , an enemy 'E' or empty '0' , return the maximum enemies you can kill using one bomb . You can only place the bomb in an empty cell. The bomb kills all the enemies in the same row and column from the planted point until it hits the wall since it is too strong to be destroyed.   Example 1: Input: grid = [["0","E","0","0"],["E","0","W","E"],["0","E","0","0"]] Output: 3 Example 2: Input: grid = [["W","W","W"],["0","0","0"],["E","E","E"]] Output: 1   Constraints: m == grid.length n == grid[i].length 1 <= m, n <= 500 grid[i][j] is either 'W' , 'E' , or '0' .
null
null
class Solution { public: int maxKilledEnemies(vector<vector<char>>& grid) { int m = grid.size(), n = grid[0].size(); vector<vector<int>> g(m, vector<int>(n)); for (int i = 0; i < m; ++i) { int t = 0; for (int j = 0; j < n; ++j) { if (grid[i][j] == 'W') t = 0; else if (grid[i][j] == 'E') ++t; g[i][j] += t; } t = 0; for (int j = n - 1; j >= 0; --j) { if (grid[i][j] == 'W') t = 0; else if (grid[i][j] == 'E') ++t; g[i][j] += t; } } for (int j = 0; j < n; ++j) { int t = 0; for (int i = 0; i < m; ++i) { if (grid[i][j] == 'W') t = 0; else if (grid[i][j] == 'E') ++t; g[i][j] += t; } t = 0; for (int i = m - 1; i >= 0; --i) { if (grid[i][j] == 'W') t = 0; else if (grid[i][j] == 'E') ++t; g[i][j] += t; } } int ans = 0; for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { if (grid[i][j] == '0') ans = max(ans, g[i][j]); } } return ans; } };
null
null
func maxKilledEnemies(grid [][]byte) int { m, n := len(grid), len(grid[0]) g := make([][]int, m) for i := range g { g[i] = make([]int, n) } for i := 0; i < m; i++ { t := 0 for j := 0; j < n; j++ { if grid[i][j] == 'W' { t = 0 } else if grid[i][j] == 'E' { t++ } g[i][j] += t } t = 0 for j := n - 1; j >= 0; j-- { if grid[i][j] == 'W' { t = 0 } else if grid[i][j] == 'E' { t++ } g[i][j] += t } } for j := 0; j < n; j++ { t := 0 for i := 0; i < m; i++ { if grid[i][j] == 'W' { t = 0 } else if grid[i][j] == 'E' { t++ } g[i][j] += t } t = 0 for i := m - 1; i >= 0; i-- { if grid[i][j] == 'W' { t = 0 } else if grid[i][j] == 'E' { t++ } g[i][j] += t } } ans := 0 for i, row := range grid { for j, v := range row { if v == '0' && ans < g[i][j] { ans = g[i][j] } } } return ans }
class Solution { public int maxKilledEnemies(char[][] grid) { int m = grid.length; int n = grid[0].length; int[][] g = new int[m][n]; for (int i = 0; i < m; ++i) { int t = 0; for (int j = 0; j < n; ++j) { if (grid[i][j] == 'W') { t = 0; } else if (grid[i][j] == 'E') { ++t; } g[i][j] += t; } t = 0; for (int j = n - 1; j >= 0; --j) { if (grid[i][j] == 'W') { t = 0; } else if (grid[i][j] == 'E') { ++t; } g[i][j] += t; } } for (int j = 0; j < n; ++j) { int t = 0; for (int i = 0; i < m; ++i) { if (grid[i][j] == 'W') { t = 0; } else if (grid[i][j] == 'E') { ++t; } g[i][j] += t; } t = 0; for (int i = m - 1; i >= 0; --i) { if (grid[i][j] == 'W') { t = 0; } else if (grid[i][j] == 'E') { ++t; } g[i][j] += t; } } int ans = 0; for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { if (grid[i][j] == '0') { ans = Math.max(ans, g[i][j]); } } } return ans; } }
null
null
null
null
null
null
class Solution: def maxKilledEnemies(self, grid: List[List[str]]) -> int: m, n = len(grid), len(grid[0]) g = [[0] * n for _ in range(m)] for i in range(m): t = 0 for j in range(n): if grid[i][j] == 'W': t = 0 elif grid[i][j] == 'E': t += 1 g[i][j] += t t = 0 for j in range(n - 1, -1, -1): if grid[i][j] == 'W': t = 0 elif grid[i][j] == 'E': t += 1 g[i][j] += t for j in range(n): t = 0 for i in range(m): if grid[i][j] == 'W': t = 0 elif grid[i][j] == 'E': t += 1 g[i][j] += t t = 0 for i in range(m - 1, -1, -1): if grid[i][j] == 'W': t = 0 elif grid[i][j] == 'E': t += 1 g[i][j] += t return max( [g[i][j] for i in range(m) for j in range(n) if grid[i][j] == '0'], default=0, )
null
null
null
null
null
null
Stone Game III
Alice and Bob continue their games with piles of stones. There are several stones arranged in a row , and each stone has an associated value which is an integer given in the array stoneValue . Alice and Bob take turns, with Alice starting first. On each player's turn, that player can take 1 , 2 , or 3 stones from the first remaining stones in the row. The score of each player is the sum of the values of the stones taken. The score of each player is 0 initially. The objective of the game is to end with the highest score, and the winner is the player with the highest score and there could be a tie. The game continues until all the stones have been taken. Assume Alice and Bob play optimally . Return "Alice" if Alice will win, "Bob" if Bob will win, or "Tie" if they will end the game with the same score .   Example 1: Input: stoneValue = [1,2,3,7] Output: "Bob" Explanation: Alice will always lose. Her best move will be to take three piles and the score become 6. Now the score of Bob is 7 and Bob wins. Example 2: Input: stoneValue = [1,2,3,-9] Output: "Alice" Explanation: Alice must choose all the three piles at the first move to win and leave Bob with negative score. If Alice chooses one pile her score will be 1 and the next move Bob's score becomes 5. In the next move, Alice will take the pile with value = -9 and lose. If Alice chooses two piles her score will be 3 and the next move Bob's score becomes 3. In the next move, Alice will take the pile with value = -9 and also lose. Remember that both play optimally so here Alice will choose the scenario that makes her win. Example 3: Input: stoneValue = [1,2,3,6] Output: "Tie" Explanation: Alice cannot win this game. She can end the game in a draw if she decided to choose all the first three piles, otherwise she will lose.   Constraints: 1 <= stoneValue.length <= 5 * 10 4 -1000 <= stoneValue[i] <= 1000
null
null
class Solution { public: string stoneGameIII(vector<int>& stoneValue) { int n = stoneValue.size(); int f[n]; memset(f, 0x3f, sizeof(f)); function<int(int)> dfs = [&](int i) -> int { if (i >= n) { return 0; } if (f[i] != 0x3f3f3f3f) { return f[i]; } int ans = -(1 << 30), s = 0; for (int j = 0; j < 3 && i + j < n; ++j) { s += stoneValue[i + j]; ans = max(ans, s - dfs(i + j + 1)); } return f[i] = ans; }; int ans = dfs(0); if (ans == 0) { return "Tie"; } return ans > 0 ? "Alice" : "Bob"; } };
null
null
func stoneGameIII(stoneValue []int) string { n := len(stoneValue) f := make([]int, n) const inf = 1 << 30 for i := range f { f[i] = inf } var dfs func(int) int dfs = func(i int) int { if i >= n { return 0 } if f[i] != inf { return f[i] } ans, s := -(1 << 30), 0 for j := 0; j < 3 && i+j < n; j++ { s += stoneValue[i+j] ans = max(ans, s-dfs(i+j+1)) } f[i] = ans return ans } ans := dfs(0) if ans == 0 { return "Tie" } if ans > 0 { return "Alice" } return "Bob" }
class Solution { private int[] stoneValue; private Integer[] f; private int n; public String stoneGameIII(int[] stoneValue) { n = stoneValue.length; f = new Integer[n]; this.stoneValue = stoneValue; int ans = dfs(0); if (ans == 0) { return "Tie"; } return ans > 0 ? "Alice" : "Bob"; } private int dfs(int i) { if (i >= n) { return 0; } if (f[i] != null) { return f[i]; } int ans = -(1 << 30); int s = 0; for (int j = 0; j < 3 && i + j < n; ++j) { s += stoneValue[i + j]; ans = Math.max(ans, s - dfs(i + j + 1)); } return f[i] = ans; } }
null
null
null
null
null
null
class Solution: def stoneGameIII(self, stoneValue: List[int]) -> str: @cache def dfs(i: int) -> int: if i >= n: return 0 ans, s = -inf, 0 for j in range(3): if i + j >= n: break s += stoneValue[i + j] ans = max(ans, s - dfs(i + j + 1)) return ans n = len(stoneValue) ans = dfs(0) if ans == 0: return 'Tie' return 'Alice' if ans > 0 else 'Bob'
null
null
null
null
null
function stoneGameIII(stoneValue: number[]): string { const n = stoneValue.length; const inf = 1 << 30; const f: number[] = new Array(n).fill(inf); const dfs = (i: number): number => { if (i >= n) { return 0; } if (f[i] !== inf) { return f[i]; } let ans = -inf; let s = 0; for (let j = 0; j < 3 && i + j < n; ++j) { s += stoneValue[i + j]; ans = Math.max(ans, s - dfs(i + j + 1)); } return (f[i] = ans); }; const ans = dfs(0); if (ans === 0) { return 'Tie'; } return ans > 0 ? 'Alice' : 'Bob'; }
Sorting the Sentence
A sentence is a list of words that are separated by a single space with no leading or trailing spaces. Each word consists of lowercase and uppercase English letters. A sentence can be shuffled by appending the 1-indexed word position to each word then rearranging the words in the sentence. For example, the sentence "This is a sentence" can be shuffled as "sentence4 a3 is2 This1" or "is2 sentence4 This1 a3" . Given a shuffled sentence s containing no more than 9 words, reconstruct and return the original sentence .   Example 1: Input: s = "is2 sentence4 This1 a3" Output: "This is a sentence" Explanation: Sort the words in s to their original positions "This1 is2 a3 sentence4", then remove the numbers. Example 2: Input: s = "Myself2 Me1 I4 and3" Output: "Me Myself and I" Explanation: Sort the words in s to their original positions "Me1 Myself2 and3 I4", then remove the numbers.   Constraints: 2 <= s.length <= 200 s consists of lowercase and uppercase English letters, spaces, and digits from 1 to 9 . The number of words in s is between 1 and 9 . The words in s are separated by a single space. s contains no leading or trailing spaces.
null
null
class Solution { public: string sortSentence(string s) { istringstream iss(s); string w; vector<string> ws; while (iss >> w) { ws.push_back(w); } vector<string> ss(ws.size()); for (auto& w : ws) { ss[w.back() - '1'] = w.substr(0, w.size() - 1); } string ans; for (auto& w : ss) { ans += w + " "; } ans.pop_back(); return ans; } };
null
null
func sortSentence(s string) string { ws := strings.Split(s, " ") ans := make([]string, len(ws)) for _, w := range ws { ans[w[len(w)-1]-'1'] = w[:len(w)-1] } return strings.Join(ans, " ") }
class Solution { public String sortSentence(String s) { String[] ws = s.split(" "); int n = ws.length; String[] ans = new String[n]; for (int i = 0; i < n; ++i) { String w = ws[i]; ans[w.charAt(w.length() - 1) - '1'] = w.substring(0, w.length() - 1); } return String.join(" ", ans); } }
/** * @param {string} s * @return {string} */ var sortSentence = function (s) { const ws = s.split(' '); const ans = Array(ws.length); for (const w of ws) { ans[w.charCodeAt(w.length - 1) - '1'.charCodeAt(0)] = w.slice(0, -1); } return ans.join(' '); };
null
null
null
null
null
class Solution: def sortSentence(self, s: str) -> str: ws = s.split() ans = [None] * len(ws) for w in ws: ans[int(w[-1]) - 1] = w[:-1] return " ".join(ans)
null
null
null
null
null
function sortSentence(s: string): string { const ws = s.split(' '); const ans = Array(ws.length); for (const w of ws) { ans[w.charCodeAt(w.length - 1) - '1'.charCodeAt(0)] = w.slice(0, -1); } return ans.join(' '); }
Merge Nodes in Between Zeros
You are given the head of a linked list, which contains a series of integers separated by 0 's. The beginning and end of the linked list will have Node.val == 0 . For every two consecutive 0 's, merge all the nodes lying in between them into a single node whose value is the sum of all the merged nodes. The modified list should not contain any 0 's. Return the head of the modified linked list .   Example 1: Input: head = [0,3,1,0,4,5,2,0] Output: [4,11] Explanation: The above figure represents the given linked list. The modified list contains - The sum of the nodes marked in green: 3 + 1 = 4. - The sum of the nodes marked in red: 4 + 5 + 2 = 11. Example 2: Input: head = [0,1,0,3,0,2,2,0] Output: [1,3,4] Explanation: The above figure represents the given linked list. The modified list contains - The sum of the nodes marked in green: 1 = 1. - The sum of the nodes marked in red: 3 = 3. - The sum of the nodes marked in yellow: 2 + 2 = 4.   Constraints: The number of nodes in the list is in the range [3, 2 * 10 5 ] . 0 <= Node.val <= 1000 There are no two consecutive nodes with Node.val == 0 . The beginning and end of the linked list have Node.val == 0 .
/** * Definition for singly-linked list. * struct ListNode { * int val; * struct ListNode *next; * }; */ struct ListNode* mergeNodes(struct ListNode* head) { struct ListNode dummy; struct ListNode* cur = &dummy; int sum = 0; while (head) { if (head->val == 0 && sum != 0) { cur->next = malloc(sizeof(struct ListNode)); cur->next->val = sum; cur->next->next = NULL; cur = cur->next; sum = 0; } sum += head->val; head = head->next; } return dummy.next; }
null
/** * Definition for singly-linked list. * struct ListNode { * int val; * ListNode *next; * ListNode() : val(0), next(nullptr) {} * ListNode(int x) : val(x), next(nullptr) {} * ListNode(int x, ListNode *next) : val(x), next(next) {} * }; */ class Solution { public: ListNode* mergeNodes(ListNode* head) { ListNode* dummy = new ListNode(); ListNode* tail = dummy; int s = 0; for (ListNode* cur = head->next; cur; cur = cur->next) { if (cur->val) { s += cur->val; } else { tail->next = new ListNode(s); tail = tail->next; s = 0; } } return dummy->next; } };
null
null
/** * Definition for singly-linked list. * type ListNode struct { * Val int * Next *ListNode * } */ func mergeNodes(head *ListNode) *ListNode { dummy := &ListNode{} tail := dummy s := 0 for cur := head.Next; cur != nil; cur = cur.Next { if cur.Val != 0 { s += cur.Val } else { tail.Next = &ListNode{Val: s} tail = tail.Next s = 0 } } return dummy.Next }
/** * Definition for singly-linked list. * public class ListNode { * int val; * ListNode next; * ListNode() {} * ListNode(int val) { this.val = val; } * ListNode(int val, ListNode next) { this.val = val; this.next = next; } * } */ class Solution { public ListNode mergeNodes(ListNode head) { ListNode dummy = new ListNode(); int s = 0; ListNode tail = dummy; for (ListNode cur = head.next; cur != null; cur = cur.next) { if (cur.val != 0) { s += cur.val; } else { tail.next = new ListNode(s); tail = tail.next; s = 0; } } return dummy.next; } }
null
null
null
null
null
null
# Definition for singly-linked list. # class ListNode: # def __init__(self, val=0, next=None): # self.val = val # self.next = next class Solution: def mergeNodes(self, head: Optional[ListNode]) -> Optional[ListNode]: dummy = tail = ListNode() s = 0 cur = head.next while cur: if cur.val: s += cur.val else: tail.next = ListNode(s) tail = tail.next s = 0 cur = cur.next return dummy.next
null
// Definition for singly-linked list. // #[derive(PartialEq, Eq, Clone, Debug)] // pub struct ListNode { // pub val: i32, // pub next: Option<Box<ListNode>> // } // // impl ListNode { // #[inline] // fn new(val: i32) -> Self { // ListNode { // next: None, // val // } // } // } impl Solution { pub fn merge_nodes(head: Option<Box<ListNode>>) -> Option<Box<ListNode>> { let mut dummy = Box::new(ListNode::new(0)); let mut tail = &mut dummy; let mut s = 0; let mut cur = head.unwrap().next; while let Some(mut node) = cur { if node.val != 0 { s += node.val; } else { tail.next = Some(Box::new(ListNode::new(s))); tail = tail.next.as_mut().unwrap(); s = 0; } cur = node.next.take(); } dummy.next } }
null
null
null
/** * Definition for singly-linked list. * class ListNode { * val: number * next: ListNode | null * constructor(val?: number, next?: ListNode | null) { * this.val = (val===undefined ? 0 : val) * this.next = (next===undefined ? null : next) * } * } */ function mergeNodes(head: ListNode | null): ListNode | null { const dummy = new ListNode(); let tail = dummy; let s = 0; for (let cur = head.next; cur; cur = cur.next) { if (cur.val) { s += cur.val; } else { tail.next = new ListNode(s); tail = tail.next; s = 0; } } return dummy.next; }
Number of Unique Categories 🔒
You are given an integer n and an object categoryHandler of class CategoryHandler . There are n  elements, numbered from 0 to n - 1 . Each element has a category, and your task is to find the number of unique categories. The class CategoryHandler contains the following function, which may help you: boolean haveSameCategory(integer a, integer b) : Returns true if a and b are in the same category and false otherwise. Also, if either a or b is not a valid number (i.e. it's greater than or equal to n or less than 0 ), it returns false . Return the number of unique categories.   Example 1: Input: n = 6, categoryHandler = [1,1,2,2,3,3] Output: 3 Explanation: There are 6 elements in this example. The first two elements belong to category 1, the second two belong to category 2, and the last two elements belong to category 3. So there are 3 unique categories. Example 2: Input: n = 5, categoryHandler = [1,2,3,4,5] Output: 5 Explanation: There are 5 elements in this example. Each element belongs to a unique category. So there are 5 unique categories. Example 3: Input: n = 3, categoryHandler = [1,1,1] Output: 1 Explanation: There are 3 elements in this example. All of them belong to one category. So there is only 1 unique category.   Constraints: 1 <= n <= 100
null
null
/** * Definition for a category handler. * class CategoryHandler { * public: * CategoryHandler(vector<int> categories); * bool haveSameCategory(int a, int b); * }; */ class Solution { public: int numberOfCategories(int n, CategoryHandler* categoryHandler) { vector<int> p(n); iota(p.begin(), p.end(), 0); function<int(int)> find = [&](int x) { if (p[x] != x) { p[x] = find(p[x]); } return p[x]; }; for (int a = 0; a < n; ++a) { for (int b = a + 1; b < n; ++b) { if (categoryHandler->haveSameCategory(a, b)) { p[find(a)] = find(b); } } } int ans = 0; for (int i = 0; i < n; ++i) { ans += i == p[i]; } return ans; } };
null
null
/** * Definition for a category handler. * type CategoryHandler interface { * HaveSameCategory(int, int) bool * } */ func numberOfCategories(n int, categoryHandler CategoryHandler) (ans int) { p := make([]int, n) for i := range p { p[i] = i } var find func(int) int find = func(x int) int { if p[x] != x { p[x] = find(p[x]) } return p[x] } for a := 0; a < n; a++ { for b := a + 1; b < n; b++ { if categoryHandler.HaveSameCategory(a, b) { p[find(a)] = find(b) } } } for i, x := range p { if i == x { ans++ } } return }
/** * Definition for a category handler. * class CategoryHandler { * public CategoryHandler(int[] categories); * public boolean haveSameCategory(int a, int b); * }; */ class Solution { private int[] p; public int numberOfCategories(int n, CategoryHandler categoryHandler) { p = new int[n]; for (int i = 0; i < n; ++i) { p[i] = i; } for (int a = 0; a < n; ++a) { for (int b = a + 1; b < n; ++b) { if (categoryHandler.haveSameCategory(a, b)) { p[find(a)] = find(b); } } } int ans = 0; for (int i = 0; i < n; ++i) { if (i == p[i]) { ++ans; } } return ans; } private int find(int x) { if (p[x] != x) { p[x] = find(p[x]); } return p[x]; } }
null
null
null
null
null
null
# Definition for a category handler. # class CategoryHandler: # def haveSameCategory(self, a: int, b: int) -> bool: # pass class Solution: def numberOfCategories( self, n: int, categoryHandler: Optional['CategoryHandler'] ) -> int: def find(x: int) -> int: if p[x] != x: p[x] = find(p[x]) return p[x] p = list(range(n)) for a in range(n): for b in range(a + 1, n): if categoryHandler.haveSameCategory(a, b): p[find(a)] = find(b) return sum(i == x for i, x in enumerate(p))
null
null
null
null
null
/** * Definition for a category handler. * class CategoryHandler { * constructor(categories: number[]); * public haveSameCategory(a: number, b: number): boolean; * } */ function numberOfCategories(n: number, categoryHandler: CategoryHandler): number { const p: number[] = new Array(n).fill(0).map((_, i) => i); const find = (x: number): number => { if (p[x] !== x) { p[x] = find(p[x]); } return p[x]; }; for (let a = 0; a < n; ++a) { for (let b = a + 1; b < n; ++b) { if (categoryHandler.haveSameCategory(a, b)) { p[find(a)] = find(b); } } } let ans = 0; for (let i = 0; i < n; ++i) { if (i === p[i]) { ++ans; } } return ans; }
Loan Types 🔒
Table: Loans +-------------+---------+ | Column Name | Type | +-------------+---------+ | loan_id | int | | user_id | int | | loan_type | varchar | +-------------+---------+ loan_id is column of unique values for this table. This table contains loan_id, user_id, and loan_type. Write a solution to find all distinct user_id 's that have at least one Refinance loan type and at least one Mortgage loan type. Return the result table ordered by user_id in ascending order . The result format is in the following example.   Example 1: Input: Loans table: +---------+---------+-----------+ | loan_id | user_id | loan_type | +---------+---------+-----------+ | 683 | 101 | Mortgage | | 218 | 101 | AutoLoan | | 802 | 101 | Inschool | | 593 | 102 | Mortgage | | 138 | 102 | Refinance | | 294 | 102 | Inschool | | 308 | 103 | Refinance | | 389 | 104 | Mortgage | +---------+---------+-----------+ Output +---------+ | user_id | +---------+ | 102 | +---------+ Explanation - User_id 101 has three loan types, one of which is a Mortgage. However, this user does not have any loan type categorized as Refinance, so user_id 101 won't be considered. - User_id 102 possesses three loan types: one for Mortgage and one for Refinance. Hence, user_id 102 will be included in the result. - User_id 103 has a loan type of Refinance but lacks a Mortgage loan type, so user_id 103 won't be considered. - User_id 104 has a Mortgage loan type but doesn't have a Refinance loan type, thus, user_id 104 won't be considered. Output table is ordered by user_id in ascending order.
null
null
null
null
null
null
null
null
null
# Write your MySQL query statement below SELECT user_id FROM Loans GROUP BY 1 HAVING SUM(loan_type = 'Refinance') > 0 AND SUM(loan_type = 'Mortgage') > 0 ORDER BY 1;
null
null
null
null
null
null
null
null
null
null
Block Placement Queries
There exists an infinite number line, with its origin at 0 and extending towards the positive x-axis. You are given a 2D array queries , which contains two types of queries: For a query of type 1, queries[i] = [1, x] . Build an obstacle at distance x from the origin. It is guaranteed that there is no obstacle at distance x when the query is asked. For a query of type 2, queries[i] = [2, x, sz] . Check if it is possible to place a block of size sz anywhere in the range [0, x] on the line, such that the block entirely lies in the range [0, x] . A block cannot be placed if it intersects with any obstacle, but it may touch it. Note that you do not actually place the block. Queries are separate. Return a boolean array results , where results[i] is true if you can place the block specified in the i th query of type 2, and false otherwise.   Example 1: Input: queries = [[1,2],[2,3,3],[2,3,1],[2,2,2]] Output: [false,true,true] Explanation: For query 0, place an obstacle at x = 2 . A block of size at most 2 can be placed before x = 3 . Example 2: Input: queries = [[1,7],[2,7,6],[1,2],[2,7,5],[2,7,6]] Output: [true,true,false] Explanation: Place an obstacle at x = 7 for query 0. A block of size at most 7 can be placed before x = 7 . Place an obstacle at x = 2 for query 2. Now, a block of size at most 5 can be placed before x = 7 , and a block of size at most 2 before x = 2 .   Constraints: 1 <= queries.length <= 15 * 10 4 2 <= queries[i].length <= 3 1 <= queries[i][0] <= 2 1 <= x, sz <= min(5 * 10 4 , 3 * queries.length) The input is generated such that for queries of type 1, no obstacle exists at distance x when the query is asked. The input is generated such that there is at least one query of type 2.
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
Alt and Tab Simulation 🔒
There are n windows open numbered from 1 to n , we want to simulate using alt + tab to navigate between the windows. You are given an array windows which contains the initial order of the windows (the first element is at the top and the last one is at the bottom). You are also given an array queries where for each query, the window queries[i] is brought to the top. Return the final state of the array windows .   Example 1: Input: windows = [1,2,3], queries = [3,3,2] Output: [2,3,1] Explanation: Here is the window array after each query: Initial order: [1,2,3] After the first query: [ 3 ,1,2] After the second query: [ 3 ,1,2] After the last query: [ 2 ,3,1] Example 2: Input: windows = [1,4,2,3], queries = [4,1,3] Output: [3,1,4,2] Explanation: Here is the window array after each query: Initial order: [1,4,2,3] After the first query: [ 4 ,1,2,3] After the second query: [ 1 ,4,2,3] After the last query: [ 3 ,1,4,2]   Constraints: 1 <= n == windows.length <= 10 5 windows is a permutation of [1, n] . 1 <= queries.length <= 10 5 1 <= queries[i] <= n
null
null
class Solution { public: vector<int> simulationResult(vector<int>& windows, vector<int>& queries) { int n = windows.size(); vector<bool> s(n + 1); vector<int> ans; for (int i = queries.size() - 1; ~i; --i) { int q = queries[i]; if (!s[q]) { s[q] = true; ans.push_back(q); } } for (int w : windows) { if (!s[w]) { ans.push_back(w); } } return ans; } };
null
null
func simulationResult(windows []int, queries []int) (ans []int) { n := len(windows) s := make([]bool, n+1) for i := len(queries) - 1; i >= 0; i-- { q := queries[i] if !s[q] { s[q] = true ans = append(ans, q) } } for _, w := range windows { if !s[w] { ans = append(ans, w) } } return }
class Solution { public int[] simulationResult(int[] windows, int[] queries) { int n = windows.length; boolean[] s = new boolean[n + 1]; int[] ans = new int[n]; int k = 0; for (int i = queries.length - 1; i >= 0; --i) { int q = queries[i]; if (!s[q]) { ans[k++] = q; s[q] = true; } } for (int w : windows) { if (!s[w]) { ans[k++] = w; } } return ans; } }
null
null
null
null
null
null
class Solution: def simulationResult(self, windows: List[int], queries: List[int]) -> List[int]: s = set() ans = [] for q in queries[::-1]: if q not in s: ans.append(q) s.add(q) for w in windows: if w not in s: ans.append(w) return ans
null
null
null
null
null
function simulationResult(windows: number[], queries: number[]): number[] { const n = windows.length; const s: boolean[] = Array(n + 1).fill(false); const ans: number[] = []; for (let i = queries.length - 1; i >= 0; i--) { const q = queries[i]; if (!s[q]) { s[q] = true; ans.push(q); } } for (const w of windows) { if (!s[w]) { ans.push(w); } } return ans; }
Maximum Matching of Players With Trainers
You are given a 0-indexed integer array players , where players[i] represents the ability of the i th player. You are also given a 0-indexed integer array trainers , where trainers[j] represents the training capacity of the j th trainer. The i th player can match with the j th trainer if the player's ability is less than or equal to the trainer's training capacity. Additionally, the i th player can be matched with at most one trainer, and the j th trainer can be matched with at most one player. Return the maximum number of matchings between players and trainers that satisfy these conditions.   Example 1: Input: players = [4,7,9], trainers = [8,2,5,8] Output: 2 Explanation: One of the ways we can form two matchings is as follows: - players[0] can be matched with trainers[0] since 4 <= 8. - players[1] can be matched with trainers[3] since 7 <= 8. It can be proven that 2 is the maximum number of matchings that can be formed. Example 2: Input: players = [1,1,1], trainers = [10] Output: 1 Explanation: The trainer can be matched with any of the 3 players. Each player can only be matched with one trainer, so the maximum answer is 1.   Constraints: 1 <= players.length, trainers.length <= 10 5 1 <= players[i], trainers[j] <= 10 9   Note: This question is the same as 445: Assign Cookies.
null
null
class Solution { public: int matchPlayersAndTrainers(vector<int>& players, vector<int>& trainers) { ranges::sort(players); ranges::sort(trainers); int m = players.size(), n = trainers.size(); for (int i = 0, j = 0; i < m; ++i, ++j) { while (j < n && trainers[j] < players[i]) { ++j; } if (j == n) { return i; } } return m; } };
null
null
func matchPlayersAndTrainers(players []int, trainers []int) int { sort.Ints(players) sort.Ints(trainers) m, n := len(players), len(trainers) for i, j := 0, 0; i < m; i, j = i+1, j+1 { for j < n && trainers[j] < players[i] { j++ } if j == n { return i } } return m }
class Solution { public int matchPlayersAndTrainers(int[] players, int[] trainers) { Arrays.sort(players); Arrays.sort(trainers); int m = players.length, n = trainers.length; for (int i = 0, j = 0; i < m; ++i, ++j) { while (j < n && trainers[j] < players[i]) { ++j; } if (j == n) { return i; } } return m; } }
null
null
null
null
null
null
class Solution: def matchPlayersAndTrainers(self, players: List[int], trainers: List[int]) -> int: players.sort() trainers.sort() j, n = 0, len(trainers) for i, p in enumerate(players): while j < n and trainers[j] < p: j += 1 if j == n: return i j += 1 return len(players)
null
impl Solution { pub fn match_players_and_trainers(mut players: Vec<i32>, mut trainers: Vec<i32>) -> i32 { players.sort(); trainers.sort(); let mut j = 0; let n = trainers.len(); for (i, &p) in players.iter().enumerate() { while j < n && trainers[j] < p { j += 1; } if j == n { return i as i32; } j += 1; } players.len() as i32 } }
null
null
null
function matchPlayersAndTrainers(players: number[], trainers: number[]): number { players.sort((a, b) => a - b); trainers.sort((a, b) => a - b); const [m, n] = [players.length, trainers.length]; for (let i = 0, j = 0; i < m; ++i, ++j) { while (j < n && trainers[j] < players[i]) { ++j; } if (j === n) { return i; } } return m; }
Zero Array Transformation III
You are given an integer array nums of length n and a 2D array queries where queries[i] = [l i , r i ] . Each queries[i] represents the following action on nums : Decrement the value at each index in the range [l i , r i ] in nums by at most 1. The amount by which the value is decremented can be chosen independently for each index. A Zero Array is an array with all its elements equal to 0. Return the maximum number of elements that can be removed from queries , such that nums can still be converted to a zero array using the remaining queries. If it is not possible to convert nums to a zero array , return -1.   Example 1: Input: nums = [2,0,2], queries = [[0,2],[0,2],[1,1]] Output: 1 Explanation: After removing queries[2] , nums can still be converted to a zero array. Using queries[0] , decrement nums[0] and nums[2] by 1 and nums[1] by 0. Using queries[1] , decrement nums[0] and nums[2] by 1 and nums[1] by 0. Example 2: Input: nums = [1,1,1,1], queries = [[1,3],[0,2],[1,3],[1,2]] Output: 2 Explanation: We can remove queries[2] and queries[3] . Example 3: Input: nums = [1,2,3,4], queries = [[0,3]] Output: -1 Explanation: nums cannot be converted to a zero array even after using all the queries.   Constraints: 1 <= nums.length <= 10 5 0 <= nums[i] <= 10 5 1 <= queries.length <= 10 5 queries[i].length == 2 0 <= l i <= r i < nums.length
null
null
class Solution { public: int maxRemoval(vector<int>& nums, vector<vector<int>>& queries) { sort(queries.begin(), queries.end()); priority_queue<int> pq; int n = nums.size(); vector<int> d(n + 1, 0); int s = 0, j = 0; for (int i = 0; i < n; ++i) { s += d[i]; while (j < queries.size() && queries[j][0] <= i) { pq.push(queries[j][1]); ++j; } while (s < nums[i] && !pq.empty() && pq.top() >= i) { ++s; int end = pq.top(); pq.pop(); --d[end + 1]; } if (s < nums[i]) { return -1; } } return pq.size(); } };
null
null
func maxRemoval(nums []int, queries [][]int) int { sort.Slice(queries, func(i, j int) bool { return queries[i][0] < queries[j][0] }) var h hp heap.Init(&h) n := len(nums) d := make([]int, n+1) s, j := 0, 0 for i := 0; i < n; i++ { s += d[i] for j < len(queries) && queries[j][0] <= i { heap.Push(&h, queries[j][1]) j++ } for s < nums[i] && h.Len() > 0 && h.IntSlice[0] >= i { s++ end := heap.Pop(&h).(int) if end+1 < len(d) { d[end+1]-- } } if s < nums[i] { return -1 } } return h.Len() } type hp struct{ sort.IntSlice } func (h hp) Less(i, j int) bool { return h.IntSlice[i] > h.IntSlice[j] } func (h *hp) Push(v any) { h.IntSlice = append(h.IntSlice, v.(int)) } func (h *hp) Pop() any { a := h.IntSlice v := a[len(a)-1] h.IntSlice = a[:len(a)-1] return v }
class Solution { public int maxRemoval(int[] nums, int[][] queries) { Arrays.sort(queries, (a, b) -> Integer.compare(a[0], b[0])); PriorityQueue<Integer> pq = new PriorityQueue<>((a, b) -> b - a); int n = nums.length; int[] d = new int[n + 1]; int s = 0, j = 0; for (int i = 0; i < n; i++) { s += d[i]; while (j < queries.length && queries[j][0] <= i) { pq.offer(queries[j][1]); j++; } while (s < nums[i] && !pq.isEmpty() && pq.peek() >= i) { s++; d[pq.poll() + 1]--; } if (s < nums[i]) { return -1; } } return pq.size(); } }
null
null
null
null
null
null
class Solution: def maxRemoval(self, nums: List[int], queries: List[List[int]]) -> int: queries.sort() pq = [] d = [0] * (len(nums) + 1) s = j = 0 for i, x in enumerate(nums): s += d[i] while j < len(queries) and queries[j][0] <= i: heappush(pq, -queries[j][1]) j += 1 while s < x and pq and -pq[0] >= i: s += 1 d[-heappop(pq) + 1] -= 1 if s < x: return -1 return len(pq)
null
null
null
null
null
function maxRemoval(nums: number[], queries: number[][]): number { queries.sort((a, b) => a[0] - b[0]); const pq = new MaxPriorityQueue<number>(); const n = nums.length; const d: number[] = Array(n + 1).fill(0); let [s, j] = [0, 0]; for (let i = 0; i < n; i++) { s += d[i]; while (j < queries.length && queries[j][0] <= i) { pq.enqueue(queries[j][1]); j++; } while (s < nums[i] && !pq.isEmpty() && pq.front() >= i) { s++; d[pq.dequeue() + 1]--; } if (s < nums[i]) { return -1; } } return pq.size(); }
Find Pivot Index
Given an array of integers nums , calculate the pivot index of this array. The pivot index is the index where the sum of all the numbers strictly to the left of the index is equal to the sum of all the numbers strictly to the index's right. If the index is on the left edge of the array, then the left sum is 0 because there are no elements to the left. This also applies to the right edge of the array. Return the leftmost pivot index . If no such index exists, return -1 .   Example 1: Input: nums = [1,7,3,6,5,6] Output: 3 Explanation: The pivot index is 3. Left sum = nums[0] + nums[1] + nums[2] = 1 + 7 + 3 = 11 Right sum = nums[4] + nums[5] = 5 + 6 = 11 Example 2: Input: nums = [1,2,3] Output: -1 Explanation: There is no index that satisfies the conditions in the problem statement. Example 3: Input: nums = [2,1,-1] Output: 0 Explanation: The pivot index is 0. Left sum = 0 (no elements to the left of index 0) Right sum = nums[1] + nums[2] = 1 + -1 = 0   Constraints: 1 <= nums.length <= 10 4 -1000 <= nums[i] <= 1000   Note: This question is the same as 1991:  https://leetcode.com/problems/find-the-middle-index-in-array/
null
null
class Solution { public: int pivotIndex(vector<int>& nums) { int left = 0, right = accumulate(nums.begin(), nums.end(), 0); for (int i = 0; i < nums.size(); ++i) { right -= nums[i]; if (left == right) { return i; } left += nums[i]; } return -1; } };
null
null
func pivotIndex(nums []int) int { var left, right int for _, x := range nums { right += x } for i, x := range nums { right -= x if left == right { return i } left += x } return -1 }
class Solution { public int pivotIndex(int[] nums) { int left = 0, right = Arrays.stream(nums).sum(); for (int i = 0; i < nums.length; ++i) { right -= nums[i]; if (left == right) { return i; } left += nums[i]; } return -1; } }
/** * @param {number[]} nums * @return {number} */ var pivotIndex = function (nums) { let left = 0, right = nums.reduce((a, b) => a + b); for (let i = 0; i < nums.length; ++i) { right -= nums[i]; if (left == right) { return i; } left += nums[i]; } return -1; };
null
null
null
null
null
class Solution: def pivotIndex(self, nums: List[int]) -> int: left, right = 0, sum(nums) for i, x in enumerate(nums): right -= x if left == right: return i left += x return -1
null
impl Solution { pub fn pivot_index(nums: Vec<i32>) -> i32 { let (mut left, mut right): (i32, i32) = (0, nums.iter().sum()); for i in 0..nums.len() { right -= nums[i]; if left == right { return i as i32; } left += nums[i]; } -1 } }
null
null
null
function pivotIndex(nums: number[]): number { let left = 0, right = nums.reduce((a, b) => a + b); for (let i = 0; i < nums.length; ++i) { right -= nums[i]; if (left == right) { return i; } left += nums[i]; } return -1; }
Smallest String With Swaps
You are given a string s , and an array of pairs of indices in the string  pairs  where  pairs[i] = [a, b]  indicates 2 indices(0-indexed) of the string. You can swap the characters at any pair of indices in the given  pairs   any number of times . Return the lexicographically smallest string that s  can be changed to after using the swaps.   Example 1: Input: s = "dcab", pairs = [[0,3],[1,2]] Output: "bacd" Explaination: Swap s[0] and s[3], s = "bcad" Swap s[1] and s[2], s = "bacd" Example 2: Input: s = "dcab", pairs = [[0,3],[1,2],[0,2]] Output: "abcd" Explaination: Swap s[0] and s[3], s = "bcad" Swap s[0] and s[2], s = "acbd" Swap s[1] and s[2], s = "abcd" Example 3: Input: s = "cba", pairs = [[0,1],[1,2]] Output: "abc" Explaination: Swap s[0] and s[1], s = "bca" Swap s[1] and s[2], s = "bac" Swap s[0] and s[1], s = "abc"   Constraints: 1 <= s.length <= 10^5 0 <= pairs.length <= 10^5 0 <= pairs[i][0], pairs[i][1] < s.length s  only contains lower case English letters.
null
null
class Solution { public: string smallestStringWithSwaps(string s, vector<vector<int>>& pairs) { int n = s.size(); int p[n]; iota(p, p + n, 0); vector<char> d[n]; function<int(int)> find = [&](int x) -> int { if (p[x] != x) { p[x] = find(p[x]); } return p[x]; }; for (auto e : pairs) { int a = e[0], b = e[1]; p[find(a)] = find(b); } for (int i = 0; i < n; ++i) { d[find(i)].push_back(s[i]); } for (auto& e : d) { sort(e.rbegin(), e.rend()); } for (int i = 0; i < n; ++i) { auto& e = d[find(i)]; s[i] = e.back(); e.pop_back(); } return s; } };
null
null
func smallestStringWithSwaps(s string, pairs [][]int) string { n := len(s) p := make([]int, n) d := make([][]byte, n) for i := range p { p[i] = i } var find func(int) int find = func(x int) int { if p[x] != x { p[x] = find(p[x]) } return p[x] } for _, pair := range pairs { a, b := pair[0], pair[1] p[find(a)] = find(b) } cs := []byte(s) for i, c := range cs { j := find(i) d[j] = append(d[j], c) } for i := range d { sort.Slice(d[i], func(a, b int) bool { return d[i][a] > d[i][b] }) } for i := range cs { j := find(i) cs[i] = d[j][len(d[j])-1] d[j] = d[j][:len(d[j])-1] } return string(cs) }
class Solution { private int[] p; public String smallestStringWithSwaps(String s, List<List<Integer>> pairs) { int n = s.length(); p = new int[n]; List<Character>[] d = new List[n]; for (int i = 0; i < n; ++i) { p[i] = i; d[i] = new ArrayList<>(); } for (var pair : pairs) { int a = pair.get(0), b = pair.get(1); p[find(a)] = find(b); } char[] cs = s.toCharArray(); for (int i = 0; i < n; ++i) { d[find(i)].add(cs[i]); } for (var e : d) { e.sort((a, b) -> b - a); } for (int i = 0; i < n; ++i) { var e = d[find(i)]; cs[i] = e.remove(e.size() - 1); } return String.valueOf(cs); } private int find(int x) { if (p[x] != x) { p[x] = find(p[x]); } return p[x]; } }
null
null
null
null
null
null
class Solution: def smallestStringWithSwaps(self, s: str, pairs: List[List[int]]) -> str: def find(x: int) -> int: if p[x] != x: p[x] = find(p[x]) return p[x] n = len(s) p = list(range(n)) for a, b in pairs: p[find(a)] = find(b) d = defaultdict(list) for i, c in enumerate(s): d[find(i)].append(c) for i in d.keys(): d[i].sort(reverse=True) return "".join(d[find(i)].pop() for i in range(n))
null
impl Solution { #[allow(dead_code)] pub fn smallest_string_with_swaps(s: String, pairs: Vec<Vec<i32>>) -> String { let n = s.as_bytes().len(); let s = s.as_bytes(); let mut disjoint_set: Vec<usize> = vec![0; n]; let mut str_vec: Vec<Vec<u8>> = vec![Vec::new(); n]; let mut ret_str = String::new(); // Initialize the disjoint set for i in 0..n { disjoint_set[i] = i; } // Union the pairs for pair in pairs { Self::union(pair[0] as usize, pair[1] as usize, &mut disjoint_set); } // Initialize the return vector for (i, c) in s.iter().enumerate() { let p_c = Self::find(i, &mut disjoint_set); str_vec[p_c].push(*c); } // Sort the return vector in reverse order for cur_vec in &mut str_vec { cur_vec.sort(); cur_vec.reverse(); } // Construct the return string for i in 0..n { let index = Self::find(i, &mut disjoint_set); ret_str.push(str_vec[index].last().unwrap().clone() as char); str_vec[index].pop(); } ret_str } #[allow(dead_code)] fn find(x: usize, d_set: &mut Vec<usize>) -> usize { if d_set[x] != x { d_set[x] = Self::find(d_set[x], d_set); } d_set[x] } #[allow(dead_code)] fn union(x: usize, y: usize, d_set: &mut Vec<usize>) { let p_x = Self::find(x, d_set); let p_y = Self::find(y, d_set); d_set[p_x] = p_y; } }
null
null
null
function smallestStringWithSwaps(s: string, pairs: number[][]): string { const n = s.length; const p = new Array(n).fill(0).map((_, i) => i); const find = (x: number): number => { if (p[x] !== x) { p[x] = find(p[x]); } return p[x]; }; const d: string[][] = new Array(n).fill(0).map(() => []); for (const [a, b] of pairs) { p[find(a)] = find(b); } for (let i = 0; i < n; ++i) { d[find(i)].push(s[i]); } for (const e of d) { e.sort((a, b) => b.charCodeAt(0) - a.charCodeAt(0)); } const ans: string[] = []; for (let i = 0; i < n; ++i) { ans.push(d[find(i)].pop()!); } return ans.join(''); }
Minimize XOR
Given two positive integers num1 and num2 , find the positive integer x such that: x has the same number of set bits as num2 , and The value x XOR num1 is minimal . Note that XOR is the bitwise XOR operation. Return the integer x . The test cases are generated such that x is uniquely determined . The number of set bits of an integer is the number of 1 's in its binary representation.   Example 1: Input: num1 = 3, num2 = 5 Output: 3 Explanation: The binary representations of num1 and num2 are 0011 and 0101, respectively. The integer 3 has the same number of set bits as num2, and the value 3 XOR 3 = 0 is minimal. Example 2: Input: num1 = 1, num2 = 12 Output: 3 Explanation: The binary representations of num1 and num2 are 0001 and 1100, respectively. The integer 3 has the same number of set bits as num2, and the value 3 XOR 1 = 2 is minimal.   Constraints: 1 <= num1, num2 <= 10 9
null
null
class Solution { public: int minimizeXor(int num1, int num2) { int cnt1 = __builtin_popcount(num1); int cnt2 = __builtin_popcount(num2); for (; cnt1 > cnt2; --cnt1) { num1 &= (num1 - 1); } for (; cnt1 < cnt2; ++cnt1) { num1 |= (num1 + 1); } return num1; } };
null
null
func minimizeXor(num1 int, num2 int) int { cnt1 := bits.OnesCount(uint(num1)) cnt2 := bits.OnesCount(uint(num2)) for ; cnt1 > cnt2; cnt1-- { num1 &= (num1 - 1) } for ; cnt1 < cnt2; cnt1++ { num1 |= (num1 + 1) } return num1 }
class Solution { public int minimizeXor(int num1, int num2) { int cnt1 = Integer.bitCount(num1); int cnt2 = Integer.bitCount(num2); for (; cnt1 > cnt2; --cnt1) { num1 &= (num1 - 1); } for (; cnt1 < cnt2; ++cnt1) { num1 |= (num1 + 1); } return num1; } }
null
null
null
null
null
null
class Solution: def minimizeXor(self, num1: int, num2: int) -> int: cnt1 = num1.bit_count() cnt2 = num2.bit_count() while cnt1 > cnt2: num1 &= num1 - 1 cnt1 -= 1 while cnt1 < cnt2: num1 |= num1 + 1 cnt1 += 1 return num1
null
null
null
null
null
function minimizeXor(num1: number, num2: number): number { let cnt1 = bitCount(num1); let cnt2 = bitCount(num2); for (; cnt1 > cnt2; --cnt1) { num1 &= num1 - 1; } for (; cnt1 < cnt2; ++cnt1) { num1 |= num1 + 1; } return num1; } function bitCount(i: number): number { i = i - ((i >>> 1) & 0x55555555); i = (i & 0x33333333) + ((i >>> 2) & 0x33333333); i = (i + (i >>> 4)) & 0x0f0f0f0f; i = i + (i >>> 8); i = i + (i >>> 16); return i & 0x3f; }
Longest Consecutive Sequence
Given an unsorted array of integers nums , return the length of the longest consecutive elements sequence. You must write an algorithm that runs in  O(n)  time.   Example 1: Input: nums = [100,4,200,1,3,2] Output: 4 Explanation: The longest consecutive elements sequence is [1, 2, 3, 4] . Therefore its length is 4. Example 2: Input: nums = [0,3,7,2,5,8,4,6,0,1] Output: 9 Example 3: Input: nums = [1,0,1,2] Output: 3   Constraints: 0 <= nums.length <= 10 5 -10 9 <= nums[i] <= 10 9
null
null
class Solution { public: int longestConsecutive(vector<int>& nums) { unordered_set<int> s(nums.begin(), nums.end()); int ans = 0; for (int x : s) { if (!s.contains(x - 1)) { int y = x + 1; while (s.contains(y)) { y++; } ans = max(ans, y - x); } } return ans; } };
null
null
func longestConsecutive(nums []int) (ans int) { s := map[int]bool{} for _, x := range nums { s[x] = true } for x, _ := range s { if !s[x-1] { y := x + 1 for s[y] { y++ } ans = max(ans, y-x) } } return }
class Solution { public int longestConsecutive(int[] nums) { Set<Integer> s = new HashSet<>(); for (int x : nums) { s.add(x); } int ans = 0; for (int x : s) { if (!s.contains(x - 1)) { int y = x + 1; while (s.contains(y)) { ++y; } ans = Math.max(ans, y - x); } } return ans; } }
/** * @param {number[]} nums * @return {number} */ var longestConsecutive = function (nums) { const s = new Set(nums); let ans = 0; for (const x of nums) { if (!s.has(x - 1)) { let y = x + 1; while (s.has(y)) { y++; } ans = Math.max(ans, y - x); } } return ans; };
null
null
null
null
null
class Solution: def longestConsecutive(self, nums: List[int]) -> int: s = set(nums) ans = 0 for x in s: if x - 1 not in s: y = x + 1 while y in s: y += 1 ans = max(ans, y - x) return ans
null
use std::collections::HashSet; impl Solution { pub fn longest_consecutive(nums: Vec<i32>) -> i32 { let s: HashSet<i32> = nums.iter().cloned().collect(); let mut ans = 0; for &x in &s { if !s.contains(&(x - 1)) { let mut y = x + 1; while s.contains(&y) { y += 1; } ans = ans.max(y - x); } } ans } }
null
null
null
function longestConsecutive(nums: number[]): number { const s = new Set<number>(nums); let ans = 0; for (const x of s) { if (!s.has(x - 1)) { let y = x + 1; while (s.has(y)) { y++; } ans = Math.max(ans, y - x); } } return ans; }
Mini Parser
Given a string s represents the serialization of a nested list, implement a parser to deserialize it and return the deserialized NestedInteger . Each element is either an integer or a list whose elements may also be integers or other lists.   Example 1: Input: s = "324" Output: 324 Explanation: You should return a NestedInteger object which contains a single integer 324. Example 2: Input: s = "[123,[456,[789]]]" Output: [123,[456,[789]]] Explanation: Return a NestedInteger object containing a nested list with 2 elements: 1. An integer containing value 123. 2. A nested list containing two elements: i. An integer containing value 456. ii. A nested list with one element: a. An integer containing value 789   Constraints: 1 <= s.length <= 5 * 10 4 s consists of digits, square brackets "[]" , negative sign '-' , and commas ',' . s is the serialization of valid NestedInteger . All the values in the input are in the range [-10 6 , 10 6 ] .
null
null
/** * // This is the interface that allows for creating nested lists. * // You should not implement it, or speculate about its implementation * class NestedInteger { * public: * // Constructor initializes an empty nested list. * NestedInteger(); * * // Constructor initializes a single integer. * NestedInteger(int value); * * // Return true if this NestedInteger holds a single integer, rather than a nested list. * bool isInteger() const; * * // Return the single integer that this NestedInteger holds, if it holds a single integer * // The result is undefined if this NestedInteger holds a nested list * int getInteger() const; * * // Set this NestedInteger to hold a single integer. * void setInteger(int value); * * // Set this NestedInteger to hold a nested list and adds a nested integer to it. * void add(const NestedInteger &ni); * * // Return the nested list that this NestedInteger holds, if it holds a nested list * // The result is undefined if this NestedInteger holds a single integer * const vector<NestedInteger> &getList() const; * }; */ class Solution { public: NestedInteger deserialize(string s) { if (s[0] != '[') { return NestedInteger(stoi(s)); } stack<NestedInteger> stk; int x = 0; bool neg = false; for (int i = 0; i < s.size(); ++i) { if (s[i] == '-') { neg = true; } else if (isdigit(s[i])) { x = x * 10 + s[i] - '0'; } else if (s[i] == '[') { stk.push(NestedInteger()); } else if (s[i] == ',' || s[i] == ']') { if (isdigit(s[i - 1])) { if (neg) { x = -x; } stk.top().add(NestedInteger(x)); } x = 0; neg = false; if (s[i] == ']' && stk.size() > 1) { auto t = stk.top(); stk.pop(); stk.top().add(t); } } } return stk.top(); } };
null
null
/** * // This is the interface that allows for creating nested lists. * // You should not implement it, or speculate about its implementation * type NestedInteger struct { * } * * // Return true if this NestedInteger holds a single integer, rather than a nested list. * func (n NestedInteger) IsInteger() bool {} * * // Return the single integer that this NestedInteger holds, if it holds a single integer * // The result is undefined if this NestedInteger holds a nested list * // So before calling this method, you should have a check * func (n NestedInteger) GetInteger() int {} * * // Set this NestedInteger to hold a single integer. * func (n *NestedInteger) SetInteger(value int) {} * * // Set this NestedInteger to hold a nested list and adds a nested integer to it. * func (n *NestedInteger) Add(elem NestedInteger) {} * * // Return the nested list that this NestedInteger holds, if it holds a nested list * // The list length is zero if this NestedInteger holds a single integer * // You can access NestedInteger's List element directly if you want to modify it * func (n NestedInteger) GetList() []*NestedInteger {} */ func deserialize(s string) *NestedInteger { if s[0] != '[' { v, _ := strconv.Atoi(s) ans := NestedInteger{} ans.SetInteger(v) return &ans } stk := []*NestedInteger{} x := 0 neg := false for i, c := range s { if c == '-' { neg = true } else if c >= '0' && c <= '9' { x = x*10 + int(c-'0') } else if c == '[' { stk = append(stk, &NestedInteger{}) } else if c == ',' || c == ']' { if s[i-1] >= '0' && s[i-1] <= '9' { if neg { x = -x } t := NestedInteger{} t.SetInteger(x) stk[len(stk)-1].Add(t) } x = 0 neg = false if c == ']' && len(stk) > 1 { t := stk[len(stk)-1] stk = stk[:len(stk)-1] stk[len(stk)-1].Add(*t) } } } return stk[0] }
/** * // This is the interface that allows for creating nested lists. * // You should not implement it, or speculate about its implementation * public interface NestedInteger { * // Constructor initializes an empty nested list. * public NestedInteger(); * * // Constructor initializes a single integer. * public NestedInteger(int value); * * // @return true if this NestedInteger holds a single integer, rather than a nested list. * public boolean isInteger(); * * // @return the single integer that this NestedInteger holds, if it holds a single integer * // Return null if this NestedInteger holds a nested list * public Integer getInteger(); * * // Set this NestedInteger to hold a single integer. * public void setInteger(int value); * * // Set this NestedInteger to hold a nested list and adds a nested integer to it. * public void add(NestedInteger ni); * * // @return the nested list that this NestedInteger holds, if it holds a nested list * // Return empty list if this NestedInteger holds a single integer * public List<NestedInteger> getList(); * } */ class Solution { public NestedInteger deserialize(String s) { if (s.charAt(0) != '[') { return new NestedInteger(Integer.parseInt(s)); } Deque<NestedInteger> stk = new ArrayDeque<>(); int x = 0; boolean neg = false; for (int i = 0; i < s.length(); ++i) { char c = s.charAt(i); if (c == '-') { neg = true; } else if (Character.isDigit(c)) { x = x * 10 + c - '0'; } else if (c == '[') { stk.push(new NestedInteger()); } else if (c == ',' || c == ']') { if (Character.isDigit(s.charAt(i - 1))) { if (neg) { x = -x; } stk.peek().add(new NestedInteger(x)); } x = 0; neg = false; if (c == ']' && stk.size() > 1) { NestedInteger t = stk.pop(); stk.peek().add(t); } } } return stk.peek(); } }
null
null
null
null
null
null
# """ # This is the interface that allows for creating nested lists. # You should not implement it, or speculate about its implementation # """ # class NestedInteger: # def __init__(self, value=None): # """ # If value is not specified, initializes an empty list. # Otherwise initializes a single integer equal to value. # """ # # def isInteger(self): # """ # @return True if this NestedInteger holds a single integer, rather than a nested list. # :rtype bool # """ # # def add(self, elem): # """ # Set this NestedInteger to hold a nested list and adds a nested integer elem to it. # :rtype void # """ # # def setInteger(self, value): # """ # Set this NestedInteger to hold a single integer equal to value. # :rtype void # """ # # def getInteger(self): # """ # @return the single integer that this NestedInteger holds, if it holds a single integer # Return None if this NestedInteger holds a nested list # :rtype int # """ # # def getList(self): # """ # @return the nested list that this NestedInteger holds, if it holds a nested list # Return None if this NestedInteger holds a single integer # :rtype List[NestedInteger] # """ class Solution: def deserialize(self, s: str) -> NestedInteger: if s[0] != '[': return NestedInteger(int(s)) stk, x, neg = [], 0, False for i, c in enumerate(s): if c == '-': neg = True elif c.isdigit(): x = x * 10 + int(c) elif c == '[': stk.append(NestedInteger()) elif c in ',]': if s[i - 1].isdigit(): if neg: x = -x stk[-1].add(NestedInteger(x)) x, neg = 0, False if c == ']' and len(stk) > 1: t = stk.pop() stk[-1].add(t) return stk.pop()
null
null
null
null
null
/** * // This is the interface that allows for creating nested lists. * // You should not implement it, or speculate about its implementation * class NestedInteger { * If value is provided, then it holds a single integer * Otherwise it holds an empty nested list * constructor(value?: number) { * ... * }; * * Return true if this NestedInteger holds a single integer, rather than a nested list. * isInteger(): boolean { * ... * }; * * Return the single integer that this NestedInteger holds, if it holds a single integer * Return null if this NestedInteger holds a nested list * getInteger(): number | null { * ... * }; * * Set this NestedInteger to hold a single integer equal to value. * setInteger(value: number) { * ... * }; * * Set this NestedInteger to hold a nested list and adds a nested integer elem to it. * add(elem: NestedInteger) { * ... * }; * * Return the nested list that this NestedInteger holds, * or an empty list if this NestedInteger holds a single integer * getList(): NestedInteger[] { * ... * }; * }; */ function deserialize(s: string): NestedInteger { if (s[0] !== '[') { return new NestedInteger(+s); } const stk: NestedInteger[] = []; let x = 0; let neg = false; for (let i = 0; i < s.length; ++i) { if (s[i] === '-') { neg = true; } else if (s[i] === '[') { stk.push(new NestedInteger()); } else if (s[i] >= '0' && s[i] <= '9') { x = x * 10 + s[i].charCodeAt(0) - '0'.charCodeAt(0); } else if (s[i] === ',' || s[i] === ']') { if (s[i - 1] >= '0' && s[i - 1] <= '9') { stk[stk.length - 1].add(new NestedInteger(neg ? -x : x)); } x = 0; neg = false; if (s[i] === ']' && stk.length > 1) { const t = stk.pop()!; stk[stk.length - 1].add(t); } } } return stk[0]; }
Closest Dessert Cost
You would like to make dessert and are preparing to buy the ingredients. You have n ice cream base flavors and m types of toppings to choose from. You must follow these rules when making your dessert: There must be exactly one ice cream base. You can add one or more types of topping or have no toppings at all. There are at most two of each type of topping. You are given three inputs: baseCosts , an integer array of length n , where each baseCosts[i] represents the price of the i th ice cream base flavor. toppingCosts , an integer array of length m , where each toppingCosts[i] is the price of one of the i th topping. target , an integer representing your target price for dessert. You want to make a dessert with a total cost as close to target as possible. Return the closest possible cost of the dessert to target . If there are multiple, return the lower one.   Example 1: Input: baseCosts = [1,7], toppingCosts = [3,4], target = 10 Output: 10 Explanation: Consider the following combination (all 0-indexed): - Choose base 1: cost 7 - Take 1 of topping 0: cost 1 x 3 = 3 - Take 0 of topping 1: cost 0 x 4 = 0 Total: 7 + 3 + 0 = 10. Example 2: Input: baseCosts = [2,3], toppingCosts = [4,5,100], target = 18 Output: 17 Explanation: Consider the following combination (all 0-indexed): - Choose base 1: cost 3 - Take 1 of topping 0: cost 1 x 4 = 4 - Take 2 of topping 1: cost 2 x 5 = 10 - Take 0 of topping 2: cost 0 x 100 = 0 Total: 3 + 4 + 10 + 0 = 17. You cannot make a dessert with a total cost of 18. Example 3: Input: baseCosts = [3,10], toppingCosts = [2,5], target = 9 Output: 8 Explanation: It is possible to make desserts with cost 8 and 10. Return 8 as it is the lower cost.   Constraints: n == baseCosts.length m == toppingCosts.length 1 <= n, m <= 10 1 <= baseCosts[i], toppingCosts[i] <= 10 4 1 <= target <= 10 4
null
null
class Solution { public: const int inf = INT_MAX; int closestCost(vector<int>& baseCosts, vector<int>& toppingCosts, int target) { vector<int> arr; function<void(int, int)> dfs = [&](int i, int t) { if (i >= toppingCosts.size()) { arr.push_back(t); return; } dfs(i + 1, t); dfs(i + 1, t + toppingCosts[i]); }; dfs(0, 0); sort(arr.begin(), arr.end()); int d = inf, ans = inf; // 选择一种冰激淋基料 for (int x : baseCosts) { // 枚举子集和 for (int y : arr) { // 二分查找 int i = lower_bound(arr.begin(), arr.end(), target - x - y) - arr.begin(); for (int j = i - 1; j < i + 1; ++j) { if (j >= 0 && j < arr.size()) { int t = abs(x + y + arr[j] - target); if (d > t || (d == t && ans > x + y + arr[j])) { d = t; ans = x + y + arr[j]; } } } } } return ans; } };
null
null
func closestCost(baseCosts []int, toppingCosts []int, target int) int { arr := []int{} var dfs func(int, int) dfs = func(i, t int) { if i >= len(toppingCosts) { arr = append(arr, t) return } dfs(i+1, t) dfs(i+1, t+toppingCosts[i]) } dfs(0, 0) sort.Ints(arr) const inf = 1 << 30 ans, d := inf, inf // 选择一种冰激淋基料 for _, x := range baseCosts { // 枚举子集和 for _, y := range arr { // 二分查找 i := sort.SearchInts(arr, target-x-y) for j := i - 1; j < i+1; j++ { if j >= 0 && j < len(arr) { t := abs(x + y + arr[j] - target) if d > t || (d == t && ans > x+y+arr[j]) { d = t ans = x + y + arr[j] } } } } } return ans } func abs(x int) int { if x < 0 { return -x } return x }
class Solution { private List<Integer> arr = new ArrayList<>(); private int[] ts; private int inf = 1 << 30; public int closestCost(int[] baseCosts, int[] toppingCosts, int target) { ts = toppingCosts; dfs(0, 0); Collections.sort(arr); int d = inf, ans = inf; // 选择一种冰激淋基料 for (int x : baseCosts) { // 枚举子集和 for (int y : arr) { // 二分查找 int i = search(target - x - y); for (int j : new int[] {i, i - 1}) { if (j >= 0 && j < arr.size()) { int t = Math.abs(x + y + arr.get(j) - target); if (d > t || (d == t && ans > x + y + arr.get(j))) { d = t; ans = x + y + arr.get(j); } } } } } return ans; } private int search(int x) { int left = 0, right = arr.size(); while (left < right) { int mid = (left + right) >> 1; if (arr.get(mid) >= x) { right = mid; } else { left = mid + 1; } } return left; } private void dfs(int i, int t) { if (i >= ts.length) { arr.add(t); return; } dfs(i + 1, t); dfs(i + 1, t + ts[i]); } }
const closestCost = function (baseCosts, toppingCosts, target) { let closestDessertCost = -Infinity; function dfs(dessertCost, j) { const tarCurrDiff = Math.abs(target - dessertCost); const tarCloseDiff = Math.abs(target - closestDessertCost); if (tarCurrDiff < tarCloseDiff) { closestDessertCost = dessertCost; } else if (tarCurrDiff === tarCloseDiff && dessertCost < closestDessertCost) { closestDessertCost = dessertCost; } if (dessertCost > target) return; if (j === toppingCosts.length) return; for (let count = 0; count <= 2; count++) { dfs(dessertCost + count * toppingCosts[j], j + 1); } } for (let i = 0; i < baseCosts.length; i++) { dfs(baseCosts[i], 0); } return closestDessertCost; };
null
null
null
null
null
class Solution: def closestCost( self, baseCosts: List[int], toppingCosts: List[int], target: int ) -> int: def dfs(i, t): if i >= len(toppingCosts): arr.append(t) return dfs(i + 1, t) dfs(i + 1, t + toppingCosts[i]) arr = [] dfs(0, 0) arr.sort() d = ans = inf # 选择一种冰激淋基料 for x in baseCosts: # 枚举子集和 for y in arr: # 二分查找 i = bisect_left(arr, target - x - y) for j in (i, i - 1): if 0 <= j < len(arr): t = abs(x + y + arr[j] - target) if d > t or (d == t and ans > x + y + arr[j]): d = t ans = x + y + arr[j] return ans
null
null
null
null
null
null
Minimum Window Substring
Given two strings s and t of lengths m and n respectively, return the minimum window substring of s such that every character in t ( including duplicates ) is included in the window . If there is no such substring, return the empty string "" . The testcases will be generated such that the answer is unique .   Example 1: Input: s = "ADOBECODEBANC", t = "ABC" Output: "BANC" Explanation: The minimum window substring "BANC" includes 'A', 'B', and 'C' from string t. Example 2: Input: s = "a", t = "a" Output: "a" Explanation: The entire string s is the minimum window. Example 3: Input: s = "a", t = "aa" Output: "" Explanation: Both 'a's from t must be included in the window. Since the largest window of s only has one 'a', return empty string.   Constraints: m == s.length n == t.length 1 <= m, n <= 10 5 s and t consist of uppercase and lowercase English letters.   Follow up: Could you find an algorithm that runs in O(m + n) time?
null
public class Solution { public string MinWindow(string s, string t) { int[] need = new int[128]; int[] window = new int[128]; foreach (var c in t) { need[c]++; } int m = s.Length, n = t.Length; int k = -1, mi = m + 1, cnt = 0; int l = 0; for (int r = 0; r < m; r++) { char c = s[r]; window[c]++; if (window[c] <= need[c]) { cnt++; } while (cnt == n) { if (r - l + 1 < mi) { mi = r - l + 1; k = l; } c = s[l]; if (window[c] <= need[c]) { cnt--; } window[c]--; l++; } } return k < 0 ? "" : s.Substring(k, mi); } }
class Solution { public: string minWindow(string s, string t) { vector<int> need(128, 0); vector<int> window(128, 0); for (char c : t) { ++need[c]; } int m = s.length(), n = t.length(); int k = -1, mi = m + 1, cnt = 0; for (int l = 0, r = 0; r < m; ++r) { char c = s[r]; if (++window[c] <= need[c]) { ++cnt; } while (cnt == n) { if (r - l + 1 < mi) { mi = r - l + 1; k = l; } c = s[l]; if (window[c] <= need[c]) { --cnt; } --window[c]; ++l; } } return k < 0 ? "" : s.substr(k, mi); } };
null
null
func minWindow(s string, t string) string { need := make([]int, 128) window := make([]int, 128) for i := 0; i < len(t); i++ { need[t[i]]++ } m, n := len(s), len(t) k, mi, cnt := -1, m+1, 0 for l, r := 0, 0; r < m; r++ { c := s[r] if window[c]++; window[c] <= need[c] { cnt++ } for cnt == n { if r-l+1 < mi { mi = r - l + 1 k = l } c = s[l] if window[c] <= need[c] { cnt-- } window[c]-- l++ } } if k < 0 { return "" } return s[k : k+mi] }
class Solution { public String minWindow(String s, String t) { int[] need = new int[128]; int[] window = new int[128]; for (char c : t.toCharArray()) { ++need[c]; } int m = s.length(), n = t.length(); int k = -1, mi = m + 1, cnt = 0; for (int l = 0, r = 0; r < m; ++r) { char c = s.charAt(r); if (++window[c] <= need[c]) { ++cnt; } while (cnt == n) { if (r - l + 1 < mi) { mi = r - l + 1; k = l; } c = s.charAt(l); if (window[c] <= need[c]) { --cnt; } --window[c]; ++l; } } return k < 0 ? "" : s.substring(k, k + mi); } }
null
null
null
null
null
null
class Solution: def minWindow(self, s: str, t: str) -> str: need = Counter(t) window = Counter() cnt = l = 0 k, mi = -1, inf for r, c in enumerate(s): window[c] += 1 if need[c] >= window[c]: cnt += 1 while cnt == len(t): if r - l + 1 < mi: mi = r - l + 1 k = l if need[s[l]] >= window[s[l]]: cnt -= 1 window[s[l]] -= 1 l += 1 return "" if k < 0 else s[k : k + mi]
null
use std::collections::HashMap; impl Solution { pub fn min_window(s: String, t: String) -> String { let mut need: HashMap<char, usize> = HashMap::new(); let mut window: HashMap<char, usize> = HashMap::new(); for c in t.chars() { *need.entry(c).or_insert(0) += 1; } let m = s.len(); let n = t.len(); let mut k = -1; let mut mi = m + 1; let mut cnt = 0; let s_bytes = s.as_bytes(); let mut l = 0; for r in 0..m { let c = s_bytes[r] as char; *window.entry(c).or_insert(0) += 1; if window[&c] <= *need.get(&c).unwrap_or(&0) { cnt += 1; } while cnt == n { if r - l + 1 < mi { mi = r - l + 1; k = l as i32; } let c = s_bytes[l] as char; if window[&c] <= *need.get(&c).unwrap_or(&0) { cnt -= 1; } *window.entry(c).or_insert(0) -= 1; l += 1; } } if k < 0 { return String::new(); } s[k as usize..(k as usize + mi)].to_string() } }
null
null
null
function minWindow(s: string, t: string): string { const need: number[] = Array(128).fill(0); const window: number[] = Array(128).fill(0); for (let i = 0; i < t.length; i++) { need[t.charCodeAt(i)]++; } const [m, n] = [s.length, t.length]; let [k, mi, cnt] = [-1, m + 1, 0]; for (let l = 0, r = 0; r < m; r++) { let c = s.charCodeAt(r); if (++window[c] <= need[c]) { cnt++; } while (cnt === n) { if (r - l + 1 < mi) { mi = r - l + 1; k = l; } c = s.charCodeAt(l); if (window[c] <= need[c]) { cnt--; } window[c]--; l++; } } return k < 0 ? '' : s.substring(k, k + mi); }
Maximize Score After Pair Deletions 🔒
You are given an array of integers nums . You must repeatedly perform one of the following operations while the array has more than two elements: Remove the first two elements. Remove the last two elements. Remove the first and last element. For each operation, add the sum of the removed elements to your total score. Return the maximum possible score you can achieve.   Example 1: Input: nums = [2,4,1] Output: 6 Explanation: The possible operations are: Remove the first two elements (2 + 4) = 6 . The remaining array is [1] . Remove the last two elements (4 + 1) = 5 . The remaining array is [2] . Remove the first and last elements (2 + 1) = 3 . The remaining array is [4] . The maximum score is obtained by removing the first two elements, resulting in a final score of 6. Example 2: Input: nums = [5,-1,4,2] Output: 7 Explanation: The possible operations are: Remove the first and last elements (5 + 2) = 7 . The remaining array is [-1, 4] . Remove the first two elements (5 + -1) = 4 . The remaining array is [4, 2] . Remove the last two elements (4 + 2) = 6 . The remaining array is [5, -1] . The maximum score is obtained by removing the first and last elements, resulting in a total score of 7.   Constraints: 1 <= nums.length <= 10 5 -10 4 <= nums[i] <= 10 4
null
null
class Solution { public: int maxScore(vector<int>& nums) { const int inf = 1 << 30; int n = nums.size(); int s = 0, mi = inf; int t = inf; for (int i = 0; i < n; ++i) { s += nums[i]; mi = min(mi, nums[i]); if (i + 1 < n) { t = min(t, nums[i] + nums[i + 1]); } } if (n % 2 == 1) { return s - mi; } return s - t; } };
null
null
func maxScore(nums []int) int { const inf = 1 << 30 n := len(nums) s, mi, t := 0, inf, inf for i, x := range nums { s += x mi = min(mi, x) if i+1 < n { t = min(t, x+nums[i+1]) } } if n%2 == 1 { return s - mi } return s - t }
class Solution { public int maxScore(int[] nums) { final int inf = 1 << 30; int n = nums.length; int s = 0, mi = inf; int t = inf; for (int i = 0; i < n; ++i) { s += nums[i]; mi = Math.min(mi, nums[i]); if (i + 1 < n) { t = Math.min(t, nums[i] + nums[i + 1]); } } if (n % 2 == 1) { return s - mi; } return s - t; } }
null
null
null
null
null
null
class Solution: def maxScore(self, nums: List[int]) -> int: s = sum(nums) if len(nums) & 1: return s - min(nums) return s - min(a + b for a, b in pairwise(nums))
null
null
null
null
null
function maxScore(nums: number[]): number { const inf = Infinity; const n = nums.length; let [s, mi, t] = [0, inf, inf]; for (let i = 0; i < n; ++i) { s += nums[i]; mi = Math.min(mi, nums[i]); if (i + 1 < n) { t = Math.min(t, nums[i] + nums[i + 1]); } } return n % 2 ? s - mi : s - t; }
Course Schedule
There are a total of numCourses courses you have to take, labeled from 0 to numCourses - 1 . You are given an array prerequisites where prerequisites[i] = [a i , b i ] indicates that you must take course b i first if you want to take course a i . For example, the pair [0, 1] , indicates that to take course 0 you have to first take course 1 . Return true if you can finish all courses. Otherwise, return false .   Example 1: Input: numCourses = 2, prerequisites = [[1,0]] Output: true Explanation: There are a total of 2 courses to take. To take course 1 you should have finished course 0. So it is possible. Example 2: Input: numCourses = 2, prerequisites = [[1,0],[0,1]] Output: false Explanation: There are a total of 2 courses to take. To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.   Constraints: 1 <= numCourses <= 2000 0 <= prerequisites.length <= 5000 prerequisites[i].length == 2 0 <= a i , b i < numCourses All the pairs prerequisites[i] are unique .
null
public class Solution { public bool CanFinish(int numCourses, int[][] prerequisites) { var g = new List<int>[numCourses]; for (int i = 0; i < numCourses; ++i) { g[i] = new List<int>(); } var indeg = new int[numCourses]; foreach (var p in prerequisites) { int a = p[0], b = p[1]; g[b].Add(a); ++indeg[a]; } var q = new Queue<int>(); for (int i = 0; i < numCourses; ++i) { if (indeg[i] == 0) { q.Enqueue(i); } } while (q.Count > 0) { int i = q.Dequeue(); --numCourses; foreach (int j in g[i]) { if (--indeg[j] == 0) { q.Enqueue(j); } } } return numCourses == 0; } }
class Solution { public: bool canFinish(int numCourses, vector<vector<int>>& prerequisites) { vector<vector<int>> g(numCourses); vector<int> indeg(numCourses); for (auto& p : prerequisites) { int a = p[0], b = p[1]; g[b].push_back(a); ++indeg[a]; } queue<int> q; for (int i = 0; i < numCourses; ++i) { if (indeg[i] == 0) { q.push(i); } } while (!q.empty()) { int i = q.front(); q.pop(); --numCourses; for (int j : g[i]) { if (--indeg[j] == 0) { q.push(j); } } } return numCourses == 0; } };
null
null
func canFinish(numCourses int, prerequisites [][]int) bool { g := make([][]int, numCourses) indeg := make([]int, numCourses) for _, p := range prerequisites { a, b := p[0], p[1] g[b] = append(g[b], a) indeg[a]++ } q := []int{} for i, x := range indeg { if x == 0 { q = append(q, i) } } for len(q) > 0 { i := q[0] q = q[1:] numCourses-- for _, j := range g[i] { indeg[j]-- if indeg[j] == 0 { q = append(q, j) } } } return numCourses == 0 }
class Solution { public boolean canFinish(int numCourses, int[][] prerequisites) { List<Integer>[] g = new List[numCourses]; Arrays.setAll(g, k -> new ArrayList<>()); int[] indeg = new int[numCourses]; for (var p : prerequisites) { int a = p[0], b = p[1]; g[b].add(a); ++indeg[a]; } Deque<Integer> q = new ArrayDeque<>(); for (int i = 0; i < numCourses; ++i) { if (indeg[i] == 0) { q.offer(i); } } while (!q.isEmpty()) { int i = q.poll(); --numCourses; for (int j : g[i]) { if (--indeg[j] == 0) { q.offer(j); } } } return numCourses == 0; } }
null
null
null
null
null
null
class Solution: def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool: g = [[] for _ in range(numCourses)] indeg = [0] * numCourses for a, b in prerequisites: g[b].append(a) indeg[a] += 1 q = [i for i, x in enumerate(indeg) if x == 0] for i in q: numCourses -= 1 for j in g[i]: indeg[j] -= 1 if indeg[j] == 0: q.append(j) return numCourses == 0
null
use std::collections::VecDeque; impl Solution { pub fn can_finish(mut num_courses: i32, prerequisites: Vec<Vec<i32>>) -> bool { let mut g: Vec<Vec<i32>> = vec![vec![]; num_courses as usize]; let mut indeg: Vec<i32> = vec![0; num_courses as usize]; for p in prerequisites { let a = p[0] as usize; let b = p[1] as usize; g[b].push(a as i32); indeg[a] += 1; } let mut q: VecDeque<usize> = VecDeque::new(); for i in 0..num_courses { if indeg[i as usize] == 0 { q.push_back(i as usize); } } while let Some(i) = q.pop_front() { num_courses -= 1; for &j in &g[i] { let j = j as usize; indeg[j] -= 1; if indeg[j] == 0 { q.push_back(j); } } } num_courses == 0 } }
null
null
null
function canFinish(numCourses: number, prerequisites: number[][]): boolean { const g: number[][] = Array.from({ length: numCourses }, () => []); const indeg: number[] = Array(numCourses).fill(0); for (const [a, b] of prerequisites) { g[b].push(a); indeg[a]++; } const q: number[] = []; for (let i = 0; i < numCourses; ++i) { if (indeg[i] === 0) { q.push(i); } } for (const i of q) { --numCourses; for (const j of g[i]) { if (--indeg[j] === 0) { q.push(j); } } } return numCourses === 0; }
Check if Move is Legal
You are given a 0-indexed 8 x 8 grid board , where board[r][c] represents the cell (r, c) on a game board. On the board, free cells are represented by '.' , white cells are represented by 'W' , and black cells are represented by 'B' . Each move in this game consists of choosing a free cell and changing it to the color you are playing as (either white or black). However, a move is only legal if, after changing it, the cell becomes the endpoint of a good line (horizontal, vertical, or diagonal). A good line is a line of three or more cells (including the endpoints) where the endpoints of the line are one color , and the remaining cells in the middle are the opposite color (no cells in the line are free). You can find examples for good lines in the figure below: Given two integers rMove and cMove and a character color representing the color you are playing as (white or black), return true if changing cell (rMove, cMove) to color color is a legal move, or false if it is not legal .   Example 1: Input: board = [[".",".",".","B",".",".",".","."],[".",".",".","W",".",".",".","."],[".",".",".","W",".",".",".","."],[".",".",".","W",".",".",".","."],["W","B","B",".","W","W","W","B"],[".",".",".","B",".",".",".","."],[".",".",".","B",".",".",".","."],[".",".",".","W",".",".",".","."]], rMove = 4, cMove = 3, color = "B" Output: true Explanation: '.', 'W', and 'B' are represented by the colors blue, white, and black respectively, and cell (rMove, cMove) is marked with an 'X'. The two good lines with the chosen cell as an endpoint are annotated above with the red rectangles. Example 2: Input: board = [[".",".",".",".",".",".",".","."],[".","B",".",".","W",".",".","."],[".",".","W",".",".",".",".","."],[".",".",".","W","B",".",".","."],[".",".",".",".",".",".",".","."],[".",".",".",".","B","W",".","."],[".",".",".",".",".",".","W","."],[".",".",".",".",".",".",".","B"]], rMove = 4, cMove = 4, color = "W" Output: false Explanation: While there are good lines with the chosen cell as a middle cell, there are no good lines with the chosen cell as an endpoint.   Constraints: board.length == board[r].length == 8 0 <= rMove, cMove < 8 board[rMove][cMove] == '.' color is either 'B' or 'W' .
null
null
class Solution { public: bool checkMove(vector<vector<char>>& board, int rMove, int cMove, char color) { for (int a = -1; a <= 1; ++a) { for (int b = -1; b <= 1; ++b) { if (a == 0 && b == 0) { continue; } int i = rMove, j = cMove; int cnt = 0; while (0 <= i + a && i + a < 8 && 0 <= j + b && j + b < 8) { i += a; j += b; if (++cnt > 1 && board[i][j] == color) { return true; } if (board[i][j] == color || board[i][j] == '.') { break; } } } } return false; } };
null
null
func checkMove(board [][]byte, rMove int, cMove int, color byte) bool { for a := -1; a <= 1; a++ { for b := -1; b <= 1; b++ { if a == 0 && b == 0 { continue } i, j := rMove, cMove cnt := 0 for 0 <= i+a && i+a < 8 && 0 <= j+b && j+b < 8 { i += a j += b cnt++ if cnt > 1 && board[i][j] == color { return true } if board[i][j] == color || board[i][j] == '.' { break } } } } return false }
class Solution { public boolean checkMove(char[][] board, int rMove, int cMove, char color) { for (int a = -1; a <= 1; ++a) { for (int b = -1; b <= 1; ++b) { if (a == 0 && b == 0) { continue; } int i = rMove, j = cMove; int cnt = 0; while (0 <= i + a && i + a < 8 && 0 <= j + b && j + b < 8) { i += a; j += b; if (++cnt > 1 && board[i][j] == color) { return true; } if (board[i][j] == color || board[i][j] == '.') { break; } } } } return false; } }
null
null
null
null
null
null
class Solution: def checkMove( self, board: List[List[str]], rMove: int, cMove: int, color: str ) -> bool: for a in range(-1, 2): for b in range(-1, 2): if a == 0 and b == 0: continue i, j = rMove, cMove cnt = 0 while 0 <= i + a < 8 and 0 <= j + b < 8: cnt += 1 i, j = i + a, j + b if cnt > 1 and board[i][j] == color: return True if board[i][j] in (color, "."): break return False
null
null
null
null
null
function checkMove(board: string[][], rMove: number, cMove: number, color: string): boolean { for (let a = -1; a <= 1; ++a) { for (let b = -1; b <= 1; ++b) { if (a === 0 && b === 0) { continue; } let [i, j] = [rMove, cMove]; let cnt = 0; while (0 <= i + a && i + a < 8 && 0 <= j + b && j + b < 8) { i += a; j += b; if (++cnt > 1 && board[i][j] === color) { return true; } if (board[i][j] === color || board[i][j] === '.') { break; } } } } return false; }
Unique Word Abbreviation 🔒
The abbreviation of a word is a concatenation of its first letter, the number of characters between the first and last letter, and its last letter. If a word has only two characters, then it is an abbreviation of itself. For example: dog --> d1g because there is one letter between the first letter 'd' and the last letter 'g' . internationalization --> i18n because there are 18 letters between the first letter 'i' and the last letter 'n' . it --> it because any word with only two characters is an abbreviation of itself. Implement the ValidWordAbbr class: ValidWordAbbr(String[] dictionary) Initializes the object with a dictionary of words. boolean isUnique(string word) Returns true if either of the following conditions are met (otherwise returns false ): There is no word in dictionary whose abbreviation is equal to word 's abbreviation . For any word in dictionary whose abbreviation is equal to word 's abbreviation , that word and word are the same .   Example 1: Input ["ValidWordAbbr", "isUnique", "isUnique", "isUnique", "isUnique", "isUnique"] [[["deer", "door", "cake", "card"]], ["dear"], ["cart"], ["cane"], ["make"], ["cake"]] Output [null, false, true, false, true, true] Explanation ValidWordAbbr validWordAbbr = new ValidWordAbbr(["deer", "door", "cake", "card"]); validWordAbbr.isUnique("dear"); // return false, dictionary word "deer" and word "dear" have the same abbreviation "d2r" but are not the same. validWordAbbr.isUnique("cart"); // return true, no words in the dictionary have the abbreviation "c2t". validWordAbbr.isUnique("cane"); // return false, dictionary word "cake" and word "cane" have the same abbreviation "c2e" but are not the same. validWordAbbr.isUnique("make"); // return true, no words in the dictionary have the abbreviation "m2e". validWordAbbr.isUnique("cake"); // return true, because "cake" is already in the dictionary and no other word in the dictionary has "c2e" abbreviation.   Constraints: 1 <= dictionary.length <= 3 * 10 4 1 <= dictionary[i].length <= 20 dictionary[i] consists of lowercase English letters. 1 <= word.length <= 20 word consists of lowercase English letters. At most 5000 calls will be made to isUnique .
null
null
class ValidWordAbbr { public: ValidWordAbbr(vector<string>& dictionary) { for (auto& s : dictionary) { d[abbr(s)].insert(s); } } bool isUnique(string word) { string s = abbr(word); return !d.count(s) || (d[s].size() == 1 && d[s].count(word)); } private: unordered_map<string, unordered_set<string>> d; string abbr(string& s) { int n = s.size(); return n < 3 ? s : s.substr(0, 1) + to_string(n - 2) + s.substr(n - 1, 1); } }; /** * Your ValidWordAbbr object will be instantiated and called as such: * ValidWordAbbr* obj = new ValidWordAbbr(dictionary); * bool param_1 = obj->isUnique(word); */
null
null
type ValidWordAbbr struct { d map[string]map[string]bool } func Constructor(dictionary []string) ValidWordAbbr { d := make(map[string]map[string]bool) for _, s := range dictionary { abbr := abbr(s) if _, ok := d[abbr]; !ok { d[abbr] = make(map[string]bool) } d[abbr][s] = true } return ValidWordAbbr{d} } func (this *ValidWordAbbr) IsUnique(word string) bool { ws := this.d[abbr(word)] return ws == nil || (len(ws) == 1 && ws[word]) } func abbr(s string) string { n := len(s) if n < 3 { return s } return fmt.Sprintf("%c%d%c", s[0], n-2, s[n-1]) } /** * Your ValidWordAbbr object will be instantiated and called as such: * obj := Constructor(dictionary); * param_1 := obj.IsUnique(word); */
class ValidWordAbbr { private Map<String, Set<String>> d = new HashMap<>(); public ValidWordAbbr(String[] dictionary) { for (var s : dictionary) { d.computeIfAbsent(abbr(s), k -> new HashSet<>()).add(s); } } public boolean isUnique(String word) { var ws = d.get(abbr(word)); return ws == null || (ws.size() == 1 && ws.contains(word)); } private String abbr(String s) { int n = s.length(); return n < 3 ? s : s.substring(0, 1) + (n - 2) + s.substring(n - 1); } } /** * Your ValidWordAbbr object will be instantiated and called as such: * ValidWordAbbr obj = new ValidWordAbbr(dictionary); * boolean param_1 = obj.isUnique(word); */
null
null
null
null
null
null
class ValidWordAbbr: def __init__(self, dictionary: List[str]): self.d = defaultdict(set) for s in dictionary: self.d[self.abbr(s)].add(s) def isUnique(self, word: str) -> bool: s = self.abbr(word) return s not in self.d or all(word == t for t in self.d[s]) def abbr(self, s: str) -> str: return s if len(s) < 3 else s[0] + str(len(s) - 2) + s[-1] # Your ValidWordAbbr object will be instantiated and called as such: # obj = ValidWordAbbr(dictionary) # param_1 = obj.isUnique(word)
null
null
null
null
null
class ValidWordAbbr { private d: Map<string, Set<string>> = new Map(); constructor(dictionary: string[]) { for (const s of dictionary) { const abbr = this.abbr(s); if (!this.d.has(abbr)) { this.d.set(abbr, new Set()); } this.d.get(abbr)!.add(s); } } isUnique(word: string): boolean { const ws = this.d.get(this.abbr(word)); return ws === undefined || (ws.size === 1 && ws.has(word)); } abbr(s: string): string { const n = s.length; return n < 3 ? s : s[0] + (n - 2) + s[n - 1]; } } /** * Your ValidWordAbbr object will be instantiated and called as such: * var obj = new ValidWordAbbr(dictionary) * var param_1 = obj.isUnique(word) */
Find Minimum in Rotated Sorted Array
Suppose an array of length n sorted in ascending order is rotated between 1 and n times. For example, the array nums = [0,1,2,4,5,6,7] might become: [4,5,6,7,0,1,2] if it was rotated 4 times. [0,1,2,4,5,6,7] if it was rotated 7 times. Notice that rotating an array [a[0], a[1], a[2], ..., a[n-1]] 1 time results in the array [a[n-1], a[0], a[1], a[2], ..., a[n-2]] . Given the sorted rotated array nums of unique elements, return the minimum element of this array . You must write an algorithm that runs in  O(log n) time .   Example 1: Input: nums = [3,4,5,1,2] Output: 1 Explanation: The original array was [1,2,3,4,5] rotated 3 times. Example 2: Input: nums = [4,5,6,7,0,1,2] Output: 0 Explanation: The original array was [0,1,2,4,5,6,7] and it was rotated 4 times. Example 3: Input: nums = [11,13,15,17] Output: 11 Explanation: The original array was [11,13,15,17] and it was rotated 4 times.   Constraints: n == nums.length 1 <= n <= 5000 -5000 <= nums[i] <= 5000 All the integers of nums are unique . nums is sorted and rotated between 1 and n times.
null
null
class Solution { public: int findMin(vector<int>& nums) { int n = nums.size(); if (nums[0] <= nums[n - 1]) return nums[0]; int left = 0, right = n - 1; while (left < right) { int mid = (left + right) >> 1; if (nums[0] <= nums[mid]) left = mid + 1; else right = mid; } return nums[left]; } };
null
null
func findMin(nums []int) int { n := len(nums) if nums[0] <= nums[n-1] { return nums[0] } left, right := 0, n-1 for left < right { mid := (left + right) >> 1 if nums[0] <= nums[mid] { left = mid + 1 } else { right = mid } } return nums[left] }
class Solution { public int findMin(int[] nums) { int n = nums.length; if (nums[0] <= nums[n - 1]) { return nums[0]; } int left = 0, right = n - 1; while (left < right) { int mid = (left + right) >> 1; if (nums[0] <= nums[mid]) { left = mid + 1; } else { right = mid; } } return nums[left]; } }
/** * @param {number[]} nums * @return {number} */ var findMin = function (nums) { let l = 0, r = nums.length - 1; if (nums[l] < nums[r]) return nums[0]; while (l < r) { const m = (l + r) >> 1; if (nums[m] > nums[r]) l = m + 1; else r = m; } return nums[l]; };
null
null
null
null
null
class Solution: def findMin(self, nums: List[int]) -> int: if nums[0] <= nums[-1]: return nums[0] left, right = 0, len(nums) - 1 while left < right: mid = (left + right) >> 1 if nums[0] <= nums[mid]: left = mid + 1 else: right = mid return nums[left]
null
impl Solution { pub fn find_min(nums: Vec<i32>) -> i32 { let mut left = 0; let mut right = nums.len() - 1; while left < right { let mid = left + (right - left) / 2; if nums[mid] > nums[right] { left = mid + 1; } else { right = mid; } } nums[left] } }
null
null
null
function findMin(nums: number[]): number { let left = 0; let right = nums.length - 1; while (left < right) { const mid = (left + right) >>> 1; if (nums[mid] > nums[right]) { left = mid + 1; } else { right = mid; } } return nums[left]; }
Number of Longest Increasing Subsequence
Given an integer array  nums , return the number of longest increasing subsequences. Notice that the sequence has to be strictly increasing.   Example 1: Input: nums = [1,3,5,4,7] Output: 2 Explanation: The two longest increasing subsequences are [1, 3, 4, 7] and [1, 3, 5, 7]. Example 2: Input: nums = [2,2,2,2,2] Output: 5 Explanation: The length of the longest increasing subsequence is 1, and there are 5 increasing subsequences of length 1, so output 5.   Constraints: 1 <= nums.length <= 2000 -10 6 <= nums[i] <= 10 6 The answer is guaranteed to fit inside a 32-bit integer.
null
null
class BinaryIndexedTree { private: int n; vector<int> c; vector<int> d; public: BinaryIndexedTree(int n) : n(n) , c(n + 1, 0) , d(n + 1, 0) {} void update(int x, int v, int cnt) { while (x <= n) { if (c[x] < v) { c[x] = v; d[x] = cnt; } else if (c[x] == v) { d[x] += cnt; } x += x & -x; } } pair<int, int> query(int x) { int v = 0, cnt = 0; while (x > 0) { if (c[x] > v) { v = c[x]; cnt = d[x]; } else if (c[x] == v) { cnt += d[x]; } x -= x & -x; } return {v, cnt}; } }; class Solution { public: int findNumberOfLIS(vector<int>& nums) { vector<int> arr = nums; sort(arr.begin(), arr.end()); arr.erase(unique(arr.begin(), arr.end()), arr.end()); int m = arr.size(); BinaryIndexedTree tree(m); for (int x : nums) { auto it = lower_bound(arr.begin(), arr.end(), x); int i = distance(arr.begin(), it) + 1; auto [v, cnt] = tree.query(i - 1); tree.update(i, v + 1, max(cnt, 1)); } return tree.query(m).second; } };
null
null
type BinaryIndexedTree struct { n int c []int d []int } func newBinaryIndexedTree(n int) BinaryIndexedTree { return BinaryIndexedTree{ n: n, c: make([]int, n+1), d: make([]int, n+1), } } func (bit *BinaryIndexedTree) update(x, v, cnt int) { for x <= bit.n { if bit.c[x] < v { bit.c[x] = v bit.d[x] = cnt } else if bit.c[x] == v { bit.d[x] += cnt } x += x & -x } } func (bit *BinaryIndexedTree) query(x int) (int, int) { v, cnt := 0, 0 for x > 0 { if bit.c[x] > v { v = bit.c[x] cnt = bit.d[x] } else if bit.c[x] == v { cnt += bit.d[x] } x -= x & -x } return v, cnt } func findNumberOfLIS(nums []int) int { arr := make([]int, len(nums)) copy(arr, nums) sort.Ints(arr) m := len(arr) tree := newBinaryIndexedTree(m) for _, x := range nums { i := sort.SearchInts(arr, x) + 1 v, cnt := tree.query(i - 1) tree.update(i, v+1, max(cnt, 1)) } _, ans := tree.query(m) return ans }
class BinaryIndexedTree { private int n; private int[] c; private int[] d; public BinaryIndexedTree(int n) { this.n = n; c = new int[n + 1]; d = new int[n + 1]; } public void update(int x, int v, int cnt) { while (x <= n) { if (c[x] < v) { c[x] = v; d[x] = cnt; } else if (c[x] == v) { d[x] += cnt; } x += x & -x; } } public int[] query(int x) { int v = 0, cnt = 0; while (x > 0) { if (c[x] > v) { v = c[x]; cnt = d[x]; } else if (c[x] == v) { cnt += d[x]; } x -= x & -x; } return new int[] {v, cnt}; } } public class Solution { public int findNumberOfLIS(int[] nums) { // int[] arr = Arrays.stream(nums).distinct().sorted().toArray(); int[] arr = nums.clone(); Arrays.sort(arr); int m = arr.length; BinaryIndexedTree tree = new BinaryIndexedTree(m); for (int x : nums) { int i = Arrays.binarySearch(arr, x) + 1; int[] t = tree.query(i - 1); int v = t[0]; int cnt = t[1]; tree.update(i, v + 1, Math.max(cnt, 1)); } return tree.query(m)[1]; } }
null
null
null
null
null
null
class BinaryIndexedTree: __slots__ = ["n", "c", "d"] def __init__(self, n): self.n = n self.c = [0] * (n + 1) self.d = [0] * (n + 1) def update(self, x, v, cnt): while x <= self.n: if self.c[x] < v: self.c[x] = v self.d[x] = cnt elif self.c[x] == v: self.d[x] += cnt x += x & -x def query(self, x): v = cnt = 0 while x: if self.c[x] > v: v = self.c[x] cnt = self.d[x] elif self.c[x] == v: cnt += self.d[x] x -= x & -x return v, cnt class Solution: def findNumberOfLIS(self, nums: List[int]) -> int: arr = sorted(set(nums)) m = len(arr) tree = BinaryIndexedTree(m) for x in nums: i = bisect_left(arr, x) + 1 v, cnt = tree.query(i - 1) tree.update(i, v + 1, max(cnt, 1)) return tree.query(m)[1]
null
struct BinaryIndexedTree { n: usize, c: Vec<i32>, d: Vec<i32>, } impl BinaryIndexedTree { fn new(n: usize) -> BinaryIndexedTree { BinaryIndexedTree { n, c: vec![0; n + 1], d: vec![0; n + 1], } } fn update(&mut self, x: usize, v: i32, cnt: i32) { let mut x = x as usize; while x <= self.n { if self.c[x] < v { self.c[x] = v; self.d[x] = cnt; } else if self.c[x] == v { self.d[x] += cnt; } x += x & x.wrapping_neg(); } } fn query(&self, mut x: usize) -> (i32, i32) { let (mut v, mut cnt) = (0, 0); while x > 0 { if self.c[x] > v { v = self.c[x]; cnt = self.d[x]; } else if self.c[x] == v { cnt += self.d[x]; } x -= x & x.wrapping_neg(); } (v, cnt) } } impl Solution { pub fn find_number_of_lis(nums: Vec<i32>) -> i32 { let mut arr: Vec<i32> = nums.iter().cloned().collect(); arr.sort(); let m = arr.len(); let mut tree = BinaryIndexedTree::new(m); for x in nums.iter() { if let Ok(i) = arr.binary_search(x) { let (v, cnt) = tree.query(i); tree.update(i + 1, v + 1, cnt.max(1)); } } let (_, ans) = tree.query(m); ans } }
null
null
null
class BinaryIndexedTree { private n: number; private c: number[]; private d: number[]; constructor(n: number) { this.n = n; this.c = Array(n + 1).fill(0); this.d = Array(n + 1).fill(0); } update(x: number, v: number, cnt: number): void { while (x <= this.n) { if (this.c[x] < v) { this.c[x] = v; this.d[x] = cnt; } else if (this.c[x] === v) { this.d[x] += cnt; } x += x & -x; } } query(x: number): [number, number] { let v = 0; let cnt = 0; while (x > 0) { if (this.c[x] > v) { v = this.c[x]; cnt = this.d[x]; } else if (this.c[x] === v) { cnt += this.d[x]; } x -= x & -x; } return [v, cnt]; } } function findNumberOfLIS(nums: number[]): number { const arr: number[] = [...new Set(nums)].sort((a, b) => a - b); const m: number = arr.length; const tree: BinaryIndexedTree = new BinaryIndexedTree(m); const search = (x: number): number => { let l = 0, r = arr.length; while (l < r) { const mid = (l + r) >> 1; if (arr[mid] >= x) { r = mid; } else { l = mid + 1; } } return l + 1; }; for (const x of nums) { const i: number = search(x); const [v, cnt]: [number, number] = tree.query(i - 1); tree.update(i, v + 1, Math.max(cnt, 1)); } return tree.query(m)[1]; }
The Maze III 🔒
There is a ball in a maze with empty spaces (represented as 0 ) and walls (represented as 1 ). The ball can go through the empty spaces by rolling up, down, left or right , but it won't stop rolling until hitting a wall. When the ball stops, it could choose the next direction. There is also a hole in this maze. The ball will drop into the hole if it rolls onto the hole. Given the m x n maze , the ball's position ball and the hole's position hole , where ball = [ball row , ball col ] and hole = [hole row , hole col ] , return a string instructions of all the instructions that the ball should follow to drop in the hole with the shortest distance possible . If there are multiple valid instructions, return the lexicographically minimum one. If the ball can't drop in the hole, return "impossible" . If there is a way for the ball to drop in the hole, the answer instructions should contain the characters 'u' (i.e., up), 'd' (i.e., down), 'l' (i.e., left), and 'r' (i.e., right). The distance is the number of empty spaces traveled by the ball from the start position (excluded) to the destination (included). You may assume that the borders of the maze are all walls (see examples).   Example 1: Input: maze = [[0,0,0,0,0],[1,1,0,0,1],[0,0,0,0,0],[0,1,0,0,1],[0,1,0,0,0]], ball = [4,3], hole = [0,1] Output: "lul" Explanation: There are two shortest ways for the ball to drop into the hole. The first way is left -> up -> left, represented by "lul". The second way is up -> left, represented by 'ul'. Both ways have shortest distance 6, but the first way is lexicographically smaller because 'l' < 'u'. So the output is "lul". Example 2: Input: maze = [[0,0,0,0,0],[1,1,0,0,1],[0,0,0,0,0],[0,1,0,0,1],[0,1,0,0,0]], ball = [4,3], hole = [3,0] Output: "impossible" Explanation: The ball cannot reach the hole. Example 3: Input: maze = [[0,0,0,0,0,0,0],[0,0,1,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]], ball = [0,4], hole = [3,5] Output: "dldr"   Constraints: m == maze.length n == maze[i].length 1 <= m, n <= 100 maze[i][j] is 0 or 1 . ball.length == 2 hole.length == 2 0 <= ball row , hole row <= m 0 <= ball col , hole col <= n Both the ball and the hole exist in an empty space, and they will not be in the same position initially. The maze contains at least 2 empty spaces .
null
null
class Solution { public: string findShortestWay(vector<vector<int>>& maze, vector<int>& ball, vector<int>& hole) { int m = maze.size(); int n = maze[0].size(); int r = ball[0], c = ball[1]; int rh = hole[0], ch = hole[1]; queue<pair<int, int>> q; q.push({r, c}); vector<vector<int>> dist(m, vector<int>(n, INT_MAX)); dist[r][c] = 0; vector<vector<string>> path(m, vector<string>(n, "")); vector<vector<int>> dirs = {{-1, 0, 'u'}, {1, 0, 'd'}, {0, -1, 'l'}, {0, 1, 'r'}}; while (!q.empty()) { auto p = q.front(); q.pop(); int i = p.first, j = p.second; for (auto& dir : dirs) { int a = dir[0], b = dir[1]; char d = (char) dir[2]; int x = i, y = j; int step = dist[i][j]; while (x + a >= 0 && x + a < m && y + b >= 0 && y + b < n && maze[x + a][y + b] == 0 && (x != rh || y != ch)) { x += a; y += b; ++step; } if (dist[x][y] > step || (dist[x][y] == step && (path[i][j] + d < path[x][y]))) { dist[x][y] = step; path[x][y] = path[i][j] + d; if (x != rh || y != ch) q.push({x, y}); } } } return path[rh][ch] == "" ? "impossible" : path[rh][ch]; } };
null
null
import "math" func findShortestWay(maze [][]int, ball []int, hole []int) string { m, n := len(maze), len(maze[0]) r, c := ball[0], ball[1] rh, ch := hole[0], hole[1] q := [][]int{[]int{r, c}} dist := make([][]int, m) path := make([][]string, m) for i := range dist { dist[i] = make([]int, n) path[i] = make([]string, n) for j := range dist[i] { dist[i][j] = math.MaxInt32 path[i][j] = "" } } dist[r][c] = 0 dirs := map[string][]int{"u": {-1, 0}, "d": {1, 0}, "l": {0, -1}, "r": {0, 1}} for len(q) > 0 { p := q[0] q = q[1:] i, j := p[0], p[1] for d, dir := range dirs { a, b := dir[0], dir[1] x, y := i, j step := dist[i][j] for x+a >= 0 && x+a < m && y+b >= 0 && y+b < n && maze[x+a][y+b] == 0 && (x != rh || y != ch) { x += a y += b step++ } if dist[x][y] > step || (dist[x][y] == step && (path[i][j]+d) < path[x][y]) { dist[x][y] = step path[x][y] = path[i][j] + d if x != rh || y != ch { q = append(q, []int{x, y}) } } } } if path[rh][ch] == "" { return "impossible" } return path[rh][ch] }
class Solution { public String findShortestWay(int[][] maze, int[] ball, int[] hole) { int m = maze.length; int n = maze[0].length; int r = ball[0], c = ball[1]; int rh = hole[0], ch = hole[1]; Deque<int[]> q = new LinkedList<>(); q.offer(new int[] {r, c}); int[][] dist = new int[m][n]; for (int i = 0; i < m; ++i) { Arrays.fill(dist[i], Integer.MAX_VALUE); } dist[r][c] = 0; String[][] path = new String[m][n]; path[r][c] = ""; int[][] dirs = {{-1, 0, 'u'}, {1, 0, 'd'}, {0, -1, 'l'}, {0, 1, 'r'}}; while (!q.isEmpty()) { int[] p = q.poll(); int i = p[0], j = p[1]; for (int[] dir : dirs) { int a = dir[0], b = dir[1]; String d = String.valueOf((char) (dir[2])); int x = i, y = j; int step = dist[i][j]; while (x + a >= 0 && x + a < m && y + b >= 0 && y + b < n && maze[x + a][y + b] == 0 && (x != rh || y != ch)) { x += a; y += b; ++step; } if (dist[x][y] > step || (dist[x][y] == step && (path[i][j] + d).compareTo(path[x][y]) < 0)) { dist[x][y] = step; path[x][y] = path[i][j] + d; if (x != rh || y != ch) { q.offer(new int[] {x, y}); } } } } return path[rh][ch] == null ? "impossible" : path[rh][ch]; } }
null
null
null
null
null
null
class Solution: def findShortestWay( self, maze: List[List[int]], ball: List[int], hole: List[int] ) -> str: m, n = len(maze), len(maze[0]) r, c = ball rh, ch = hole q = deque([(r, c)]) dist = [[inf] * n for _ in range(m)] dist[r][c] = 0 path = [[None] * n for _ in range(m)] path[r][c] = '' while q: i, j = q.popleft() for a, b, d in [(-1, 0, 'u'), (1, 0, 'd'), (0, -1, 'l'), (0, 1, 'r')]: x, y, step = i, j, dist[i][j] while ( 0 <= x + a < m and 0 <= y + b < n and maze[x + a][y + b] == 0 and (x != rh or y != ch) ): x, y = x + a, y + b step += 1 if dist[x][y] > step or ( dist[x][y] == step and path[i][j] + d < path[x][y] ): dist[x][y] = step path[x][y] = path[i][j] + d if x != rh or y != ch: q.append((x, y)) return path[rh][ch] or 'impossible'
null
null
null
null
null
null
Compact Object
Given an object or array  obj , return a compact object . A compact object  is the same as the original object, except with keys containing falsy values removed. This operation applies to the object and any nested objects. Arrays are considered objects where the indices are keys. A value is considered falsy  when Boolean(value) returns false . You may assume the  obj is the output of  JSON.parse . In other words, it is valid JSON.   Example 1: Input: obj = [null, 0, false, 1] Output: [1] Explanation: All falsy values have been removed from the array. Example 2: Input: obj = {"a": null, "b": [false, 1]} Output: {"b": [1]} Explanation: obj["a"] and obj["b"][0] had falsy values and were removed. Example 3: Input: obj = [null, 0, 5, [0], [false, 16]] Output: [5, [], [16]] Explanation: obj[0], obj[1], obj[3][0], and obj[4][0] were falsy and removed.   Constraints: obj is a valid JSON object 2 <= JSON.stringify(obj).length <= 10 6
null
null
null
null
null
null
null
/** * @param {Object|Array} obj * @return {Object|Array} */ var compactObject = function (obj) { if (!obj || typeof obj !== 'object') { return obj; } if (Array.isArray(obj)) { return obj.filter(Boolean).map(compactObject); } return Object.entries(obj).reduce((acc, [key, value]) => { if (value) { acc[key] = compactObject(value); } return acc; }, {}); };
null
null
null
null
null
null
null
null
null
null
null
type Obj = Record<any, any>; function compactObject(obj: Obj): Obj { if (!obj || typeof obj !== 'object') { return obj; } if (Array.isArray(obj)) { return obj.filter(Boolean).map(compactObject); } return Object.entries(obj).reduce((acc, [key, value]) => { if (value) { acc[key] = compactObject(value); } return acc; }, {} as Obj); }
Largest Unique Number 🔒
Given an integer array nums , return the largest integer that only occurs once . If no integer occurs once, return -1 .   Example 1: Input: nums = [5,7,3,9,4,9,8,3,1] Output: 8 Explanation: The maximum integer in the array is 9 but it is repeated. The number 8 occurs only once, so it is the answer. Example 2: Input: nums = [9,9,8,8] Output: -1 Explanation: There is no number that occurs only once.   Constraints: 1 <= nums.length <= 2000 0 <= nums[i] <= 1000
null
null
class Solution { public: int largestUniqueNumber(vector<int>& nums) { int cnt[1001]{}; for (int& x : nums) { ++cnt[x]; } for (int x = 1000; ~x; --x) { if (cnt[x] == 1) { return x; } } return -1; } };
null
null
func largestUniqueNumber(nums []int) int { cnt := [1001]int{} for _, x := range nums { cnt[x]++ } for x := 1000; x >= 0; x-- { if cnt[x] == 1 { return x } } return -1 }
class Solution { public int largestUniqueNumber(int[] nums) { int[] cnt = new int[1001]; for (int x : nums) { ++cnt[x]; } for (int x = 1000; x >= 0; --x) { if (cnt[x] == 1) { return x; } } return -1; } }
/** * @param {number[]} nums * @return {number} */ var largestUniqueNumber = function (nums) { const cnt = Array(1001).fill(0); for (const x of nums) { ++cnt[x]; } for (let x = 1000; x >= 0; --x) { if (cnt[x] === 1) { return x; } } return -1; };
null
null
null
null
null
class Solution: def largestUniqueNumber(self, nums: List[int]) -> int: cnt = Counter(nums) return max((x for x, v in cnt.items() if v == 1), default=-1)
null
null
null
null
null
function largestUniqueNumber(nums: number[]): number { const cnt = Array(1001).fill(0); for (const x of nums) { ++cnt[x]; } for (let x = 1000; x >= 0; --x) { if (cnt[x] === 1) { return x; } } return -1; }
Additive Number
An additive number is a string whose digits can form an additive sequence . A valid additive sequence should contain at least three numbers. Except for the first two numbers, each subsequent number in the sequence must be the sum of the preceding two. Given a string containing only digits, return true if it is an additive number or false otherwise. Note: Numbers in the additive sequence cannot have leading zeros, so sequence 1, 2, 03 or 1, 02, 3 is invalid.   Example 1: Input: "112358" Output: true Explanation: The digits can form an additive sequence: 1, 1, 2, 3, 5, 8. 1 + 1 = 2, 1 + 2 = 3, 2 + 3 = 5, 3 + 5 = 8 Example 2: Input: "199100199" Output: true Explanation: The additive sequence is: 1, 99, 100, 199.  1 + 99 = 100, 99 + 100 = 199   Constraints: 1 <= num.length <= 35 num consists only of digits.   Follow up: How would you handle overflow for very large input integers?
null
null
class Solution { public: bool isAdditiveNumber(string num) { int n = num.size(); for (int i = 1; i < min(n - 1, 19); ++i) { for (int j = i + 1; j < min(n, i + 19); ++j) { if (i > 1 && num[0] == '0') break; if (j - i > 1 && num[i] == '0') continue; auto a = stoll(num.substr(0, i)); auto b = stoll(num.substr(i, j - i)); if (dfs(a, b, num.substr(j, n - j))) return true; } } return false; } bool dfs(long long a, long long b, string num) { if (num == "") return true; if (a + b > 0 && num[0] == '0') return false; for (int i = 1; i < min((int) num.size() + 1, 19); ++i) if (a + b == stoll(num.substr(0, i))) if (dfs(b, a + b, num.substr(i, num.size() - i))) return true; return false; } };
null
null
func isAdditiveNumber(num string) bool { n := len(num) var dfs func(a, b int64, num string) bool dfs = func(a, b int64, num string) bool { if num == "" { return true } if a+b > 0 && num[0] == '0' { return false } for i := 1; i < min(len(num)+1, 19); i++ { c, _ := strconv.ParseInt(num[:i], 10, 64) if a+b == c { if dfs(b, c, num[i:]) { return true } } } return false } for i := 1; i < min(n-1, 19); i++ { for j := i + 1; j < min(n, i+19); j++ { if i > 1 && num[0] == '0' { break } if j-i > 1 && num[i] == '0' { continue } a, _ := strconv.ParseInt(num[:i], 10, 64) b, _ := strconv.ParseInt(num[i:j], 10, 64) if dfs(a, b, num[j:]) { return true } } } return false }
class Solution { public boolean isAdditiveNumber(String num) { int n = num.length(); for (int i = 1; i < Math.min(n - 1, 19); ++i) { for (int j = i + 1; j < Math.min(n, i + 19); ++j) { if (i > 1 && num.charAt(0) == '0') { break; } if (j - i > 1 && num.charAt(i) == '0') { continue; } long a = Long.parseLong(num.substring(0, i)); long b = Long.parseLong(num.substring(i, j)); if (dfs(a, b, num.substring(j))) { return true; } } } return false; } private boolean dfs(long a, long b, String num) { if ("".equals(num)) { return true; } if (a + b > 0 && num.charAt(0) == '0') { return false; } for (int i = 1; i < Math.min(num.length() + 1, 19); ++i) { if (a + b == Long.parseLong(num.substring(0, i))) { if (dfs(b, a + b, num.substring(i))) { return true; } } } return false; } }
null
null
null
null
null
null
class Solution: def isAdditiveNumber(self, num: str) -> bool: def dfs(a, b, num): if not num: return True if a + b > 0 and num[0] == '0': return False for i in range(1, len(num) + 1): if a + b == int(num[:i]): if dfs(b, a + b, num[i:]): return True return False n = len(num) for i in range(1, n - 1): for j in range(i + 1, n): if i > 1 and num[0] == '0': break if j - i > 1 and num[i] == '0': continue if dfs(int(num[:i]), int(num[i:j]), num[j:]): return True return False
null
null
null
null
null
null
Longest Uncommon Subsequence I
Given two strings a and b , return the length of the longest uncommon subsequence between a and b . If no such uncommon subsequence exists, return -1 . An uncommon subsequence between two strings is a string that is a subsequence of exactly one of them .   Example 1: Input: a = "aba", b = "cdc" Output: 3 Explanation: One longest uncommon subsequence is "aba" because "aba" is a subsequence of "aba" but not "cdc". Note that "cdc" is also a longest uncommon subsequence. Example 2: Input: a = "aaa", b = "bbb" Output: 3 Explanation:  The longest uncommon subsequences are "aaa" and "bbb". Example 3: Input: a = "aaa", b = "aaa" Output: -1 Explanation:  Every subsequence of string a is also a subsequence of string b. Similarly, every subsequence of string b is also a subsequence of string a. So the answer would be -1 .   Constraints: 1 <= a.length, b.length <= 100 a and b consist of lower-case English letters.
null
null
class Solution { public: int findLUSlength(string a, string b) { return a == b ? -1 : max(a.size(), b.size()); } };
null
null
func findLUSlength(a string, b string) int { if a == b { return -1 } if len(a) > len(b) { return len(a) } return len(b) }
class Solution { public int findLUSlength(String a, String b) { return a.equals(b) ? -1 : Math.max(a.length(), b.length()); } }
null
null
null
null
null
null
class Solution: def findLUSlength(self, a: str, b: str) -> int: return -1 if a == b else max(len(a), len(b))
null
impl Solution { pub fn find_lu_slength(a: String, b: String) -> i32 { if a == b { return -1; } a.len().max(b.len()) as i32 } }
null
null
null
function findLUSlength(a: string, b: string): number { return a === b ? -1 : Math.max(a.length, b.length); }
Number of Ways to Divide a Long Corridor
Along a long library corridor, there is a line of seats and decorative plants. You are given a 0-indexed string corridor of length n consisting of letters 'S' and 'P' where each 'S' represents a seat and each 'P' represents a plant. One room divider has already been installed to the left of index 0 , and another to the right of index n - 1 . Additional room dividers can be installed. For each position between indices i - 1 and i ( 1 <= i <= n - 1 ), at most one divider can be installed. Divide the corridor into non-overlapping sections, where each section has exactly two seats with any number of plants. There may be multiple ways to perform the division. Two ways are different if there is a position with a room divider installed in the first way but not in the second way. Return the number of ways to divide the corridor . Since the answer may be very large, return it modulo 10 9 + 7 . If there is no way, return 0 .   Example 1: Input: corridor = "SSPPSPS" Output: 3 Explanation: There are 3 different ways to divide the corridor. The black bars in the above image indicate the two room dividers already installed. Note that in each of the ways, each section has exactly two seats. Example 2: Input: corridor = "PPSPSP" Output: 1 Explanation: There is only 1 way to divide the corridor, by not installing any additional dividers. Installing any would create some section that does not have exactly two seats. Example 3: Input: corridor = "S" Output: 0 Explanation: There is no way to divide the corridor because there will always be a section that does not have exactly two seats.   Constraints: n == corridor.length 1 <= n <= 10 5 corridor[i] is either 'S' or 'P' .
null
null
class Solution { public: int numberOfWays(string corridor) { const int mod = 1e9 + 7; long long ans = 1; int cnt = 0, last = 0; for (int i = 0; i < corridor.length(); ++i) { if (corridor[i] == 'S') { if (++cnt > 2 && cnt % 2) { ans = ans * (i - last) % mod; } last = i; } } return cnt > 0 && cnt % 2 == 0 ? ans : 0; } };
null
null
func numberOfWays(corridor string) int { const mod int = 1e9 + 7 ans, cnt, last := 1, 0, 0 for i, c := range corridor { if c == 'S' { cnt++ if cnt > 2 && cnt%2 == 1 { ans = ans * (i - last) % mod } last = i } } if cnt > 0 && cnt%2 == 0 { return ans } return 0 }
class Solution { public int numberOfWays(String corridor) { final int mod = (int) 1e9 + 7; long ans = 1, cnt = 0, last = 0; for (int i = 0; i < corridor.length(); ++i) { if (corridor.charAt(i) == 'S') { if (++cnt > 2 && cnt % 2 == 1) { ans = ans * (i - last) % mod; } last = i; } } return cnt > 0 && cnt % 2 == 0 ? (int) ans : 0; } }
null
null
null
null
null
null
class Solution: def numberOfWays(self, corridor: str) -> int: mod = 10**9 + 7 ans, cnt, last = 1, 0, 0 for i, c in enumerate(corridor): if c == "S": cnt += 1 if cnt > 2 and cnt % 2: ans = ans * (i - last) % mod last = i return ans if cnt and cnt % 2 == 0 else 0
null
null
null
null
null
function numberOfWays(corridor: string): number { const mod = 10 ** 9 + 7; const n = corridor.length; let [ans, cnt, last] = [1, 0, 0]; for (let i = 0; i < n; ++i) { if (corridor[i] === 'S') { if (++cnt > 2 && cnt % 2) { ans = (ans * (i - last)) % mod; } last = i; } } return cnt > 0 && cnt % 2 === 0 ? ans : 0; }
Construct Product Matrix
Given a 0-indexed 2D integer matrix grid of size n * m , we define a 0-indexed 2D matrix p of size n * m as the product matrix of grid if the following condition is met: Each element p[i][j] is calculated as the product of all elements in grid except for the element grid[i][j] . This product is then taken modulo 12345 . Return the product matrix of grid .   Example 1: Input: grid = [[1,2],[3,4]] Output: [[24,12],[8,6]] Explanation: p[0][0] = grid[0][1] * grid[1][0] * grid[1][1] = 2 * 3 * 4 = 24 p[0][1] = grid[0][0] * grid[1][0] * grid[1][1] = 1 * 3 * 4 = 12 p[1][0] = grid[0][0] * grid[0][1] * grid[1][1] = 1 * 2 * 4 = 8 p[1][1] = grid[0][0] * grid[0][1] * grid[1][0] = 1 * 2 * 3 = 6 So the answer is [[24,12],[8,6]]. Example 2: Input: grid = [[12345],[2],[1]] Output: [[2],[0],[0]] Explanation: p[0][0] = grid[0][1] * grid[0][2] = 2 * 1 = 2. p[0][1] = grid[0][0] * grid[0][2] = 12345 * 1 = 12345. 12345 % 12345 = 0. So p[0][1] = 0. p[0][2] = grid[0][0] * grid[0][1] = 12345 * 2 = 24690. 24690 % 12345 = 0. So p[0][2] = 0. So the answer is [[2],[0],[0]].   Constraints: 1 <= n == grid.length <= 10 5 1 <= m == grid[i].length <= 10 5 2 <= n * m <= 10 5 1 <= grid[i][j] <= 10 9
null
null
class Solution { public: vector<vector<int>> constructProductMatrix(vector<vector<int>>& grid) { const int mod = 12345; int n = grid.size(), m = grid[0].size(); vector<vector<int>> p(n, vector<int>(m)); long long suf = 1; for (int i = n - 1; i >= 0; --i) { for (int j = m - 1; j >= 0; --j) { p[i][j] = suf; suf = suf * grid[i][j] % mod; } } long long pre = 1; for (int i = 0; i < n; ++i) { for (int j = 0; j < m; ++j) { p[i][j] = p[i][j] * pre % mod; pre = pre * grid[i][j] % mod; } } return p; } };
null
null
func constructProductMatrix(grid [][]int) [][]int { const mod int = 12345 n, m := len(grid), len(grid[0]) p := make([][]int, n) for i := range p { p[i] = make([]int, m) } suf := 1 for i := n - 1; i >= 0; i-- { for j := m - 1; j >= 0; j-- { p[i][j] = suf suf = suf * grid[i][j] % mod } } pre := 1 for i := 0; i < n; i++ { for j := 0; j < m; j++ { p[i][j] = p[i][j] * pre % mod pre = pre * grid[i][j] % mod } } return p }
class Solution { public int[][] constructProductMatrix(int[][] grid) { final int mod = 12345; int n = grid.length, m = grid[0].length; int[][] p = new int[n][m]; long suf = 1; for (int i = n - 1; i >= 0; --i) { for (int j = m - 1; j >= 0; --j) { p[i][j] = (int) suf; suf = suf * grid[i][j] % mod; } } long pre = 1; for (int i = 0; i < n; ++i) { for (int j = 0; j < m; ++j) { p[i][j] = (int) (p[i][j] * pre % mod); pre = pre * grid[i][j] % mod; } } return p; } }
null
null
null
null
null
null
class Solution: def constructProductMatrix(self, grid: List[List[int]]) -> List[List[int]]: n, m = len(grid), len(grid[0]) p = [[0] * m for _ in range(n)] mod = 12345 suf = 1 for i in range(n - 1, -1, -1): for j in range(m - 1, -1, -1): p[i][j] = suf suf = suf * grid[i][j] % mod pre = 1 for i in range(n): for j in range(m): p[i][j] = p[i][j] * pre % mod pre = pre * grid[i][j] % mod return p
null
impl Solution { pub fn construct_product_matrix(grid: Vec<Vec<i32>>) -> Vec<Vec<i32>> { let modulo: i32 = 12345; let n = grid.len(); let m = grid[0].len(); let mut p: Vec<Vec<i32>> = vec![vec![0; m]; n]; let mut suf = 1; for i in (0..n).rev() { for j in (0..m).rev() { p[i][j] = suf; suf = (((suf as i64) * (grid[i][j] as i64)) % (modulo as i64)) as i32; } } let mut pre = 1; for i in 0..n { for j in 0..m { p[i][j] = (((p[i][j] as i64) * (pre as i64)) % (modulo as i64)) as i32; pre = (((pre as i64) * (grid[i][j] as i64)) % (modulo as i64)) as i32; } } p } }
null
null
null
function constructProductMatrix(grid: number[][]): number[][] { const mod = 12345; const [n, m] = [grid.length, grid[0].length]; const p: number[][] = Array.from({ length: n }, () => Array.from({ length: m }, () => 0)); let suf = 1; for (let i = n - 1; ~i; --i) { for (let j = m - 1; ~j; --j) { p[i][j] = suf; suf = (suf * grid[i][j]) % mod; } } let pre = 1; for (let i = 0; i < n; ++i) { for (let j = 0; j < m; ++j) { p[i][j] = (p[i][j] * pre) % mod; pre = (pre * grid[i][j]) % mod; } } return p; }
Poor Pigs
There are buckets buckets of liquid, where exactly one of the buckets is poisonous. To figure out which one is poisonous, you feed some number of (poor) pigs the liquid to see whether they will die or not. Unfortunately, you only have minutesToTest minutes to determine which bucket is poisonous. You can feed the pigs according to these steps: Choose some live pigs to feed. For each pig, choose which buckets to feed it. The pig will consume all the chosen buckets simultaneously and will take no time. Each pig can feed from any number of buckets, and each bucket can be fed from by any number of pigs. Wait for minutesToDie minutes. You may not feed any other pigs during this time. After minutesToDie minutes have passed, any pigs that have been fed the poisonous bucket will die, and all others will survive. Repeat this process until you run out of time. Given buckets , minutesToDie , and minutesToTest , return the minimum number of pigs needed to figure out which bucket is poisonous within the allotted time .   Example 1: Input: buckets = 4, minutesToDie = 15, minutesToTest = 15 Output: 2 Explanation: We can determine the poisonous bucket as follows: At time 0, feed the first pig buckets 1 and 2, and feed the second pig buckets 2 and 3. At time 15, there are 4 possible outcomes: - If only the first pig dies, then bucket 1 must be poisonous. - If only the second pig dies, then bucket 3 must be poisonous. - If both pigs die, then bucket 2 must be poisonous. - If neither pig dies, then bucket 4 must be poisonous. Example 2: Input: buckets = 4, minutesToDie = 15, minutesToTest = 30 Output: 2 Explanation: We can determine the poisonous bucket as follows: At time 0, feed the first pig bucket 1, and feed the second pig bucket 2. At time 15, there are 2 possible outcomes: - If either pig dies, then the poisonous bucket is the one it was fed. - If neither pig dies, then feed the first pig bucket 3, and feed the second pig bucket 4. At time 30, one of the two pigs must die, and the poisonous bucket is the one it was fed.   Constraints: 1 <= buckets <= 1000 1 <= minutesToDie <= minutesToTest <= 100
null
null
class Solution { public: int poorPigs(int buckets, int minutesToDie, int minutesToTest) { int base = minutesToTest / minutesToDie + 1; int res = 0; for (int p = 1; p < buckets; p *= base) ++res; return res; } };
null
null
func poorPigs(buckets int, minutesToDie int, minutesToTest int) int { base := minutesToTest/minutesToDie + 1 res := 0 for p := 1; p < buckets; p *= base { res++ } return res }
class Solution { public int poorPigs(int buckets, int minutesToDie, int minutesToTest) { int base = minutesToTest / minutesToDie + 1; int res = 0; for (int p = 1; p < buckets; p *= base) { ++res; } return res; } }
null
null
null
null
null
null
class Solution: def poorPigs(self, buckets: int, minutesToDie: int, minutesToTest: int) -> int: base = minutesToTest // minutesToDie + 1 res, p = 0, 1 while p < buckets: p *= base res += 1 return res
null
null
null
null
null
null
Word Frequency
Write a bash script to calculate the frequency of each word in a text file words.txt . For simplicity sake, you may assume: words.txt contains only lowercase characters and space ' ' characters. Each word must consist of lowercase characters only. Words are separated by one or more whitespace characters. Example: Assume that words.txt has the following content: the day is sunny the the the sunny is is Your script should output the following, sorted by descending frequency: the 4 is 3 sunny 2 day 1 Note: Don't worry about handling ties, it is guaranteed that each word's frequency count is unique. Could you write it in one-line using Unix pipes ?
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
# Read from the file words.txt and output the word frequency list to stdout. cat words.txt | tr -s ' ' '\n' | sort | uniq -c | sort -nr | awk '{print $2, $1}'
null
null
Maximize the Distance Between Points on a Square
You are given an integer side , representing the edge length of a square with corners at (0, 0) , (0, side) , (side, 0) , and (side, side) on a Cartesian plane. You are also given a positive integer k and a 2D integer array points , where points[i] = [x i , y i ] represents the coordinate of a point lying on the boundary of the square. You need to select k elements among points such that the minimum Manhattan distance between any two points is maximized . Return the maximum possible minimum Manhattan distance between the selected k points. The Manhattan Distance between two cells (x i , y i ) and (x j , y j ) is |x i - x j | + |y i - y j | .   Example 1: Input: side = 2, points = [[0,2],[2,0],[2,2],[0,0]], k = 4 Output: 2 Explanation: Select all four points. Example 2: Input: side = 2, points = [[0,0],[1,2],[2,0],[2,2],[2,1]], k = 4 Output: 1 Explanation: Select the points (0, 0) , (2, 0) , (2, 2) , and (2, 1) . Example 3: Input: side = 2, points = [[0,0],[0,1],[0,2],[1,2],[2,0],[2,2],[2,1]], k = 5 Output: 1 Explanation: Select the points (0, 0) , (0, 1) , (0, 2) , (1, 2) , and (2, 2) .   Constraints: 1 <= side <= 10 9 4 <= points.length <= min(4 * side, 15 * 10 3 ) points[i] == [xi, yi] The input is generated such that: points[i] lies on the boundary of the square. All points[i] are unique . 4 <= k <= min(25, points.length)
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
Remove Boxes
You are given several boxes with different colors represented by different positive numbers. You may experience several rounds to remove boxes until there is no box left. Each time you can choose some continuous boxes with the same color (i.e., composed of k boxes, k >= 1 ), remove them and get k * k points. Return the maximum points you can get .   Example 1: Input: boxes = [1,3,2,2,2,3,4,3,1] Output: 23 Explanation: [1, 3, 2, 2, 2, 3, 4, 3, 1] ----> [1, 3, 3, 4, 3, 1] (3*3=9 points) ----> [1, 3, 3, 3, 1] (1*1=1 points) ----> [1, 1] (3*3=9 points) ----> [] (2*2=4 points) Example 2: Input: boxes = [1,1,1] Output: 9 Example 3: Input: boxes = [1] Output: 1   Constraints: 1 <= boxes.length <= 100 1 <= boxes[i] <= 100
null
null
class Solution { public: int removeBoxes(vector<int>& boxes) { int n = boxes.size(); vector<vector<vector<int>>> f(n, vector<vector<int>>(n, vector<int>(n))); function<int(int, int, int)> dfs; dfs = [&](int i, int j, int k) { if (i > j) return 0; while (i < j && boxes[j] == boxes[j - 1]) { --j; ++k; } if (f[i][j][k]) return f[i][j][k]; int ans = dfs(i, j - 1, 0) + (k + 1) * (k + 1); for (int h = i; h < j; ++h) { if (boxes[h] == boxes[j]) { ans = max(ans, dfs(h + 1, j - 1, 0) + dfs(i, h, k + 1)); } } f[i][j][k] = ans; return ans; }; return dfs(0, n - 1, 0); } };
null
null
func removeBoxes(boxes []int) int { n := len(boxes) f := make([][][]int, n) for i := range f { f[i] = make([][]int, n) for j := range f[i] { f[i][j] = make([]int, n) } } var dfs func(i, j, k int) int dfs = func(i, j, k int) int { if i > j { return 0 } for i < j && boxes[j] == boxes[j-1] { j, k = j-1, k+1 } if f[i][j][k] > 0 { return f[i][j][k] } ans := dfs(i, j-1, 0) + (k+1)*(k+1) for h := i; h < j; h++ { if boxes[h] == boxes[j] { ans = max(ans, dfs(h+1, j-1, 0)+dfs(i, h, k+1)) } } f[i][j][k] = ans return ans } return dfs(0, n-1, 0) }
class Solution { private int[][][] f; private int[] b; public int removeBoxes(int[] boxes) { b = boxes; int n = b.length; f = new int[n][n][n]; return dfs(0, n - 1, 0); } private int dfs(int i, int j, int k) { if (i > j) { return 0; } while (i < j && b[j] == b[j - 1]) { --j; ++k; } if (f[i][j][k] > 0) { return f[i][j][k]; } int ans = dfs(i, j - 1, 0) + (k + 1) * (k + 1); for (int h = i; h < j; ++h) { if (b[h] == b[j]) { ans = Math.max(ans, dfs(h + 1, j - 1, 0) + dfs(i, h, k + 1)); } } f[i][j][k] = ans; return ans; } }
null
null
null
null
null
null
class Solution: def removeBoxes(self, boxes: List[int]) -> int: @cache def dfs(i, j, k): if i > j: return 0 while i < j and boxes[j] == boxes[j - 1]: j, k = j - 1, k + 1 ans = dfs(i, j - 1, 0) + (k + 1) * (k + 1) for h in range(i, j): if boxes[h] == boxes[j]: ans = max(ans, dfs(h + 1, j - 1, 0) + dfs(i, h, k + 1)) return ans n = len(boxes) ans = dfs(0, n - 1, 0) dfs.cache_clear() return ans
null
null
null
null
null
null
Find the Distinct Difference Array
You are given a 0-indexed array nums of length n . The distinct difference array of nums is an array diff of length n such that diff[i] is equal to the number of distinct elements in the suffix nums[i + 1, ..., n - 1] subtracted from the number of distinct elements in the prefix nums[0, ..., i] . Return the distinct difference array of nums . Note that nums[i, ..., j] denotes the subarray of nums starting at index i and ending at index j inclusive. Particularly, if i > j then nums[i, ..., j] denotes an empty subarray.   Example 1: Input: nums = [1,2,3,4,5] Output: [-3,-1,1,3,5] Explanation: For index i = 0, there is 1 element in the prefix and 4 distinct elements in the suffix. Thus, diff[0] = 1 - 4 = -3. For index i = 1, there are 2 distinct elements in the prefix and 3 distinct elements in the suffix. Thus, diff[1] = 2 - 3 = -1. For index i = 2, there are 3 distinct elements in the prefix and 2 distinct elements in the suffix. Thus, diff[2] = 3 - 2 = 1. For index i = 3, there are 4 distinct elements in the prefix and 1 distinct element in the suffix. Thus, diff[3] = 4 - 1 = 3. For index i = 4, there are 5 distinct elements in the prefix and no elements in the suffix. Thus, diff[4] = 5 - 0 = 5. Example 2: Input: nums = [3,2,3,4,2] Output: [-2,-1,0,2,3] Explanation: For index i = 0, there is 1 element in the prefix and 3 distinct elements in the suffix. Thus, diff[0] = 1 - 3 = -2. For index i = 1, there are 2 distinct elements in the prefix and 3 distinct elements in the suffix. Thus, diff[1] = 2 - 3 = -1. For index i = 2, there are 2 distinct elements in the prefix and 2 distinct elements in the suffix. Thus, diff[2] = 2 - 2 = 0. For index i = 3, there are 3 distinct elements in the prefix and 1 distinct element in the suffix. Thus, diff[3] = 3 - 1 = 2. For index i = 4, there are 3 distinct elements in the prefix and no elements in the suffix. Thus, diff[4] = 3 - 0 = 3.   Constraints: 1 <= n == nums.length <= 50 1 <= nums[i] <= 50
null
null
class Solution { public: vector<int> distinctDifferenceArray(vector<int>& nums) { int n = nums.size(); vector<int> suf(n + 1); unordered_set<int> s; for (int i = n - 1; i >= 0; --i) { s.insert(nums[i]); suf[i] = s.size(); } s.clear(); vector<int> ans(n); for (int i = 0; i < n; ++i) { s.insert(nums[i]); ans[i] = s.size() - suf[i + 1]; } return ans; } };
null
null
func distinctDifferenceArray(nums []int) []int { n := len(nums) suf := make([]int, n+1) s := map[int]bool{} for i := n - 1; i >= 0; i-- { s[nums[i]] = true suf[i] = len(s) } ans := make([]int, n) s = map[int]bool{} for i, x := range nums { s[x] = true ans[i] = len(s) - suf[i+1] } return ans }
class Solution { public int[] distinctDifferenceArray(int[] nums) { int n = nums.length; int[] suf = new int[n + 1]; Set<Integer> s = new HashSet<>(); for (int i = n - 1; i >= 0; --i) { s.add(nums[i]); suf[i] = s.size(); } s.clear(); int[] ans = new int[n]; for (int i = 0; i < n; ++i) { s.add(nums[i]); ans[i] = s.size() - suf[i + 1]; } return ans; } }
null
null
null
null
null
null
class Solution: def distinctDifferenceArray(self, nums: List[int]) -> List[int]: n = len(nums) suf = [0] * (n + 1) s = set() for i in range(n - 1, -1, -1): s.add(nums[i]) suf[i] = len(s) s.clear() ans = [0] * n for i, x in enumerate(nums): s.add(x) ans[i] = len(s) - suf[i + 1] return ans
null
use std::collections::HashSet; impl Solution { pub fn distinct_difference_array(nums: Vec<i32>) -> Vec<i32> { let n = nums.len(); let mut suf = vec![0; n + 1]; let mut s = HashSet::new(); for i in (0..n).rev() { s.insert(nums[i]); suf[i] = s.len(); } let mut ans = Vec::new(); s.clear(); for i in 0..n { s.insert(nums[i]); ans.push((s.len() - suf[i + 1]) as i32); } ans } }
null
null
null
function distinctDifferenceArray(nums: number[]): number[] { const n = nums.length; const suf: number[] = Array(n + 1).fill(0); const s: Set<number> = new Set(); for (let i = n - 1; i >= 0; --i) { s.add(nums[i]); suf[i] = s.size; } s.clear(); const ans: number[] = Array(n).fill(0); for (let i = 0; i < n; ++i) { s.add(nums[i]); ans[i] = s.size - suf[i + 1]; } return ans; }
Minimum Time to Complete All Tasks
There is a computer that can run an unlimited number of tasks at the same time . You are given a 2D integer array tasks where tasks[i] = [start i , end i , duration i ] indicates that the i th task should run for a total of duration i seconds (not necessarily continuous) within the inclusive time range [start i , end i ] . You may turn on the computer only when it needs to run a task. You can also turn it off if it is idle. Return the minimum time during which the computer should be turned on to complete all tasks .   Example 1: Input: tasks = [[2,3,1],[4,5,1],[1,5,2]] Output: 2 Explanation: - The first task can be run in the inclusive time range [2, 2]. - The second task can be run in the inclusive time range [5, 5]. - The third task can be run in the two inclusive time ranges [2, 2] and [5, 5]. The computer will be on for a total of 2 seconds. Example 2: Input: tasks = [[1,3,2],[2,5,3],[5,6,2]] Output: 4 Explanation: - The first task can be run in the inclusive time range [2, 3]. - The second task can be run in the inclusive time ranges [2, 3] and [5, 5]. - The third task can be run in the two inclusive time range [5, 6]. The computer will be on for a total of 4 seconds.   Constraints: 1 <= tasks.length <= 2000 tasks[i].length == 3 1 <= start i , end i <= 2000 1 <= duration i <= end i - start i + 1
null
null
class Solution { public: int findMinimumTime(vector<vector<int>>& tasks) { sort(tasks.begin(), tasks.end(), [&](auto& a, auto& b) { return a[1] < b[1]; }); bitset<2010> vis; int ans = 0; for (auto& task : tasks) { int start = task[0], end = task[1], duration = task[2]; for (int i = start; i <= end; ++i) { duration -= vis[i]; } for (int i = end; i >= start && duration > 0; --i) { if (!vis[i]) { --duration; ans += vis[i] = 1; } } } return ans; } };
null
null
func findMinimumTime(tasks [][]int) (ans int) { sort.Slice(tasks, func(i, j int) bool { return tasks[i][1] < tasks[j][1] }) vis := [2010]int{} for _, task := range tasks { start, end, duration := task[0], task[1], task[2] for _, x := range vis[start : end+1] { duration -= x } for i := end; i >= start && duration > 0; i-- { if vis[i] == 0 { vis[i] = 1 duration-- ans++ } } } return }
class Solution { public int findMinimumTime(int[][] tasks) { Arrays.sort(tasks, (a, b) -> a[1] - b[1]); int[] vis = new int[2010]; int ans = 0; for (var task : tasks) { int start = task[0], end = task[1], duration = task[2]; for (int i = start; i <= end; ++i) { duration -= vis[i]; } for (int i = end; i >= start && duration > 0; --i) { if (vis[i] == 0) { --duration; ans += vis[i] = 1; } } } return ans; } }
null
null
null
null
null
null
class Solution: def findMinimumTime(self, tasks: List[List[int]]) -> int: tasks.sort(key=lambda x: x[1]) vis = [0] * 2010 ans = 0 for start, end, duration in tasks: duration -= sum(vis[start : end + 1]) i = end while i >= start and duration > 0: if not vis[i]: duration -= 1 vis[i] = 1 ans += 1 i -= 1 return ans
null
impl Solution { pub fn find_minimum_time(tasks: Vec<Vec<i32>>) -> i32 { let mut tasks = tasks; tasks.sort_by(|a, b| a[1].cmp(&b[1])); let mut vis = vec![0; 2010]; let mut ans = 0; for task in tasks { let start = task[0] as usize; let end = task[1] as usize; let mut duration = task[2] - vis[start..=end].iter().sum::<i32>(); let mut i = end; while i >= start && duration > 0 { if vis[i] == 0 { duration -= 1; vis[i] = 1; ans += 1; } i -= 1; } } ans } }
null
null
null
function findMinimumTime(tasks: number[][]): number { tasks.sort((a, b) => a[1] - b[1]); const vis: number[] = Array(2010).fill(0); let ans = 0; for (let [start, end, duration] of tasks) { for (let i = start; i <= end; ++i) { duration -= vis[i]; } for (let i = end; i >= start && duration > 0; --i) { if (vis[i] === 0) { --duration; ans += vis[i] = 1; } } } return ans; }
Read N Characters Given Read4 🔒
Given a file and assume that you can only read the file using a given method read4 , implement a method to read n characters. Method read4: The API read4 reads four consecutive characters from file , then writes those characters into the buffer array buf4 . The return value is the number of actual characters read. Note that read4() has its own file pointer, much like FILE *fp in C. Definition of read4: Parameter: char[] buf4 Returns: int buf4[] is a destination, not a source. The results from read4 will be copied to buf4[]. Below is a high-level example of how read4 works: File file("abcde "); // File is " abcde ", initially file pointer (fp) points to 'a' char[] buf4 = new char[4]; // Create buffer with enough space to store characters read4(buf4); // read4 returns 4. Now buf4 = "abcd", fp points to 'e' read4(buf4); // read4 returns 1. Now buf4 = "e", fp points to end of file read4(buf4); // read4 returns 0. Now buf4 = "", fp points to end of file   Method read: By using the read4 method, implement the method read that reads n characters from file and store it in the buffer array buf . Consider that you cannot manipulate file directly. The return value is the number of actual characters read. Definition of read: Parameters: char[] buf, int n Returns: int buf[] is a destination, not a source. You will need to write the results to buf[]. Note: Consider that you cannot manipulate the file directly. The file is only accessible for read4 but not for read . The read function will only be called once for each test case. You may assume the destination buffer array, buf , is guaranteed to have enough space for storing n characters.   Example 1: Input: file = "abc", n = 4 Output: 3 Explanation: After calling your read method, buf should contain "abc". We read a total of 3 characters from the file, so return 3. Note that "abc" is the file's content, not buf. buf is the destination buffer that you will have to write the results to. Example 2: Input: file = "abcde", n = 5 Output: 5 Explanation: After calling your read method, buf should contain "abcde". We read a total of 5 characters from the file, so return 5. Example 3: Input: file = "abcdABCD1234", n = 12 Output: 12 Explanation: After calling your read method, buf should contain "abcdABCD1234". We read a total of 12 characters from the file, so return 12.   Constraints: 1 <= file.length <= 500 file consist of English letters and digits. 1 <= n <= 1000
null
null
/** * The read4 API is defined in the parent class Reader4. * int read4(char *buf4); */ class Solution { public: /** * @param buf Destination buffer * @param n Number of characters to read * @return The number of actual characters read */ int read(char* buf, int n) { char buf4[4]; int i = 0, v = 5; while (v >= 4) { v = read4(buf4); for (int j = 0; j < v; ++j) { buf[i++] = buf4[j]; if (i >= n) { return n; } } } return i; } };
null
null
/** * The read4 API is already defined for you. * * read4 := func(buf4 []byte) int * * // Below is an example of how the read4 API can be called. * file := File("abcdefghijk") // File is "abcdefghijk", initially file pointer (fp) points to 'a' * buf4 := make([]byte, 4) // Create buffer with enough space to store characters * read4(buf4) // read4 returns 4. Now buf = ['a','b','c','d'], fp points to 'e' * read4(buf4) // read4 returns 4. Now buf = ['e','f','g','h'], fp points to 'i' * read4(buf4) // read4 returns 3. Now buf = ['i','j','k',...], fp points to end of file */ var solution = func(read4 func([]byte) int) func([]byte, int) int { // implement read below. return func(buf []byte, n int) int { buf4 := make([]byte, 4) i, v := 0, 5 for v >= 4 { v = read4(buf4) for j := 0; j < v; j++ { buf[i] = buf4[j] i++ if i >= n { return n } } } return i } }
/** * The read4 API is defined in the parent class Reader4. * int read4(char[] buf4); */ public class Solution extends Reader4 { /** * @param buf Destination buffer * @param n Number of characters to read * @return The number of actual characters read */ public int read(char[] buf, int n) { char[] buf4 = new char[4]; int i = 0, v = 5; while (v >= 4) { v = read4(buf4); for (int j = 0; j < v; ++j) { buf[i++] = buf4[j]; if (i >= n) { return n; } } } return i; } }
null
null
null
null
null
null
""" The read4 API is already defined for you. @param buf4, a list of characters @return an integer def read4(buf4): # Below is an example of how the read4 API can be called. file = File("abcdefghijk") # File is "abcdefghijk", initially file pointer (fp) points to 'a' buf4 = [' '] * 4 # Create buffer with enough space to store characters read4(buf4) # read4 returns 4. Now buf = ['a','b','c','d'], fp points to 'e' read4(buf4) # read4 returns 4. Now buf = ['e','f','g','h'], fp points to 'i' read4(buf4) # read4 returns 3. Now buf = ['i','j','k',...], fp points to end of file """ class Solution: def read(self, buf, n): """ :type buf: Destination buffer (List[str]) :type n: Number of characters to read (int) :rtype: The number of actual characters read (int) """ i = 0 buf4 = [0] * 4 v = 5 while v >= 4: v = read4(buf4) for j in range(v): buf[i] = buf4[j] i += 1 if i >= n: return n return i
null
null
null
null
null
null
Popularity Percentage 🔒
Table: Friends +-------------+------+ | Column Name | Type | +-------------+------+ | user1 | int | | user2 | int | +-------------+------+ (user1, user2) is the primary key (combination of unique values) of this table. Each row contains information about friendship where user1 and user2 are friends. Write a solution to find the popularity percentage for each user on Meta/Facebook. The popularity percentage is defined as the total number of friends the user has divided by the total number of users on the platform, then converted into a percentage by multiplying by 100, rounded to 2 decimal places . Return the result table ordered by user1 in ascending order. The result format is in the following example.   Example 1: Input:   Friends table: +-------+-------+ | user1 | user2 | +-------+-------+ | 2     | 1     | | 1     | 3     | | 4     | 1     | | 1     | 5     | | 1     | 6     | | 2     | 6     | | 7     | 2     | | 8     | 3     | | 3     | 9     | +-------+-------+ Output:   +-------+-----------------------+ | user1 | percentage_popularity | +-------+-----------------------+ | 1 | 55.56                | | 2 | 33.33                | | 3 | 33.33               | | 4 | 11.11                 | | 5 | 11.11                 | | 6 | 22.22                 | | 7 | 11.11                 | | 8 | 11.11                 | | 9 | 11.11                 | +-------+-----------------------+ Explanation:   There are total 9 users on the platform. - User "1" has friendships with 2, 3, 4, 5 and 6. Therefore, the percentage popularity for user 1 would be calculated as (5/9) * 100 = 55.56. - User "2" has friendships with 1, 6 and 7. Therefore, the percentage popularity for user 2 would be calculated as (3/9) * 100 = 33.33. - User "3" has friendships with 1, 8 and 9. Therefore, the percentage popularity for user 3 would be calculated as (3/9) * 100 = 33.33. - User "4" has friendships with 1. Therefore, the percentage popularity for user 4 would be calculated as (1/9) * 100 = 11.11. - User "5" has friendships with 1. Therefore, the percentage popularity for user 5 would be calculated as (1/9) * 100 = 11.11. - User "6" has friendships with 1 and 2. Therefore, the percentage popularity for user 6 would be calculated as (2/9) * 100 = 22.22. - User "7" has friendships with 2. Therefore, the percentage popularity for user 7 would be calculated as (1/9) * 100 = 11.11. - User "8" has friendships with 3. Therefore, the percentage popularity for user 8 would be calculated as (1/9) * 100 = 11.11. - User "9" has friendships with 3. Therefore, the percentage popularity for user 9 would be calculated as (1/9) * 100 = 11.11. user1 is sorted in ascending order.
null
null
null
null
null
null
null
null
null
# Write your MySQL query statement below WITH F AS ( SELECT * FROM Friends UNION SELECT user2, user1 FROM Friends ), T AS (SELECT COUNT(DISTINCT user1) AS cnt FROM F) SELECT DISTINCT user1, ROUND( (COUNT(1) OVER (PARTITION BY user1)) * 100 / (SELECT cnt FROM T), 2 ) AS percentage_popularity FROM F ORDER BY 1;
null
null
null
null
null
null
null
null
null
null
Sort Array By Parity II
Given an array of integers nums , half of the integers in nums are odd , and the other half are even . Sort the array so that whenever nums[i] is odd, i is odd , and whenever nums[i] is even, i is even . Return any answer array that satisfies this condition .   Example 1: Input: nums = [4,2,5,7] Output: [4,5,2,7] Explanation: [4,7,2,5], [2,5,4,7], [2,7,4,5] would also have been accepted. Example 2: Input: nums = [2,3] Output: [2,3]   Constraints: 2 <= nums.length <= 2 * 10 4 nums.length is even. Half of the integers in nums are even. 0 <= nums[i] <= 1000   Follow Up: Could you solve it in-place?
null
null
class Solution { public: vector<int> sortArrayByParityII(vector<int>& nums) { for (int i = 0, j = 1; i < nums.size(); i += 2) { if (nums[i] % 2) { while (nums[j] % 2) { j += 2; } swap(nums[i], nums[j]); } } return nums; } };
null
null
func sortArrayByParityII(nums []int) []int { for i, j := 0, 1; i < len(nums); i += 2 { if nums[i]%2 == 1 { for nums[j]%2 == 1 { j += 2 } nums[i], nums[j] = nums[j], nums[i] } } return nums }
class Solution { public int[] sortArrayByParityII(int[] nums) { for (int i = 0, j = 1; i < nums.length; i += 2) { if (nums[i] % 2 == 1) { while (nums[j] % 2 == 1) { j += 2; } int t = nums[i]; nums[i] = nums[j]; nums[j] = t; } } return nums; } }
/** * @param {number[]} nums * @return {number[]} */ var sortArrayByParityII = function (nums) { for (let i = 0, j = 1; i < nums.length; i += 2) { if (nums[i] % 2) { while (nums[j] % 2) { j += 2; } [nums[i], nums[j]] = [nums[j], nums[i]]; } } return nums; };
null
null
null
null
null
class Solution: def sortArrayByParityII(self, nums: List[int]) -> List[int]: n, j = len(nums), 1 for i in range(0, n, 2): if nums[i] % 2: while nums[j] % 2: j += 2 nums[i], nums[j] = nums[j], nums[i] return nums
null
impl Solution { pub fn sort_array_by_parity_ii(mut nums: Vec<i32>) -> Vec<i32> { let n = nums.len(); let mut j = 1; for i in (0..n).step_by(2) { if nums[i] % 2 != 0 { while nums[j] % 2 != 0 { j += 2; } nums.swap(i, j); } } nums } }
null
null
null
function sortArrayByParityII(nums: number[]): number[] { for (let i = 0, j = 1; i < nums.length; i += 2) { if (nums[i] % 2) { while (nums[j] % 2) { j += 2; } [nums[i], nums[j]] = [nums[j], nums[i]]; } } return nums; }
Minimum Number of Moves to Make Palindrome
You are given a string s consisting only of lowercase English letters. In one move , you can select any two adjacent characters of s and swap them. Return the minimum number of moves needed to make s a palindrome . Note that the input will be generated such that s can always be converted to a palindrome.   Example 1: Input: s = "aabb" Output: 2 Explanation: We can obtain two palindromes from s, "abba" and "baab". - We can obtain "abba" from s in 2 moves: "a ab b" -> "ab ab " -> "abba". - We can obtain "baab" from s in 2 moves: "a ab b" -> " ab ab" -> "baab". Thus, the minimum number of moves needed to make s a palindrome is 2. Example 2: Input: s = "letelt" Output: 2 Explanation: One of the palindromes we can obtain from s in 2 moves is "lettel". One of the ways we can obtain it is "lete lt " -> "let et l" -> "lettel". Other palindromes such as "tleelt" can also be obtained in 2 moves. It can be shown that it is not possible to obtain a palindrome in less than 2 moves.   Constraints: 1 <= s.length <= 2000 s consists only of lowercase English letters. s can be converted to a palindrome using a finite number of moves.
null
null
class Solution { public: int minMovesToMakePalindrome(string s) { int n = s.size(); int ans = 0; for (int i = 0, j = n - 1; i < j; ++i) { bool even = false; for (int k = j; k != i; --k) { if (s[i] == s[k]) { even = true; for (; k < j; ++k) { swap(s[k], s[k + 1]); ++ans; } --j; break; } } if (!even) ans += n / 2 - i; } return ans; } };
null
null
func minMovesToMakePalindrome(s string) int { cs := []byte(s) ans, n := 0, len(s) for i, j := 0, n-1; i < j; i++ { even := false for k := j; k != i; k-- { if cs[i] == cs[k] { even = true for ; k < j; k++ { cs[k], cs[k+1] = cs[k+1], cs[k] ans++ } j-- break } } if !even { ans += n/2 - i } } return ans }
class Solution { public int minMovesToMakePalindrome(String s) { int n = s.length(); int ans = 0; char[] cs = s.toCharArray(); for (int i = 0, j = n - 1; i < j; ++i) { boolean even = false; for (int k = j; k != i; --k) { if (cs[i] == cs[k]) { even = true; for (; k < j; ++k) { char t = cs[k]; cs[k] = cs[k + 1]; cs[k + 1] = t; ++ans; } --j; break; } } if (!even) { ans += n / 2 - i; } } return ans; } }
null
null
null
null
null
null
class Solution: def minMovesToMakePalindrome(self, s: str) -> int: cs = list(s) ans, n = 0, len(s) i, j = 0, n - 1 while i < j: even = False for k in range(j, i, -1): if cs[i] == cs[k]: even = True while k < j: cs[k], cs[k + 1] = cs[k + 1], cs[k] k += 1 ans += 1 j -= 1 break if not even: ans += n // 2 - i i += 1 return ans
null
null
null
null
null
null
Verify Preorder Serialization of a Binary Tree
One way to serialize a binary tree is to use preorder traversal . When we encounter a non-null node, we record the node's value. If it is a null node, we record using a sentinel value such as '#' . For example, the above binary tree can be serialized to the string "9,3,4,#,#,1,#,#,2,#,6,#,#" , where '#' represents a null node. Given a string of comma-separated values preorder , return true if it is a correct preorder traversal serialization of a binary tree. It is guaranteed that each comma-separated value in the string must be either an integer or a character '#' representing null pointer. You may assume that the input format is always valid. For example, it could never contain two consecutive commas, such as "1,,3" . Note:  You are not allowed to reconstruct the tree.   Example 1: Input: preorder = "9,3,4,#,#,1,#,#,2,#,6,#,#" Output: true Example 2: Input: preorder = "1,#" Output: false Example 3: Input: preorder = "9,#,#,1" Output: false   Constraints: 1 <= preorder.length <= 10 4 preorder consist of integers in the range [0, 100] and '#' separated by commas ',' .
null
null
class Solution { public: bool isValidSerialization(string preorder) { vector<string> stk; stringstream ss(preorder); string s; while (getline(ss, s, ',')) { stk.push_back(s); while (stk.size() >= 3 && stk[stk.size() - 1] == "#" && stk[stk.size() - 2] == "#" && stk[stk.size() - 3] != "#") { stk.pop_back(); stk.pop_back(); stk.pop_back(); stk.push_back("#"); } } return stk.size() == 1 && stk[0] == "#"; } };
null
null
func isValidSerialization(preorder string) bool { stk := []string{} for _, s := range strings.Split(preorder, ",") { stk = append(stk, s) for len(stk) >= 3 && stk[len(stk)-1] == "#" && stk[len(stk)-2] == "#" && stk[len(stk)-3] != "#" { stk = stk[:len(stk)-3] stk = append(stk, "#") } } return len(stk) == 1 && stk[0] == "#" }
class Solution { public boolean isValidSerialization(String preorder) { List<String> stk = new ArrayList<>(); for (String s : preorder.split(",")) { stk.add(s); while (stk.size() >= 3 && stk.get(stk.size() - 1).equals("#") && stk.get(stk.size() - 2).equals("#") && !stk.get(stk.size() - 3).equals("#")) { stk.remove(stk.size() - 1); stk.remove(stk.size() - 1); stk.remove(stk.size() - 1); stk.add("#"); } } return stk.size() == 1 && stk.get(0).equals("#"); } }
null
null
null
null
null
null
class Solution: def isValidSerialization(self, preorder: str) -> bool: stk = [] for c in preorder.split(","): stk.append(c) while len(stk) > 2 and stk[-1] == stk[-2] == "#" and stk[-3] != "#": stk = stk[:-3] stk.append("#") return len(stk) == 1 and stk[0] == "#"
null
null
null
null
null
function isValidSerialization(preorder: string): boolean { const stk: string[] = []; for (const s of preorder.split(',')) { stk.push(s); while (stk.length >= 3 && stk.at(-1) === '#' && stk.at(-2) === '#' && stk.at(-3) !== '#') { stk.splice(-3, 3, '#'); } } return stk.length === 1 && stk[0] === '#'; }
Count Negative Numbers in a Sorted Matrix
Given a m x n matrix grid which is sorted in non-increasing order both row-wise and column-wise, return the number of negative numbers in grid .   Example 1: Input: grid = [[4,3,2,-1],[3,2,1,-1],[1,1,-1,-2],[-1,-1,-2,-3]] Output: 8 Explanation: There are 8 negatives number in the matrix. Example 2: Input: grid = [[3,2],[1,0]] Output: 0   Constraints: m == grid.length n == grid[i].length 1 <= m, n <= 100 -100 <= grid[i][j] <= 100   Follow up: Could you find an O(n + m) solution?
null
null
class Solution { public: int countNegatives(vector<vector<int>>& grid) { int ans = 0; for (auto& row : grid) { ans += lower_bound(row.rbegin(), row.rend(), 0) - row.rbegin(); } return ans; } };
null
null
func countNegatives(grid [][]int) int { ans, n := 0, len(grid[0]) for _, row := range grid { left, right := 0, n for left < right { mid := (left + right) >> 1 if row[mid] < 0 { right = mid } else { left = mid + 1 } } ans += n - left } return ans }
class Solution { public int countNegatives(int[][] grid) { int ans = 0; int n = grid[0].length; for (int[] row : grid) { int left = 0, right = n; while (left < right) { int mid = (left + right) >> 1; if (row[mid] < 0) { right = mid; } else { left = mid + 1; } } ans += n - left; } return ans; } }
/** * @param {number[][]} grid * @return {number} */ var countNegatives = function (grid) { const n = grid[0].length; let ans = 0; for (let row of grid) { let left = 0, right = n; while (left < right) { const mid = (left + right) >> 1; if (row[mid] < 0) { right = mid; } else { left = mid + 1; } } ans += n - left; } return ans; };
null
null
null
null
null
class Solution: def countNegatives(self, grid: List[List[int]]) -> int: return sum(bisect_left(row[::-1], 0) for row in grid)
null
impl Solution { pub fn count_negatives(grid: Vec<Vec<i32>>) -> i32 { let m = grid.len(); let n = grid[0].len(); let mut i = m; let mut j = 0; let mut res = 0; while i > 0 && j < n { if grid[i - 1][j] >= 0 { j += 1; } else { res += n - j; i -= 1; } } res as i32 } }
null
null
null
function countNegatives(grid: number[][]): number { const n = grid[0].length; let ans = 0; for (let row of grid) { let left = 0, right = n; while (left < right) { const mid = (left + right) >> 1; if (row[mid] < 0) { right = mid; } else { left = mid + 1; } } ans += n - left; } return ans; }
Alice and Bob Playing Flower Game
Alice and Bob are playing a turn-based game on a circular field surrounded by flowers. The circle represents the field, and there are x flowers in the clockwise direction between Alice and Bob, and y flowers in the anti-clockwise direction between them. The game proceeds as follows: Alice takes the first turn. In each turn, a player must choose either the clockwise or anti-clockwise direction and pick one flower from that side. At the end of the turn, if there are no flowers left at all, the current player captures their opponent and wins the game. Given two integers, n and m , the task is to compute the number of possible pairs (x, y) that satisfy the conditions: Alice must win the game according to the described rules. The number of flowers x in the clockwise direction must be in the range [1,n] . The number of flowers y in the anti-clockwise direction must be in the range [1,m] . Return the number of possible pairs (x, y) that satisfy the conditions mentioned in the statement .   Example 1: Input: n = 3, m = 2 Output: 3 Explanation: The following pairs satisfy conditions described in the statement: (1,2), (3,2), (2,1). Example 2: Input: n = 1, m = 1 Output: 0 Explanation: No pairs satisfy the conditions described in the statement.   Constraints: 1 <= n, m <= 10 5
null
null
class Solution { public: long long flowerGame(int n, int m) { return ((long long) n * m) / 2; } };
null
null
func flowerGame(n int, m int) int64 { return int64((n * m) / 2) }
class Solution { public long flowerGame(int n, int m) { return ((long) n * m) / 2; } }
null
null
null
null
null
null
class Solution: def flowerGame(self, n: int, m: int) -> int: return (n * m) // 2
null
null
null
null
null
function flowerGame(n: number, m: number): number { return Number(((BigInt(n) * BigInt(m)) / 2n) | 0n); }
K Items With the Maximum Sum
There is a bag that consists of items, each item has a number 1 , 0 , or -1 written on it. You are given four non-negative integers numOnes , numZeros , numNegOnes , and k . The bag initially contains: numOnes items with 1 s written on them. numZeroes items with 0 s written on them. numNegOnes items with -1 s written on them. We want to pick exactly k items among the available items. Return the maximum possible sum of numbers written on the items .   Example 1: Input: numOnes = 3, numZeros = 2, numNegOnes = 0, k = 2 Output: 2 Explanation: We have a bag of items with numbers written on them {1, 1, 1, 0, 0}. We take 2 items with 1 written on them and get a sum in a total of 2. It can be proven that 2 is the maximum possible sum. Example 2: Input: numOnes = 3, numZeros = 2, numNegOnes = 0, k = 4 Output: 3 Explanation: We have a bag of items with numbers written on them {1, 1, 1, 0, 0}. We take 3 items with 1 written on them, and 1 item with 0 written on it, and get a sum in a total of 3. It can be proven that 3 is the maximum possible sum.   Constraints: 0 <= numOnes, numZeros, numNegOnes <= 50 0 <= k <= numOnes + numZeros + numNegOnes
null
public class Solution { public int KItemsWithMaximumSum(int numOnes, int numZeros, int numNegOnes, int k) { if (numOnes >= k) { return k; } if (numZeros >= k - numOnes) { return numOnes; } return numOnes - (k - numOnes - numZeros); } }
class Solution { public: int kItemsWithMaximumSum(int numOnes, int numZeros, int numNegOnes, int k) { if (numOnes >= k) { return k; } if (numZeros >= k - numOnes) { return numOnes; } return numOnes - (k - numOnes - numZeros); } };
null
null
func kItemsWithMaximumSum(numOnes int, numZeros int, numNegOnes int, k int) int { if numOnes >= k { return k } if numZeros >= k-numOnes { return numOnes } return numOnes - (k - numOnes - numZeros) }
class Solution { public int kItemsWithMaximumSum(int numOnes, int numZeros, int numNegOnes, int k) { if (numOnes >= k) { return k; } if (numZeros >= k - numOnes) { return numOnes; } return numOnes - (k - numOnes - numZeros); } }
null
null
null
null
null
null
class Solution: def kItemsWithMaximumSum( self, numOnes: int, numZeros: int, numNegOnes: int, k: int ) -> int: if numOnes >= k: return k if numZeros >= k - numOnes: return numOnes return numOnes - (k - numOnes - numZeros)
null
impl Solution { pub fn k_items_with_maximum_sum( num_ones: i32, num_zeros: i32, num_neg_ones: i32, k: i32, ) -> i32 { if num_ones > k { return k; } if num_ones + num_zeros > k { return num_ones; } num_ones - (k - num_ones - num_zeros) } }
null
null
null
function kItemsWithMaximumSum( numOnes: number, numZeros: number, numNegOnes: number, k: number, ): number { if (numOnes >= k) { return k; } if (numZeros >= k - numOnes) { return numOnes; } return numOnes - (k - numOnes - numZeros); }