Title
stringlengths
3
81
Description
stringlengths
219
5.66k
C
stringclasses
154 values
C#
stringclasses
299 values
C++
stringlengths
88
4.55k
Cangjie
stringclasses
3 values
Dart
stringclasses
2 values
Go
stringlengths
47
3.11k
Java
stringlengths
86
5.36k
JavaScript
stringclasses
465 values
Kotlin
stringclasses
15 values
MySQL
stringclasses
282 values
Nim
stringclasses
4 values
PHP
stringclasses
111 values
Pandas
stringclasses
31 values
Python3
stringlengths
82
4.27k
Ruby
stringclasses
8 values
Rust
stringlengths
83
4.8k
Scala
stringclasses
5 values
Shell
stringclasses
4 values
Swift
stringclasses
13 values
TypeScript
stringlengths
65
20.6k
Find Minimum Log Transportation Cost
You are given integers n , m , and k . There are two logs of lengths n and m units, which need to be transported in three trucks where each truck can carry one log with length at most k units. You may cut the logs into smaller pieces, where the cost of cutting a log of length x into logs of length len1 and len2 is cost = len1 * len2 such that len1 + len2 = x . Return the minimum total cost to distribute the logs onto the trucks. If the logs don't need to be cut, the total cost is 0.   Example 1: Input: n = 6, m = 5, k = 5 Output: 5 Explanation: Cut the log with length 6 into logs with length 1 and 5, at a cost equal to 1 * 5 == 5 . Now the three logs of length 1, 5, and 5 can fit in one truck each. Example 2: Input: n = 4, m = 4, k = 6 Output: 0 Explanation: The two logs can fit in the trucks already, hence we don't need to cut the logs.   Constraints: 2 <= k <= 10 5 1 <= n, m <= 2 * k The input is generated such that it is always possible to transport the logs.
null
null
class Solution { public: long long minCuttingCost(int n, int m, int k) { int x = max(n, m); return x <= k ? 0 : 1LL * k * (x - k); } };
null
null
func minCuttingCost(n int, m int, k int) int64 { x := max(n, m) if x <= k { return 0 } return int64(k * (x - k)) }
class Solution { public long minCuttingCost(int n, int m, int k) { int x = Math.max(n, m); return x <= k ? 0 : 1L * k * (x - k); } }
null
null
null
null
null
null
class Solution: def minCuttingCost(self, n: int, m: int, k: int) -> int: x = max(n, m) return 0 if x <= k else k * (x - k)
null
null
null
null
null
function minCuttingCost(n: number, m: number, k: number): number { const x = Math.max(n, m); return x <= k ? 0 : k * (x - k); }
Maximum Gap
Given an integer array nums , return the maximum difference between two successive elements in its sorted form . If the array contains less than two elements, return 0 . You must write an algorithm that runs in linear time and uses linear extra space.   Example 1: Input: nums = [3,6,9,1] Output: 3 Explanation: The sorted form of the array is [1,3,6,9], either (3,6) or (6,9) has the maximum difference 3. Example 2: Input: nums = [10] Output: 0 Explanation: The array contains less than 2 elements, therefore return 0.   Constraints: 1 <= nums.length <= 10 5 0 <= nums[i] <= 10 9
null
using System; using System.Linq; public class Solution { public int MaximumGap(int[] nums) { if (nums.Length < 2) return 0; var max = nums.Max(); var min = nums.Min(); var bucketSize = Math.Max(1, (max - min) / (nums.Length - 1)); var buckets = new Tuple<int, int>[(max - min) / bucketSize + 1]; foreach (var num in nums) { var index = (num - min) / bucketSize; if (buckets[index] == null) { buckets[index] = Tuple.Create(num, num); } else { buckets[index] = Tuple.Create(Math.Min(buckets[index].Item1, num), Math.Max(buckets[index].Item2, num)); } } var result = 0; Tuple<int, int> lastBucket = null; for (var i = 0; i < buckets.Length; ++i) { if (buckets[i] != null) { if (lastBucket != null) { result = Math.Max(result, buckets[i].Item1 - lastBucket.Item2); } lastBucket = buckets[i]; } } return result; } }
using pii = pair<int, int>; class Solution { public: const int inf = 0x3f3f3f3f; int maximumGap(vector<int>& nums) { int n = nums.size(); if (n < 2) return 0; int mi = inf, mx = -inf; for (int v : nums) { mi = min(mi, v); mx = max(mx, v); } int bucketSize = max(1, (mx - mi) / (n - 1)); int bucketCount = (mx - mi) / bucketSize + 1; vector<pii> buckets(bucketCount, {inf, -inf}); for (int v : nums) { int i = (v - mi) / bucketSize; buckets[i].first = min(buckets[i].first, v); buckets[i].second = max(buckets[i].second, v); } int ans = 0; int prev = inf; for (auto [curmin, curmax] : buckets) { if (curmin > curmax) continue; ans = max(ans, curmin - prev); prev = curmax; } return ans; } };
null
null
func maximumGap(nums []int) int { n := len(nums) if n < 2 { return 0 } inf := 0x3f3f3f3f mi, mx := inf, -inf for _, v := range nums { mi = min(mi, v) mx = max(mx, v) } bucketSize := max(1, (mx-mi)/(n-1)) bucketCount := (mx-mi)/bucketSize + 1 buckets := make([][]int, bucketCount) for i := range buckets { buckets[i] = []int{inf, -inf} } for _, v := range nums { i := (v - mi) / bucketSize buckets[i][0] = min(buckets[i][0], v) buckets[i][1] = max(buckets[i][1], v) } ans := 0 prev := inf for _, bucket := range buckets { if bucket[0] > bucket[1] { continue } ans = max(ans, bucket[0]-prev) prev = bucket[1] } return ans }
class Solution { public int maximumGap(int[] nums) { int n = nums.length; if (n < 2) { return 0; } int inf = 0x3f3f3f3f; int mi = inf, mx = -inf; for (int v : nums) { mi = Math.min(mi, v); mx = Math.max(mx, v); } int bucketSize = Math.max(1, (mx - mi) / (n - 1)); int bucketCount = (mx - mi) / bucketSize + 1; int[][] buckets = new int[bucketCount][2]; for (var bucket : buckets) { bucket[0] = inf; bucket[1] = -inf; } for (int v : nums) { int i = (v - mi) / bucketSize; buckets[i][0] = Math.min(buckets[i][0], v); buckets[i][1] = Math.max(buckets[i][1], v); } int prev = inf; int ans = 0; for (var bucket : buckets) { if (bucket[0] > bucket[1]) { continue; } ans = Math.max(ans, bucket[0] - prev); prev = bucket[1]; } return ans; } }
null
null
null
null
null
null
class Solution: def maximumGap(self, nums: List[int]) -> int: n = len(nums) if n < 2: return 0 mi, mx = min(nums), max(nums) bucket_size = max(1, (mx - mi) // (n - 1)) bucket_count = (mx - mi) // bucket_size + 1 buckets = [[inf, -inf] for _ in range(bucket_count)] for v in nums: i = (v - mi) // bucket_size buckets[i][0] = min(buckets[i][0], v) buckets[i][1] = max(buckets[i][1], v) ans = 0 prev = inf for curmin, curmax in buckets: if curmin > curmax: continue ans = max(ans, curmin - prev) prev = curmax return ans
null
null
null
null
null
null
Group Employees of the Same Salary 🔒
Table: Employees +-------------+---------+ | Column Name | Type | +-------------+---------+ | employee_id | int | | name | varchar | | salary | int | +-------------+---------+ employee_id is the column with unique values for this table. Each row of this table indicates the employee ID, employee name, and salary.   A company wants to divide the employees into teams such that all the members on each team have the same salary . The teams should follow these criteria: Each team should consist of at least two employees. All the employees on a team should have the same salary . All the employees of the same salary should be assigned to the same team. If the salary of an employee is unique, we do not assign this employee to any team. A team's ID is assigned based on the rank of the team's salary relative to the other teams' salaries, where the team with the lowest salary has team_id = 1 . Note that the salaries for employees not on a team are not included in this ranking. Write a solution to get the team_id of each employee that is in a team. Return the result table ordered by team_id in ascending order . In case of a tie, order it by employee_id in ascending order . The result format is in the following example.   Example 1: Input: Employees table: +-------------+---------+--------+ | employee_id | name | salary | +-------------+---------+--------+ | 2 | Meir | 3000 | | 3 | Michael | 3000 | | 7 | Addilyn | 7400 | | 8 | Juan | 6100 | | 9 | Kannon | 7400 | +-------------+---------+--------+ Output: +-------------+---------+--------+---------+ | employee_id | name | salary | team_id | +-------------+---------+--------+---------+ | 2 | Meir | 3000 | 1 | | 3 | Michael | 3000 | 1 | | 7 | Addilyn | 7400 | 2 | | 9 | Kannon | 7400 | 2 | +-------------+---------+--------+---------+ Explanation: Meir (employee_id=2) and Michael (employee_id=3) are in the same team because they have the same salary of 3000. Addilyn (employee_id=7) and Kannon (employee_id=9) are in the same team because they have the same salary of 7400. Juan (employee_id=8) is not included in any team because their salary of 6100 is unique (i.e. no other employee has the same salary). The team IDs are assigned as follows (based on salary ranking, lowest first): - team_id=1: Meir and Michael, a salary of 3000 - team_id=2: Addilyn and Kannon, a salary of 7400 Juan's salary of 6100 is not included in the ranking because they are not on a team.
null
null
null
null
null
null
null
null
null
# Write your MySQL query statement below WITH S AS ( SELECT salary FROM Employees GROUP BY salary HAVING COUNT(1) > 1 ), T AS ( SELECT salary, ROW_NUMBER() OVER (ORDER BY salary) AS team_id FROM S ) SELECT e.*, t.team_id FROM Employees AS e JOIN T AS t ON e.salary = t.salary ORDER BY 4, 1;
null
null
null
null
null
null
null
null
null
null
Paint House II 🔒
There are a row of n houses, each house can be painted with one of the k colors. The cost of painting each house with a certain color is different. You have to paint all the houses such that no two adjacent houses have the same color. The cost of painting each house with a certain color is represented by an n x k cost matrix costs. For example, costs[0][0] is the cost of painting house 0 with color 0 ; costs[1][2] is the cost of painting house 1 with color 2 , and so on... Return the minimum cost to paint all houses .   Example 1: Input: costs = [[1,5,3],[2,9,4]] Output: 5 Explanation: Paint house 0 into color 0, paint house 1 into color 2. Minimum cost: 1 + 4 = 5; Or paint house 0 into color 2, paint house 1 into color 0. Minimum cost: 3 + 2 = 5. Example 2: Input: costs = [[1,3],[2,4]] Output: 5   Constraints: costs.length == n costs[i].length == k 1 <= n <= 100 2 <= k <= 20 1 <= costs[i][j] <= 20   Follow up: Could you solve it in O(nk) runtime?
null
null
class Solution { public: int minCostII(vector<vector<int>>& costs) { int n = costs.size(), k = costs[0].size(); vector<int> f = costs[0]; for (int i = 1; i < n; ++i) { vector<int> g = costs[i]; for (int j = 0; j < k; ++j) { int t = INT_MAX; for (int h = 0; h < k; ++h) { if (h != j) { t = min(t, f[h]); } } g[j] += t; } f = move(g); } return *min_element(f.begin(), f.end()); } };
null
null
func minCostII(costs [][]int) int { n, k := len(costs), len(costs[0]) f := cp(costs[0]) for i := 1; i < n; i++ { g := cp(costs[i]) for j := 0; j < k; j++ { t := math.MaxInt32 for h := 0; h < k; h++ { if h != j && t > f[h] { t = f[h] } } g[j] += t } f = g } return slices.Min(f) } func cp(arr []int) []int { t := make([]int, len(arr)) copy(t, arr) return t }
class Solution { public int minCostII(int[][] costs) { int n = costs.length, k = costs[0].length; int[] f = costs[0].clone(); for (int i = 1; i < n; ++i) { int[] g = costs[i].clone(); for (int j = 0; j < k; ++j) { int t = Integer.MAX_VALUE; for (int h = 0; h < k; ++h) { if (h != j) { t = Math.min(t, f[h]); } } g[j] += t; } f = g; } return Arrays.stream(f).min().getAsInt(); } }
null
null
null
null
null
null
class Solution: def minCostII(self, costs: List[List[int]]) -> int: n, k = len(costs), len(costs[0]) f = costs[0][:] for i in range(1, n): g = costs[i][:] for j in range(k): t = min(f[h] for h in range(k) if h != j) g[j] += t f = g return min(f)
null
null
null
null
null
null
Longest Even Odd Subarray With Threshold
You are given a 0-indexed integer array nums and an integer threshold . Find the length of the longest subarray of nums starting at index l and ending at index r (0 <= l <= r < nums.length) that satisfies the following conditions: nums[l] % 2 == 0 For all indices i in the range [l, r - 1] , nums[i] % 2 != nums[i + 1] % 2 For all indices i in the range [l, r] , nums[i] <= threshold Return an integer denoting the length of the longest such subarray. Note: A subarray is a contiguous non-empty sequence of elements within an array.   Example 1: Input: nums = [3,2,5,4], threshold = 5 Output: 3 Explanation: In this example, we can select the subarray that starts at l = 1 and ends at r = 3 => [2,5,4]. This subarray satisfies the conditions. Hence, the answer is the length of the subarray, 3. We can show that 3 is the maximum possible achievable length. Example 2: Input: nums = [1,2], threshold = 2 Output: 1 Explanation: In this example, we can select the subarray that starts at l = 1 and ends at r = 1 => [2]. It satisfies all the conditions and we can show that 1 is the maximum possible achievable length. Example 3: Input: nums = [2,3,4,5], threshold = 4 Output: 3 Explanation: In this example, we can select the subarray that starts at l = 0 and ends at r = 2 => [2,3,4]. It satisfies all the conditions. Hence, the answer is the length of the subarray, 3. We can show that 3 is the maximum possible achievable length.   Constraints: 1 <= nums.length <= 100 1 <= nums[i] <= 100 1 <= threshold <= 100
null
null
class Solution { public: int longestAlternatingSubarray(vector<int>& nums, int threshold) { int ans = 0; for (int l = 0, n = nums.size(); l < n;) { if (nums[l] % 2 == 0 && nums[l] <= threshold) { int r = l + 1; while (r < n && nums[r] % 2 != nums[r - 1] % 2 && nums[r] <= threshold) { ++r; } ans = max(ans, r - l); l = r; } else { ++l; } } return ans; } };
null
null
func longestAlternatingSubarray(nums []int, threshold int) (ans int) { for l, n := 0, len(nums); l < n; { if nums[l]%2 == 0 && nums[l] <= threshold { r := l + 1 for r < n && nums[r]%2 != nums[r-1]%2 && nums[r] <= threshold { r++ } ans = max(ans, r-l) l = r } else { l++ } } return }
class Solution { public int longestAlternatingSubarray(int[] nums, int threshold) { int ans = 0; for (int l = 0, n = nums.length; l < n;) { if (nums[l] % 2 == 0 && nums[l] <= threshold) { int r = l + 1; while (r < n && nums[r] % 2 != nums[r - 1] % 2 && nums[r] <= threshold) { ++r; } ans = Math.max(ans, r - l); l = r; } else { ++l; } } return ans; } }
null
null
null
null
null
null
class Solution: def longestAlternatingSubarray(self, nums: List[int], threshold: int) -> int: ans, l, n = 0, 0, len(nums) while l < n: if nums[l] % 2 == 0 and nums[l] <= threshold: r = l + 1 while r < n and nums[r] % 2 != nums[r - 1] % 2 and nums[r] <= threshold: r += 1 ans = max(ans, r - l) l = r else: l += 1 return ans
null
null
null
null
null
function longestAlternatingSubarray(nums: number[], threshold: number): number { const n = nums.length; let ans = 0; for (let l = 0; l < n; ) { if (nums[l] % 2 === 0 && nums[l] <= threshold) { let r = l + 1; while (r < n && nums[r] % 2 !== nums[r - 1] % 2 && nums[r] <= threshold) { ++r; } ans = Math.max(ans, r - l); l = r; } else { ++l; } } return ans; }
K Inverse Pairs Array
For an integer array nums , an inverse pair is a pair of integers [i, j] where 0 <= i < j < nums.length and nums[i] > nums[j] . Given two integers n and k, return the number of different arrays consisting of numbers from 1 to n such that there are exactly k inverse pairs . Since the answer can be huge, return it modulo 10 9 + 7 .   Example 1: Input: n = 3, k = 0 Output: 1 Explanation: Only the array [1,2,3] which consists of numbers from 1 to 3 has exactly 0 inverse pairs. Example 2: Input: n = 3, k = 1 Output: 2 Explanation: The array [1,3,2] and [2,1,3] have exactly 1 inverse pair.   Constraints: 1 <= n <= 1000 0 <= k <= 1000
null
null
class Solution { public: int kInversePairs(int n, int k) { int f[k + 1]; int s[k + 2]; memset(f, 0, sizeof(f)); f[0] = 1; fill(s, s + k + 2, 1); s[0] = 0; const int mod = 1e9 + 7; for (int i = 1; i <= n; ++i) { for (int j = 1; j <= k; ++j) { f[j] = (s[j + 1] - s[max(0, j - (i - 1))] + mod) % mod; } for (int j = 1; j <= k + 1; ++j) { s[j] = (s[j - 1] + f[j - 1]) % mod; } } return f[k]; } };
null
null
func kInversePairs(n int, k int) int { f := make([]int, k+1) s := make([]int, k+2) f[0] = 1 for i, x := range f { s[i+1] = s[i] + x } const mod = 1e9 + 7 for i := 1; i <= n; i++ { for j := 1; j <= k; j++ { f[j] = (s[j+1] - s[max(0, j-(i-1))] + mod) % mod } for j := 1; j <= k+1; j++ { s[j] = (s[j-1] + f[j-1]) % mod } } return f[k] }
class Solution { public int kInversePairs(int n, int k) { final int mod = (int) 1e9 + 7; int[] f = new int[k + 1]; int[] s = new int[k + 2]; f[0] = 1; Arrays.fill(s, 1); s[0] = 0; for (int i = 1; i <= n; ++i) { for (int j = 1; j <= k; ++j) { f[j] = (s[j + 1] - s[Math.max(0, j - (i - 1))] + mod) % mod; } for (int j = 1; j <= k + 1; ++j) { s[j] = (s[j - 1] + f[j - 1]) % mod; } } return f[k]; } }
null
null
null
null
null
null
class Solution: def kInversePairs(self, n: int, k: int) -> int: mod = 10**9 + 7 f = [1] + [0] * k s = [0] * (k + 2) for i in range(1, n + 1): for j in range(1, k + 1): f[j] = (s[j + 1] - s[max(0, j - (i - 1))]) % mod for j in range(1, k + 2): s[j] = (s[j - 1] + f[j - 1]) % mod return f[k]
null
null
null
null
null
function kInversePairs(n: number, k: number): number { const f: number[] = Array(k + 1).fill(0); f[0] = 1; const s: number[] = Array(k + 2).fill(1); s[0] = 0; const mod: number = 1e9 + 7; for (let i = 1; i <= n; ++i) { for (let j = 1; j <= k; ++j) { f[j] = (s[j + 1] - s[Math.max(0, j - (i - 1))] + mod) % mod; } for (let j = 1; j <= k + 1; ++j) { s[j] = (s[j - 1] + f[j - 1]) % mod; } } return f[k]; }
Check if Grid Satisfies Conditions
You are given a 2D matrix grid of size m x n . You need to check if each cell grid[i][j] is: Equal to the cell below it, i.e. grid[i][j] == grid[i + 1][j] (if it exists). Different from the cell to its right, i.e. grid[i][j] != grid[i][j + 1] (if it exists). Return true if all the cells satisfy these conditions, otherwise, return false .   Example 1: Input: grid = [[1,0,2],[1,0,2]] Output: true Explanation: All the cells in the grid satisfy the conditions. Example 2: Input: grid = [[1,1,1],[0,0,0]] Output: false Explanation: All cells in the first row are equal. Example 3: Input: grid = [[1],[2],[3]] Output: false Explanation: Cells in the first column have different values.   Constraints: 1 <= n, m <= 10 0 <= grid[i][j] <= 9
null
null
class Solution { public: bool satisfiesConditions(vector<vector<int>>& grid) { int m = grid.size(), n = grid[0].size(); for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { if (i + 1 < m && grid[i][j] != grid[i + 1][j]) { return false; } if (j + 1 < n && grid[i][j] == grid[i][j + 1]) { return false; } } } return true; } };
null
null
func satisfiesConditions(grid [][]int) bool { m, n := len(grid), len(grid[0]) for i, row := range grid { for j, x := range row { if i+1 < m && x != grid[i+1][j] { return false } if j+1 < n && x == grid[i][j+1] { return false } } } return true }
class Solution { public boolean satisfiesConditions(int[][] grid) { int m = grid.length, n = grid[0].length; for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { if (i + 1 < m && grid[i][j] != grid[i + 1][j]) { return false; } if (j + 1 < n && grid[i][j] == grid[i][j + 1]) { return false; } } } return true; } }
null
null
null
null
null
null
class Solution: def satisfiesConditions(self, grid: List[List[int]]) -> bool: m, n = len(grid), len(grid[0]) for i, row in enumerate(grid): for j, x in enumerate(row): if i + 1 < m and x != grid[i + 1][j]: return False if j + 1 < n and x == grid[i][j + 1]: return False return True
null
null
null
null
null
function satisfiesConditions(grid: number[][]): boolean { const [m, n] = [grid.length, grid[0].length]; for (let i = 0; i < m; ++i) { for (let j = 0; j < n; ++j) { if (i + 1 < m && grid[i][j] !== grid[i + 1][j]) { return false; } if (j + 1 < n && grid[i][j] === grid[i][j + 1]) { return false; } } } return true; }
Word Break
Given a string s and a dictionary of strings wordDict , return true if s can be segmented into a space-separated sequence of one or more dictionary words. Note that the same word in the dictionary may be reused multiple times in the segmentation.   Example 1: Input: s = "leetcode", wordDict = ["leet","code"] Output: true Explanation: Return true because "leetcode" can be segmented as "leet code". Example 2: Input: s = "applepenapple", wordDict = ["apple","pen"] Output: true Explanation: Return true because "applepenapple" can be segmented as "apple pen apple". Note that you are allowed to reuse a dictionary word. Example 3: Input: s = "catsandog", wordDict = ["cats","dog","sand","and","cat"] Output: false   Constraints: 1 <= s.length <= 300 1 <= wordDict.length <= 1000 1 <= wordDict[i].length <= 20 s and wordDict[i] consist of only lowercase English letters. All the strings of wordDict are unique .
null
public class Solution { public bool WordBreak(string s, IList<string> wordDict) { Trie trie = new Trie(); foreach (string w in wordDict) { trie.Insert(w); } int n = s.Length; bool[] f = new bool[n + 1]; f[n] = true; for (int i = n - 1; i >= 0; --i) { Trie node = trie; for (int j = i; j < n; ++j) { int k = s[j] - 'a'; if (node.Children[k] == null) { break; } node = node.Children[k]; if (node.IsEnd && f[j + 1]) { f[i] = true; break; } } } return f[0]; } } class Trie { public Trie[] Children { get; set; } public bool IsEnd { get; set; } public Trie() { Children = new Trie[26]; IsEnd = false; } public void Insert(string word) { Trie node = this; foreach (char c in word) { int i = c - 'a'; if (node.Children[i] == null) { node.Children[i] = new Trie(); } node = node.Children[i]; } node.IsEnd = true; } }
class Trie { public: vector<Trie*> children; bool isEnd; Trie() : children(26) , isEnd(false) {} void insert(string word) { Trie* node = this; for (char c : word) { c -= 'a'; if (!node->children[c]) node->children[c] = new Trie(); node = node->children[c]; } node->isEnd = true; } }; class Solution { public: bool wordBreak(string s, vector<string>& wordDict) { Trie trie; for (auto& w : wordDict) { trie.insert(w); } int n = s.size(); vector<bool> f(n + 1); f[n] = true; for (int i = n - 1; ~i; --i) { Trie* node = &trie; for (int j = i; j < n; ++j) { int k = s[j] - 'a'; if (!node->children[k]) { break; } node = node->children[k]; if (node->isEnd && f[j + 1]) { f[i] = true; break; } } } return f[0]; } };
null
null
type trie struct { children [26]*trie isEnd bool } func newTrie() *trie { return &trie{} } func (t *trie) insert(w string) { node := t for _, c := range w { c -= 'a' if node.children[c] == nil { node.children[c] = newTrie() } node = node.children[c] } node.isEnd = true } func wordBreak(s string, wordDict []string) bool { trie := newTrie() for _, w := range wordDict { trie.insert(w) } n := len(s) f := make([]bool, n+1) f[n] = true for i := n - 1; i >= 0; i-- { node := trie for j := i; j < n; j++ { k := s[j] - 'a' if node.children[k] == nil { break } node = node.children[k] if node.isEnd && f[j+1] { f[i] = true break } } } return f[0] }
class Solution { public boolean wordBreak(String s, List<String> wordDict) { Trie trie = new Trie(); for (String w : wordDict) { trie.insert(w); } int n = s.length(); boolean[] f = new boolean[n + 1]; f[n] = true; for (int i = n - 1; i >= 0; --i) { Trie node = trie; for (int j = i; j < n; ++j) { int k = s.charAt(j) - 'a'; if (node.children[k] == null) { break; } node = node.children[k]; if (node.isEnd && f[j + 1]) { f[i] = true; break; } } } return f[0]; } } class Trie { Trie[] children = new Trie[26]; boolean isEnd = false; public void insert(String w) { Trie node = this; for (int i = 0; i < w.length(); ++i) { int j = w.charAt(i) - 'a'; if (node.children[j] == null) { node.children[j] = new Trie(); } node = node.children[j]; } node.isEnd = true; } }
null
null
null
null
null
null
class Trie: def __init__(self): self.children: List[Trie | None] = [None] * 26 self.isEnd = False def insert(self, w: str): node = self for c in w: idx = ord(c) - ord('a') if not node.children[idx]: node.children[idx] = Trie() node = node.children[idx] node.isEnd = True class Solution: def wordBreak(self, s: str, wordDict: List[str]) -> bool: trie = Trie() for w in wordDict: trie.insert(w) n = len(s) f = [False] * (n + 1) f[n] = True for i in range(n - 1, -1, -1): node = trie for j in range(i, n): idx = ord(s[j]) - ord('a') if not node.children[idx]: break node = node.children[idx] if node.isEnd and f[j + 1]: f[i] = True break return f[0]
null
impl Solution { pub fn word_break(s: String, word_dict: Vec<String>) -> bool { let words: std::collections::HashSet<String> = word_dict.into_iter().collect(); let mut f = vec![false; s.len() + 1]; f[0] = true; for i in 1..=s.len() { for j in 0..i { f[i] |= f[j] && words.contains(&s[j..i]); } } f[s.len()] } }
null
null
null
function wordBreak(s: string, wordDict: string[]): boolean { const trie = new Trie(); for (const w of wordDict) { trie.insert(w); } const n = s.length; const f: boolean[] = new Array(n + 1).fill(false); f[n] = true; for (let i = n - 1; i >= 0; --i) { let node: Trie = trie; for (let j = i; j < n; ++j) { const k = s.charCodeAt(j) - 97; if (!node.children[k]) { break; } node = node.children[k]; if (node.isEnd && f[j + 1]) { f[i] = true; break; } } } return f[0]; } class Trie { children: Trie[]; isEnd: boolean; constructor() { this.children = new Array(26); this.isEnd = false; } insert(w: string): void { let node: Trie = this; for (const c of w) { const i = c.charCodeAt(0) - 97; if (!node.children[i]) { node.children[i] = new Trie(); } node = node.children[i]; } node.isEnd = true; } }
Permutations II
Given a collection of numbers, nums , that might contain duplicates, return all possible unique permutations in any order .   Example 1: Input: nums = [1,1,2] Output: [[1,1,2], [1,2,1], [2,1,1]] Example 2: Input: nums = [1,2,3] Output: [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]   Constraints: 1 <= nums.length <= 8 -10 <= nums[i] <= 10
null
public class Solution { private List<IList<int>> ans = new List<IList<int>>(); private List<int> t = new List<int>(); private int[] nums; private bool[] vis; public IList<IList<int>> PermuteUnique(int[] nums) { Array.Sort(nums); int n = nums.Length; vis = new bool[n]; this.nums = nums; dfs(0); return ans; } private void dfs(int i) { if (i == nums.Length) { ans.Add(new List<int>(t)); return; } for (int j = 0; j < nums.Length; ++j) { if (vis[j] || (j > 0 && nums[j] == nums[j - 1] && !vis[j - 1])) { continue; } vis[j] = true; t.Add(nums[j]); dfs(i + 1); t.RemoveAt(t.Count - 1); vis[j] = false; } } }
class Solution { public: vector<vector<int>> permuteUnique(vector<int>& nums) { ranges::sort(nums); int n = nums.size(); vector<vector<int>> ans; vector<int> t(n); vector<bool> vis(n); auto dfs = [&](this auto&& dfs, int i) { if (i == n) { ans.emplace_back(t); return; } for (int j = 0; j < n; ++j) { if (vis[j] || (j && nums[j] == nums[j - 1] && !vis[j - 1])) { continue; } t[i] = nums[j]; vis[j] = true; dfs(i + 1); vis[j] = false; } }; dfs(0); return ans; } };
null
null
func permuteUnique(nums []int) (ans [][]int) { slices.Sort(nums) n := len(nums) t := make([]int, n) vis := make([]bool, n) var dfs func(int) dfs = func(i int) { if i == n { ans = append(ans, slices.Clone(t)) return } for j := 0; j < n; j++ { if vis[j] || (j > 0 && nums[j] == nums[j-1] && !vis[j-1]) { continue } vis[j] = true t[i] = nums[j] dfs(i + 1) vis[j] = false } } dfs(0) return }
class Solution { private List<List<Integer>> ans = new ArrayList<>(); private List<Integer> t = new ArrayList<>(); private int[] nums; private boolean[] vis; public List<List<Integer>> permuteUnique(int[] nums) { Arrays.sort(nums); this.nums = nums; vis = new boolean[nums.length]; dfs(0); return ans; } private void dfs(int i) { if (i == nums.length) { ans.add(new ArrayList<>(t)); return; } for (int j = 0; j < nums.length; ++j) { if (vis[j] || (j > 0 && nums[j] == nums[j - 1] && !vis[j - 1])) { continue; } t.add(nums[j]); vis[j] = true; dfs(i + 1); vis[j] = false; t.remove(t.size() - 1); } } }
/** * @param {number[]} nums * @return {number[][]} */ var permuteUnique = function (nums) { nums.sort((a, b) => a - b); const n = nums.length; const ans = []; const t = Array(n); const vis = Array(n).fill(false); const dfs = i => { if (i === n) { ans.push(t.slice()); return; } for (let j = 0; j < n; ++j) { if (vis[j] || (j > 0 && nums[j] === nums[j - 1] && !vis[j - 1])) { continue; } t[i] = nums[j]; vis[j] = true; dfs(i + 1); vis[j] = false; } }; dfs(0); return ans; };
null
null
null
null
null
class Solution: def permuteUnique(self, nums: List[int]) -> List[List[int]]: def dfs(i: int): if i == n: ans.append(t[:]) return for j in range(n): if vis[j] or (j and nums[j] == nums[j - 1] and not vis[j - 1]): continue t[i] = nums[j] vis[j] = True dfs(i + 1) vis[j] = False n = len(nums) nums.sort() ans = [] t = [0] * n vis = [False] * n dfs(0) return ans
null
impl Solution { pub fn permute_unique(mut nums: Vec<i32>) -> Vec<Vec<i32>> { nums.sort(); let n = nums.len(); let mut ans = Vec::new(); let mut t = vec![0; n]; let mut vis = vec![false; n]; fn dfs( nums: &Vec<i32>, t: &mut Vec<i32>, vis: &mut Vec<bool>, ans: &mut Vec<Vec<i32>>, i: usize, ) { if i == nums.len() { ans.push(t.clone()); return; } for j in 0..nums.len() { if vis[j] || (j > 0 && nums[j] == nums[j - 1] && !vis[j - 1]) { continue; } t[i] = nums[j]; vis[j] = true; dfs(nums, t, vis, ans, i + 1); vis[j] = false; } } dfs(&nums, &mut t, &mut vis, &mut ans, 0); ans } }
null
null
null
function permuteUnique(nums: number[]): number[][] { nums.sort((a, b) => a - b); const n = nums.length; const ans: number[][] = []; const t: number[] = Array(n); const vis: boolean[] = Array(n).fill(false); const dfs = (i: number) => { if (i === n) { ans.push(t.slice()); return; } for (let j = 0; j < n; ++j) { if (vis[j] || (j > 0 && nums[j] === nums[j - 1] && !vis[j - 1])) { continue; } t[i] = nums[j]; vis[j] = true; dfs(i + 1); vis[j] = false; } }; dfs(0); return ans; }
Describe the Painting
There is a long and thin painting that can be represented by a number line. The painting was painted with multiple overlapping segments where each segment was painted with a unique color. You are given a 2D integer array segments , where segments[i] = [start i , end i , color i ] represents the half-closed segment [start i , end i ) with color i as the color. The colors in the overlapping segments of the painting were mixed when it was painted. When two or more colors mix, they form a new color that can be represented as a set of mixed colors. For example, if colors 2 , 4 , and 6 are mixed, then the resulting mixed color is {2,4,6} . For the sake of simplicity, you should only output the sum of the elements in the set rather than the full set. You want to describe the painting with the minimum number of non-overlapping half-closed segments of these mixed colors. These segments can be represented by the 2D array painting where painting[j] = [left j , right j , mix j ] describes a half-closed segment [left j , right j ) with the mixed color sum of mix j . For example, the painting created with segments = [[1,4,5],[1,7,7]] can be described by painting = [[1,4,12],[4,7,7]] because: [1,4) is colored {5,7} (with a sum of 12 ) from both the first and second segments. [4,7) is colored {7} from only the second segment. Return the 2D array painting describing the finished painting (excluding any parts that are not painted). You may return the segments in any order . A half-closed segment [a, b) is the section of the number line between points a and b including point a and not including point b .   Example 1: Input: segments = [[1,4,5],[4,7,7],[1,7,9]] Output: [[1,4,14],[4,7,16]] Explanation: The painting can be described as follows: - [1,4) is colored {5,9} (with a sum of 14) from the first and third segments. - [4,7) is colored {7,9} (with a sum of 16) from the second and third segments. Example 2: Input: segments = [[1,7,9],[6,8,15],[8,10,7]] Output: [[1,6,9],[6,7,24],[7,8,15],[8,10,7]] Explanation: The painting can be described as follows: - [1,6) is colored 9 from the first segment. - [6,7) is colored {9,15} (with a sum of 24) from the first and second segments. - [7,8) is colored 15 from the second segment. - [8,10) is colored 7 from the third segment. Example 3: Input: segments = [[1,4,5],[1,4,7],[4,7,1],[4,7,11]] Output: [[1,4,12],[4,7,12]] Explanation: The painting can be described as follows: - [1,4) is colored {5,7} (with a sum of 12) from the first and second segments. - [4,7) is colored {1,11} (with a sum of 12) from the third and fourth segments. Note that returning a single segment [1,7) is incorrect because the mixed color sets are different.   Constraints: 1 <= segments.length <= 2 * 10 4 segments[i].length == 3 1 <= start i < end i <= 10 5 1 <= color i <= 10 9 Each color i is distinct.
null
null
class Solution { public: vector<vector<long long>> splitPainting(vector<vector<int>>& segments) { map<int, long long> d; for (auto& e : segments) { int l = e[0], r = e[1], c = e[2]; d[l] += c; d[r] -= c; } vector<vector<long long>> ans; long long i, j, cur = 0; for (auto& it : d) { if (it == *d.begin()) i = it.first; else { j = it.first; if (cur > 0) ans.push_back({i, j, cur}); i = j; } cur += it.second; } return ans; } };
null
null
func splitPainting(segments [][]int) [][]int64 { d := make(map[int]int64) for _, seg := range segments { d[seg[0]] += int64(seg[2]) d[seg[1]] -= int64(seg[2]) } dList := make([]int, 0, len(d)) for k := range d { dList = append(dList, k) } sort.Ints(dList) var ans [][]int64 i := dList[0] cur := d[i] for j := 1; j < len(dList); j++ { it := d[dList[j]] if cur > 0 { ans = append(ans, []int64{int64(i), int64(dList[j]), cur}) } cur += it i = dList[j] } return ans }
class Solution { public List<List<Long>> splitPainting(int[][] segments) { TreeMap<Integer, Long> d = new TreeMap<>(); for (int[] e : segments) { int l = e[0], r = e[1], c = e[2]; d.put(l, d.getOrDefault(l, 0L) + c); d.put(r, d.getOrDefault(r, 0L) - c); } List<List<Long>> ans = new ArrayList<>(); long i = 0, j = 0; long cur = 0; for (Map.Entry<Integer, Long> e : d.entrySet()) { if (Objects.equals(e.getKey(), d.firstKey())) { i = e.getKey(); } else { j = e.getKey(); if (cur > 0) { ans.add(Arrays.asList(i, j, cur)); } i = j; } cur += e.getValue(); } return ans; } }
null
null
null
null
null
null
class Solution: def splitPainting(self, segments: List[List[int]]) -> List[List[int]]: d = defaultdict(int) for l, r, c in segments: d[l] += c d[r] -= c s = sorted([[k, v] for k, v in d.items()]) n = len(s) for i in range(1, n): s[i][1] += s[i - 1][1] return [[s[i][0], s[i + 1][0], s[i][1]] for i in range(n - 1) if s[i][1]]
null
null
null
null
null
null
Chalkboard XOR Game
You are given an array of integers nums represents the numbers written on a chalkboard. Alice and Bob take turns erasing exactly one number from the chalkboard, with Alice starting first. If erasing a number causes the bitwise XOR of all the elements of the chalkboard to become 0 , then that player loses. The bitwise XOR of one element is that element itself, and the bitwise XOR of no elements is 0 . Also, if any player starts their turn with the bitwise XOR of all the elements of the chalkboard equal to 0 , then that player wins. Return true if and only if Alice wins the game, assuming both players play optimally .   Example 1: Input: nums = [1,1,2] Output: false Explanation: Alice has two choices: erase 1 or erase 2. If she erases 1, the nums array becomes [1, 2]. The bitwise XOR of all the elements of the chalkboard is 1 XOR 2 = 3. Now Bob can remove any element he wants, because Alice will be the one to erase the last element and she will lose. If Alice erases 2 first, now nums become [1, 1]. The bitwise XOR of all the elements of the chalkboard is 1 XOR 1 = 0. Alice will lose. Example 2: Input: nums = [0,1] Output: true Example 3: Input: nums = [1,2,3] Output: true   Constraints: 1 <= nums.length <= 1000 0 <= nums[i] < 2 16
null
null
class Solution { public: bool xorGame(vector<int>& nums) { if (nums.size() % 2 == 0) return true; int x = 0; for (int& v : nums) x ^= v; return x == 0; } };
null
null
func xorGame(nums []int) bool { if len(nums)%2 == 0 { return true } x := 0 for _, v := range nums { x ^= v } return x == 0 }
class Solution { public boolean xorGame(int[] nums) { return nums.length % 2 == 0 || Arrays.stream(nums).reduce(0, (a, b) -> a ^ b) == 0; } }
null
null
null
null
null
null
class Solution: def xorGame(self, nums: List[int]) -> bool: return len(nums) % 2 == 0 or reduce(xor, nums) == 0
null
null
null
null
null
null
Sum of Total Strength of Wizards
As the ruler of a kingdom, you have an army of wizards at your command. You are given a 0-indexed integer array strength , where strength[i] denotes the strength of the i th wizard. For a contiguous group of wizards (i.e. the wizards' strengths form a subarray of strength ), the total strength is defined as the product of the following two values: The strength of the weakest wizard in the group. The total of all the individual strengths of the wizards in the group. Return the sum of the total strengths of all contiguous groups of wizards . Since the answer may be very large, return it modulo 10 9 + 7 . A subarray is a contiguous non-empty sequence of elements within an array.   Example 1: Input: strength = [1,3,1,2] Output: 44 Explanation: The following are all the contiguous groups of wizards: - [1] from [ 1 ,3,1,2] has a total strength of min([1]) * sum([1]) = 1 * 1 = 1 - [3] from [1, 3 ,1,2] has a total strength of min([3]) * sum([3]) = 3 * 3 = 9 - [1] from [1,3, 1 ,2] has a total strength of min([1]) * sum([1]) = 1 * 1 = 1 - [2] from [1,3,1, 2 ] has a total strength of min([2]) * sum([2]) = 2 * 2 = 4 - [1,3] from [ 1,3 ,1,2] has a total strength of min([1,3]) * sum([1,3]) = 1 * 4 = 4 - [3,1] from [1, 3,1 ,2] has a total strength of min([3,1]) * sum([3,1]) = 1 * 4 = 4 - [1,2] from [1,3, 1,2 ] has a total strength of min([1,2]) * sum([1,2]) = 1 * 3 = 3 - [1,3,1] from [ 1,3,1 ,2] has a total strength of min([1,3,1]) * sum([1,3,1]) = 1 * 5 = 5 - [3,1,2] from [1, 3,1,2 ] has a total strength of min([3,1,2]) * sum([3,1,2]) = 1 * 6 = 6 - [1,3,1,2] from [ 1,3,1,2 ] has a total strength of min([1,3,1,2]) * sum([1,3,1,2]) = 1 * 7 = 7 The sum of all the total strengths is 1 + 9 + 1 + 4 + 4 + 4 + 3 + 5 + 6 + 7 = 44. Example 2: Input: strength = [5,4,6] Output: 213 Explanation: The following are all the contiguous groups of wizards: - [5] from [ 5 ,4,6] has a total strength of min([5]) * sum([5]) = 5 * 5 = 25 - [4] from [5, 4 ,6] has a total strength of min([4]) * sum([4]) = 4 * 4 = 16 - [6] from [5,4, 6 ] has a total strength of min([6]) * sum([6]) = 6 * 6 = 36 - [5,4] from [ 5,4 ,6] has a total strength of min([5,4]) * sum([5,4]) = 4 * 9 = 36 - [4,6] from [5, 4,6 ] has a total strength of min([4,6]) * sum([4,6]) = 4 * 10 = 40 - [5,4,6] from [ 5,4,6 ] has a total strength of min([5,4,6]) * sum([5,4,6]) = 4 * 15 = 60 The sum of all the total strengths is 25 + 16 + 36 + 36 + 40 + 60 = 213.   Constraints: 1 <= strength.length <= 10 5 1 <= strength[i] <= 10 9
null
null
class Solution { public: int totalStrength(vector<int>& strength) { int n = strength.size(); vector<int> left(n, -1); vector<int> right(n, n); stack<int> stk; for (int i = 0; i < n; ++i) { while (!stk.empty() && strength[stk.top()] >= strength[i]) stk.pop(); if (!stk.empty()) left[i] = stk.top(); stk.push(i); } stk = stack<int>(); for (int i = n - 1; i >= 0; --i) { while (!stk.empty() && strength[stk.top()] > strength[i]) stk.pop(); if (!stk.empty()) right[i] = stk.top(); stk.push(i); } int mod = 1e9 + 7; vector<int> s(n + 1); for (int i = 0; i < n; ++i) s[i + 1] = (s[i] + strength[i]) % mod; vector<int> ss(n + 2); for (int i = 0; i < n + 1; ++i) ss[i + 1] = (ss[i] + s[i]) % mod; int ans = 0; for (int i = 0; i < n; ++i) { int v = strength[i]; int l = left[i] + 1, r = right[i] - 1; long a = (long) (i - l + 1) * (ss[r + 2] - ss[i + 1]); long b = (long) (r - i + 1) * (ss[i + 1] - ss[l]); ans = (ans + v * ((a - b) % mod)) % mod; } return (int) (ans + mod) % mod; } };
null
null
func totalStrength(strength []int) int { n := len(strength) left := make([]int, n) right := make([]int, n) for i := range left { left[i] = -1 right[i] = n } stk := []int{} for i, v := range strength { for len(stk) > 0 && strength[stk[len(stk)-1]] >= v { stk = stk[:len(stk)-1] } if len(stk) > 0 { left[i] = stk[len(stk)-1] } stk = append(stk, i) } stk = []int{} for i := n - 1; i >= 0; i-- { for len(stk) > 0 && strength[stk[len(stk)-1]] > strength[i] { stk = stk[:len(stk)-1] } if len(stk) > 0 { right[i] = stk[len(stk)-1] } stk = append(stk, i) } mod := int(1e9) + 7 s := make([]int, n+1) for i, v := range strength { s[i+1] = (s[i] + v) % mod } ss := make([]int, n+2) for i, v := range s { ss[i+1] = (ss[i] + v) % mod } ans := 0 for i, v := range strength { l, r := left[i]+1, right[i]-1 a := (ss[r+2] - ss[i+1]) * (i - l + 1) b := (ss[i+1] - ss[l]) * (r - i + 1) ans = (ans + v*((a-b)%mod)) % mod } return (ans + mod) % mod }
class Solution { public int totalStrength(int[] strength) { int n = strength.length; int[] left = new int[n]; int[] right = new int[n]; Arrays.fill(left, -1); Arrays.fill(right, n); Deque<Integer> stk = new ArrayDeque<>(); for (int i = 0; i < n; ++i) { while (!stk.isEmpty() && strength[stk.peek()] >= strength[i]) { stk.pop(); } if (!stk.isEmpty()) { left[i] = stk.peek(); } stk.push(i); } stk.clear(); for (int i = n - 1; i >= 0; --i) { while (!stk.isEmpty() && strength[stk.peek()] > strength[i]) { stk.pop(); } if (!stk.isEmpty()) { right[i] = stk.peek(); } stk.push(i); } int mod = (int) 1e9 + 7; int[] s = new int[n + 1]; for (int i = 0; i < n; ++i) { s[i + 1] = (s[i] + strength[i]) % mod; } int[] ss = new int[n + 2]; for (int i = 0; i < n + 1; ++i) { ss[i + 1] = (ss[i] + s[i]) % mod; } long ans = 0; for (int i = 0; i < n; ++i) { int v = strength[i]; int l = left[i] + 1, r = right[i] - 1; long a = (long) (i - l + 1) * (ss[r + 2] - ss[i + 1]); long b = (long) (r - i + 1) * (ss[i + 1] - ss[l]); ans = (ans + v * ((a - b) % mod)) % mod; } return (int) (ans + mod) % mod; } }
null
null
null
null
null
null
class Solution: def totalStrength(self, strength: List[int]) -> int: n = len(strength) left = [-1] * n right = [n] * n stk = [] for i, v in enumerate(strength): while stk and strength[stk[-1]] >= v: stk.pop() if stk: left[i] = stk[-1] stk.append(i) stk = [] for i in range(n - 1, -1, -1): while stk and strength[stk[-1]] > strength[i]: stk.pop() if stk: right[i] = stk[-1] stk.append(i) ss = list(accumulate(list(accumulate(strength, initial=0)), initial=0)) mod = int(1e9) + 7 ans = 0 for i, v in enumerate(strength): l, r = left[i] + 1, right[i] - 1 a = (ss[r + 2] - ss[i + 1]) * (i - l + 1) b = (ss[i + 1] - ss[l]) * (r - i + 1) ans = (ans + (a - b) * v) % mod return ans
null
null
null
null
null
null
Subarrays with XOR at Least K 🔒
Given an array of positive integers nums of length n and a non‑negative integer k . Return the number of contiguous subarrays whose bitwise XOR of all elements is greater than or equal to k .   Example 1: Input: nums = [3,1,2,3], k = 2 Output: 6 Explanation: The valid subarrays with XOR >= 2 are [3] at index 0, [3, 1] at indices 0 - 1, [3, 1, 2, 3] at indices 0 - 3, [1, 2] at indices 1 - 2, [2] at index 2, and [3] at index 3; there are 6 in total. Example 2: Input: nums = [0,0,0], k = 0 Output: 6 Explanation: Every contiguous subarray yields XOR = 0 , which meets k = 0 . There are 6 such subarrays in total.   Constraints: 1 <= nums.length <= 10 5 0 <= nums[i] <= 10 9 0 <= k <= 10 9
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
Minimum Steps to Convert String with Operations
You are given two strings, word1 and word2 , of equal length. You need to transform word1 into word2 . For this, divide word1 into one or more contiguous substrings . For each substring substr you can perform the following operations: Replace: Replace the character at any one index of substr with another lowercase English letter. Swap: Swap any two characters in substr . Reverse Substring: Reverse substr . Each of these counts as one operation and each character of each substring can be used in each type of operation at most once (i.e. no single index may be involved in more than one replace, one swap, or one reverse). Return the minimum number of operations required to transform word1 into word2 .   Example 1: Input: word1 = "abcdf", word2 = "dacbe" Output: 4 Explanation: Divide word1 into "ab" , "c" , and "df" . The operations are: For the substring "ab" , Perform operation of type 3 on "ab" -> "ba" . Perform operation of type 1 on "ba" -> "da" . For the substring "c" do no operations. For the substring "df" , Perform operation of type 1 on "df" -> "bf" . Perform operation of type 1 on "bf" -> "be" . Example 2: Input: word1 = "abceded", word2 = "baecfef" Output: 4 Explanation: Divide word1 into "ab" , "ce" , and "ded" . The operations are: For the substring "ab" , Perform operation of type 2 on "ab" -> "ba" . For the substring "ce" , Perform operation of type 2 on "ce" -> "ec" . For the substring "ded" , Perform operation of type 1 on "ded" -> "fed" . Perform operation of type 1 on "fed" -> "fef" . Example 3: Input: word1 = "abcdef", word2 = "fedabc" Output: 2 Explanation: Divide word1 into "abcdef" . The operations are: For the substring "abcdef" , Perform operation of type 3 on "abcdef" -> "fedcba" . Perform operation of type 2 on "fedcba" -> "fedabc" .   Constraints: 1 <= word1.length == word2.length <= 100 word1 and word2 consist only of lowercase English letters.
null
null
class Solution { public: int minOperations(string word1, string word2) { int n = word1.length(); vector<int> f(n + 1, INT_MAX); f[0] = 0; for (int i = 1; i <= n; ++i) { for (int j = 0; j < i; ++j) { int a = calc(word1, word2, j, i - 1, false); int b = 1 + calc(word1, word2, j, i - 1, true); int t = min(a, b); f[i] = min(f[i], f[j] + t); } } return f[n]; } private: int calc(const string& word1, const string& word2, int l, int r, bool rev) { int cnt[26][26] = {0}; int res = 0; for (int i = l; i <= r; ++i) { int j = rev ? r - (i - l) : i; int a = word1[j] - 'a'; int b = word2[i] - 'a'; if (a != b) { if (cnt[b][a] > 0) { cnt[b][a]--; } else { cnt[a][b]++; res++; } } } return res; } };
null
null
func minOperations(word1 string, word2 string) int { n := len(word1) f := make([]int, n+1) for i := range f { f[i] = math.MaxInt32 } f[0] = 0 calc := func(l, r int, rev bool) int { var cnt [26][26]int res := 0 for i := l; i <= r; i++ { j := i if rev { j = r - (i - l) } a := word1[j] - 'a' b := word2[i] - 'a' if a != b { if cnt[b][a] > 0 { cnt[b][a]-- } else { cnt[a][b]++ res++ } } } return res } for i := 1; i <= n; i++ { for j := 0; j < i; j++ { a := calc(j, i-1, false) b := 1 + calc(j, i-1, true) t := min(a, b) f[i] = min(f[i], f[j]+t) } } return f[n] }
class Solution { public int minOperations(String word1, String word2) { int n = word1.length(); int[] f = new int[n + 1]; Arrays.fill(f, Integer.MAX_VALUE); f[0] = 0; for (int i = 1; i <= n; i++) { for (int j = 0; j < i; j++) { int a = calc(word1, word2, j, i - 1, false); int b = 1 + calc(word1, word2, j, i - 1, true); int t = Math.min(a, b); f[i] = Math.min(f[i], f[j] + t); } } return f[n]; } private int calc(String word1, String word2, int l, int r, boolean rev) { int[][] cnt = new int[26][26]; int res = 0; for (int i = l; i <= r; i++) { int j = rev ? r - (i - l) : i; int a = word1.charAt(j) - 'a'; int b = word2.charAt(i) - 'a'; if (a != b) { if (cnt[b][a] > 0) { cnt[b][a]--; } else { cnt[a][b]++; res++; } } } return res; } }
null
null
null
null
null
null
class Solution: def minOperations(self, word1: str, word2: str) -> int: def calc(l: int, r: int, rev: bool) -> int: cnt = Counter() res = 0 for i in range(l, r + 1): j = r - (i - l) if rev else i a, b = word1[j], word2[i] if a != b: if cnt[(b, a)] > 0: cnt[(b, a)] -= 1 else: cnt[(a, b)] += 1 res += 1 return res n = len(word1) f = [inf] * (n + 1) f[0] = 0 for i in range(1, n + 1): for j in range(i): t = min(calc(j, i - 1, False), 1 + calc(j, i - 1, True)) f[i] = min(f[i], f[j] + t) return f[n]
null
impl Solution { pub fn min_operations(word1: String, word2: String) -> i32 { let n = word1.len(); let word1 = word1.as_bytes(); let word2 = word2.as_bytes(); let mut f = vec![i32::MAX; n + 1]; f[0] = 0; for i in 1..=n { for j in 0..i { let a = Self::calc(word1, word2, j, i - 1, false); let b = 1 + Self::calc(word1, word2, j, i - 1, true); let t = a.min(b); f[i] = f[i].min(f[j] + t); } } f[n] } fn calc(word1: &[u8], word2: &[u8], l: usize, r: usize, rev: bool) -> i32 { let mut cnt = [[0i32; 26]; 26]; let mut res = 0; for i in l..=r { let j = if rev { r - (i - l) } else { i }; let a = (word1[j] - b'a') as usize; let b = (word2[i] - b'a') as usize; if a != b { if cnt[b][a] > 0 { cnt[b][a] -= 1; } else { cnt[a][b] += 1; res += 1; } } } res } }
null
null
null
function minOperations(word1: string, word2: string): number { const n = word1.length; const f = Array(n + 1).fill(Number.MAX_SAFE_INTEGER); f[0] = 0; function calc(l: number, r: number, rev: boolean): number { const cnt: number[][] = Array.from({ length: 26 }, () => Array(26).fill(0)); let res = 0; for (let i = l; i <= r; i++) { const j = rev ? r - (i - l) : i; const a = word1.charCodeAt(j) - 97; const b = word2.charCodeAt(i) - 97; if (a !== b) { if (cnt[b][a] > 0) { cnt[b][a]--; } else { cnt[a][b]++; res++; } } } return res; } for (let i = 1; i <= n; i++) { for (let j = 0; j < i; j++) { const a = calc(j, i - 1, false); const b = 1 + calc(j, i - 1, true); const t = Math.min(a, b); f[i] = Math.min(f[i], f[j] + t); } } return f[n]; }
Reverse String
Write a function that reverses a string. The input string is given as an array of characters s . You must do this by modifying the input array in-place with O(1) extra memory.   Example 1: Input: s = ["h","e","l","l","o"] Output: ["o","l","l","e","h"] Example 2: Input: s = ["H","a","n","n","a","h"] Output: ["h","a","n","n","a","H"]   Constraints: 1 <= s.length <= 10 5 s[i] is a printable ascii character .
null
null
class Solution { public: void reverseString(vector<char>& s) { for (int i = 0, j = s.size() - 1; i < j;) { swap(s[i++], s[j--]); } } };
null
null
func reverseString(s []byte) { for i, j := 0, len(s)-1; i < j; i, j = i+1, j-1 { s[i], s[j] = s[j], s[i] } }
class Solution { public void reverseString(char[] s) { for (int i = 0, j = s.length - 1; i < j; ++i, --j) { char t = s[i]; s[i] = s[j]; s[j] = t; } } }
/** * @param {character[]} s * @return {void} Do not return anything, modify s in-place instead. */ var reverseString = function (s) { for (let i = 0, j = s.length - 1; i < j; ++i, --j) { [s[i], s[j]] = [s[j], s[i]]; } };
null
null
null
null
null
class Solution: def reverseString(self, s: List[str]) -> None: i, j = 0, len(s) - 1 while i < j: s[i], s[j] = s[j], s[i] i, j = i + 1, j - 1
null
impl Solution { pub fn reverse_string(s: &mut Vec<char>) { let mut i = 0; let mut j = s.len() - 1; while i < j { s.swap(i, j); i += 1; j -= 1; } } }
null
null
null
/** Do not return anything, modify s in-place instead. */ function reverseString(s: string[]): void { for (let i = 0, j = s.length - 1; i < j; ++i, --j) { [s[i], s[j]] = [s[j], s[i]]; } }
Make String Anti-palindrome 🔒
We call a string s of even length n an anti-palindrome if for each index 0 <= i < n , s[i] != s[n - i - 1] . Given a string s , your task is to make s an anti-palindrome by doing any number of operations (including zero). In one operation, you can select two characters from s and swap them. Return the resulting string. If multiple strings meet the conditions, return the lexicographically smallest one. If it can't be made into an anti-palindrome, return "-1" .   Example 1: Input: s = "abca" Output: "aabc" Explanation: "aabc" is an anti-palindrome string since s[0] != s[3] and s[1] != s[2] . Also, it is a rearrangement of "abca" . Example 2: Input: s = "abba" Output: "aabb" Explanation: "aabb" is an anti-palindrome string since s[0] != s[3] and s[1] != s[2] . Also, it is a rearrangement of "abba" . Example 3: Input: s = "cccd" Output: "-1" Explanation: You can see that no matter how you rearrange the characters of "cccd" , either s[0] == s[3] or s[1] == s[2] . So it can not form an anti-palindrome string.   Constraints: 2 <= s.length <= 10 5 s.length % 2 == 0 s consists only of lowercase English letters.
null
null
class Solution { public: string makeAntiPalindrome(string s) { sort(s.begin(), s.end()); int n = s.length(); int m = n / 2; if (s[m] == s[m - 1]) { int i = m; while (i < n && s[i] == s[i - 1]) { ++i; } for (int j = m; j < n && s[j] == s[n - j - 1]; ++i, ++j) { if (i >= n) { return "-1"; } swap(s[i], s[j]); } } return s; } };
null
null
func makeAntiPalindrome(s string) string { cs := []byte(s) sort.Slice(cs, func(i, j int) bool { return cs[i] < cs[j] }) n := len(cs) m := n / 2 if cs[m] == cs[m-1] { i := m for i < n && cs[i] == cs[i-1] { i++ } for j := m; j < n && cs[j] == cs[n-j-1]; i, j = i+1, j+1 { if i >= n { return "-1" } cs[i], cs[j] = cs[j], cs[i] } } return string(cs) }
class Solution { public String makeAntiPalindrome(String s) { char[] cs = s.toCharArray(); Arrays.sort(cs); int n = cs.length; int m = n / 2; if (cs[m] == cs[m - 1]) { int i = m; while (i < n && cs[i] == cs[i - 1]) { ++i; } for (int j = m; j < n && cs[j] == cs[n - j - 1]; ++i, ++j) { if (i >= n) { return "-1"; } char t = cs[i]; cs[i] = cs[j]; cs[j] = t; } } return new String(cs); } }
null
null
null
null
null
null
class Solution: def makeAntiPalindrome(self, s: str) -> str: cs = sorted(s) n = len(cs) m = n // 2 if cs[m] == cs[m - 1]: i = m while i < n and cs[i] == cs[i - 1]: i += 1 j = m while j < n and cs[j] == cs[n - j - 1]: if i >= n: return "-1" cs[i], cs[j] = cs[j], cs[i] i, j = i + 1, j + 1 return "".join(cs)
null
null
null
null
null
function makeAntiPalindrome(s: string): string { const cs: string[] = s.split('').sort(); const n: number = cs.length; const m = n >> 1; if (cs[m] === cs[m - 1]) { let i = m; for (; i < n && cs[i] === cs[i - 1]; i++); for (let j = m; j < n && cs[j] === cs[n - j - 1]; ++i, ++j) { if (i >= n) { return '-1'; } [cs[j], cs[i]] = [cs[i], cs[j]]; } } return cs.join(''); }
Word Squares 🔒
Given an array of unique strings words , return all the word squares you can build from words . The same word from words can be used multiple times . You can return the answer in any order . A sequence of strings forms a valid word square if the k th row and column read the same string, where 0 <= k < max(numRows, numColumns) . For example, the word sequence ["ball","area","lead","lady"] forms a word square because each word reads the same both horizontally and vertically.   Example 1: Input: words = ["area","lead","wall","lady","ball"] Output: [["ball","area","lead","lady"],["wall","area","lead","lady"]] Explanation: The output consists of two word squares. The order of output does not matter (just the order of words in each word square matters). Example 2: Input: words = ["abat","baba","atan","atal"] Output: [["baba","abat","baba","atal"],["baba","abat","baba","atan"]] Explanation: The output consists of two word squares. The order of output does not matter (just the order of words in each word square matters).   Constraints: 1 <= words.length <= 1000 1 <= words[i].length <= 4 All words[i] have the same length. words[i] consists of only lowercase English letters. All words[i] are unique .
null
null
null
null
null
type Trie struct { children [26]*Trie v []int } func newTrie() *Trie { return &Trie{} } func (this *Trie) insert(word string, i int) { node := this for _, c := range word { c -= 'a' if node.children[c] == nil { node.children[c] = newTrie() } node = node.children[c] node.v = append(node.v, i) } } func (this *Trie) search(word string) []int { node := this for _, c := range word { c -= 'a' if node.children[c] == nil { return []int{} } node = node.children[c] } return node.v } func wordSquares(words []string) [][]string { trie := newTrie() for i, w := range words { trie.insert(w, i) } ans := [][]string{} var dfs func([]string) dfs = func(t []string) { if len(t) == len(words[0]) { cp := make([]string, len(t)) copy(cp, t) ans = append(ans, cp) return } idx := len(t) pref := []byte{} for _, v := range t { pref = append(pref, v[idx]) } indexes := trie.search(string(pref)) for _, i := range indexes { t = append(t, words[i]) dfs(t) t = t[:len(t)-1] } } for _, w := range words { dfs([]string{w}) } return ans }
class Trie { Trie[] children = new Trie[26]; List<Integer> v = new ArrayList<>(); void insert(String word, int i) { Trie node = this; for (char c : word.toCharArray()) { c -= 'a'; if (node.children[c] == null) { node.children[c] = new Trie(); } node = node.children[c]; node.v.add(i); } } List<Integer> search(String pref) { Trie node = this; for (char c : pref.toCharArray()) { c -= 'a'; if (node.children[c] == null) { return Collections.emptyList(); } node = node.children[c]; } return node.v; } } class Solution { private Trie trie = new Trie(); private String[] words; private List<List<String>> ans = new ArrayList<>(); public List<List<String>> wordSquares(String[] words) { this.words = words; for (int i = 0; i < words.length; ++i) { trie.insert(words[i], i); } List<String> t = new ArrayList<>(); for (String w : words) { t.add(w); dfs(t); t.remove(t.size() - 1); } return ans; } private void dfs(List<String> t) { if (t.size() == words[0].length()) { ans.add(new ArrayList<>(t)); return; } int idx = t.size(); StringBuilder pref = new StringBuilder(); for (String x : t) { pref.append(x.charAt(idx)); } List<Integer> indexes = trie.search(pref.toString()); for (int i : indexes) { t.add(words[i]); dfs(t); t.remove(t.size() - 1); } } }
null
null
null
null
null
null
class Trie: def __init__(self): self.children = [None] * 26 self.v = [] def insert(self, w, i): node = self for c in w: idx = ord(c) - ord('a') if node.children[idx] is None: node.children[idx] = Trie() node = node.children[idx] node.v.append(i) def search(self, w): node = self for c in w: idx = ord(c) - ord('a') if node.children[idx] is None: return [] node = node.children[idx] return node.v class Solution: def wordSquares(self, words: List[str]) -> List[List[str]]: def dfs(t): if len(t) == len(words[0]): ans.append(t[:]) return idx = len(t) pref = [v[idx] for v in t] indexes = trie.search(''.join(pref)) for i in indexes: t.append(words[i]) dfs(t) t.pop() trie = Trie() ans = [] for i, w in enumerate(words): trie.insert(w, i) for w in words: dfs([w]) return ans
null
null
null
null
null
null
Make Lexicographically Smallest Array by Swapping Elements
You are given a 0-indexed array of positive integers nums and a positive integer limit . In one operation, you can choose any two indices i and j and swap nums[i] and nums[j] if |nums[i] - nums[j]| <= limit . Return the lexicographically smallest array that can be obtained by performing the operation any number of times . An array a is lexicographically smaller than an array b if in the first position where a and b differ, array a has an element that is less than the corresponding element in b . For example, the array [2,10,3] is lexicographically smaller than the array [10,2,3] because they differ at index 0 and 2 < 10 .   Example 1: Input: nums = [1,5,3,9,8], limit = 2 Output: [1,3,5,8,9] Explanation: Apply the operation 2 times: - Swap nums[1] with nums[2]. The array becomes [1,3,5,9,8] - Swap nums[3] with nums[4]. The array becomes [1,3,5,8,9] We cannot obtain a lexicographically smaller array by applying any more operations. Note that it may be possible to get the same result by doing different operations. Example 2: Input: nums = [1,7,6,18,2,1], limit = 3 Output: [1,6,7,18,1,2] Explanation: Apply the operation 3 times: - Swap nums[1] with nums[2]. The array becomes [1,6,7,18,2,1] - Swap nums[0] with nums[4]. The array becomes [2,6,7,18,1,1] - Swap nums[0] with nums[5]. The array becomes [1,6,7,18,1,2] We cannot obtain a lexicographically smaller array by applying any more operations. Example 3: Input: nums = [1,7,28,19,10], limit = 3 Output: [1,7,28,19,10] Explanation: [1,7,28,19,10] is the lexicographically smallest array we can obtain because we cannot apply the operation on any two indices.   Constraints: 1 <= nums.length <= 10 5 1 <= nums[i] <= 10 9 1 <= limit <= 10 9
null
null
class Solution { public: vector<int> lexicographicallySmallestArray(vector<int>& nums, int limit) { int n = nums.size(); vector<int> idx(n); iota(idx.begin(), idx.end(), 0); sort(idx.begin(), idx.end(), [&](int i, int j) { return nums[i] < nums[j]; }); vector<int> ans(n); for (int i = 0; i < n;) { int j = i + 1; while (j < n && nums[idx[j]] - nums[idx[j - 1]] <= limit) { ++j; } vector<int> t(idx.begin() + i, idx.begin() + j); sort(t.begin(), t.end()); for (int k = i; k < j; ++k) { ans[t[k - i]] = nums[idx[k]]; } i = j; } return ans; } };
null
null
func lexicographicallySmallestArray(nums []int, limit int) []int { n := len(nums) idx := make([]int, n) for i := range idx { idx[i] = i } slices.SortFunc(idx, func(i, j int) int { return nums[i] - nums[j] }) ans := make([]int, n) for i := 0; i < n; { j := i + 1 for j < n && nums[idx[j]]-nums[idx[j-1]] <= limit { j++ } t := slices.Clone(idx[i:j]) slices.Sort(t) for k := i; k < j; k++ { ans[t[k-i]] = nums[idx[k]] } i = j } return ans }
class Solution { public int[] lexicographicallySmallestArray(int[] nums, int limit) { int n = nums.length; Integer[] idx = new Integer[n]; Arrays.setAll(idx, i -> i); Arrays.sort(idx, (i, j) -> nums[i] - nums[j]); int[] ans = new int[n]; for (int i = 0; i < n;) { int j = i + 1; while (j < n && nums[idx[j]] - nums[idx[j - 1]] <= limit) { ++j; } Integer[] t = Arrays.copyOfRange(idx, i, j); Arrays.sort(t, (x, y) -> x - y); for (int k = i; k < j; ++k) { ans[t[k - i]] = nums[idx[k]]; } i = j; } return ans; } }
null
null
null
null
null
null
class Solution: def lexicographicallySmallestArray(self, nums: List[int], limit: int) -> List[int]: n = len(nums) arr = sorted(zip(nums, range(n))) ans = [0] * n i = 0 while i < n: j = i + 1 while j < n and arr[j][0] - arr[j - 1][0] <= limit: j += 1 idx = sorted(k for _, k in arr[i:j]) for k, (x, _) in zip(idx, arr[i:j]): ans[k] = x i = j return ans
null
null
null
null
null
function lexicographicallySmallestArray(nums: number[], limit: number): number[] { const n: number = nums.length; const idx: number[] = Array.from({ length: n }, (_, i) => i); idx.sort((i, j) => nums[i] - nums[j]); const ans: number[] = Array(n).fill(0); for (let i = 0; i < n; ) { let j = i + 1; while (j < n && nums[idx[j]] - nums[idx[j - 1]] <= limit) { j++; } const t: number[] = idx.slice(i, j).sort((a, b) => a - b); for (let k: number = i; k < j; k++) { ans[t[k - i]] = nums[idx[k]]; } i = j; } return ans; }
Friday Purchases II 🔒
Table: Purchases +---------------+------+ | Column Name | Type | +---------------+------+ | user_id | int | | purchase_date | date | | amount_spend | int | +---------------+------+ (user_id, purchase_date, amount_spend) is the primary key (combination of columns with unique values) for this table. purchase_date will range from November 1, 2023, to November 30, 2023, inclusive of both dates. Each row contains user id, purchase date, and amount spend. Write a solution to calculate the total spending by users on each Friday of every week in November 2023 . If there are no purchases on a particular Friday of a week , it will be considered as 0 . Return the result table ordered by week of month in ascending order. The result format is in the following example.   Example 1: Input: Purchases table: +---------+---------------+--------------+ | user_id | purchase_date | amount_spend | +---------+---------------+--------------+ | 11 | 2023-11-07 | 1126 | | 15 | 2023-11-30 | 7473 | | 17 | 2023-11-14 | 2414 | | 12 | 2023-11-24 | 9692 | | 8 | 2023-11-03 | 5117 | | 1 | 2023-11-16 | 5241 | | 10 | 2023-11-12 | 8266 | | 13 | 2023-11-24 | 12000 | +---------+---------------+--------------+ Output: +---------------+---------------+--------------+ | week_of_month | purchase_date | total_amount | +---------------+---------------+--------------+ | 1 | 2023-11-03 | 5117 | | 2 | 2023-11-10 | 0 | | 3 | 2023-11-17 | 0 | | 4 | 2023-11-24 | 21692 | +---------------+---------------+--------------+ Explanation: - During the first week of November 2023, transactions amounting to $5,117 occurred on Friday, 2023-11-03. - For the second week of November 2023, there were no transactions on Friday, 2023-11-10, resulting in a value of 0 in the output table for that day. - Similarly, during the third week of November 2023, there were no transactions on Friday, 2023-11-17, reflected as 0 in the output table for that specific day. - In the fourth week of November 2023, two transactions took place on Friday, 2023-11-24, amounting to $12,000 and $9,692 respectively, summing up to a total of $21,692. Output table is ordered by week_of_month in ascending order.
null
null
null
null
null
null
null
null
null
WITH RECURSIVE T AS ( SELECT '2023-11-01' AS purchase_date UNION SELECT purchase_date + INTERVAL 1 DAY FROM T WHERE purchase_date < '2023-11-30' ) SELECT CEIL(DAYOFMONTH(purchase_date) / 7) AS week_of_month, purchase_date, IFNULL(SUM(amount_spend), 0) AS total_amount FROM T LEFT JOIN Purchases USING (purchase_date) WHERE DAYOFWEEK(purchase_date) = 6 GROUP BY 2 ORDER BY 1;
null
null
null
null
null
null
null
null
null
null
Mice and Cheese
There are two mice and n different types of cheese, each type of cheese should be eaten by exactly one mouse. A point of the cheese with index i ( 0-indexed ) is: reward1[i] if the first mouse eats it. reward2[i] if the second mouse eats it. You are given a positive integer array reward1 , a positive integer array reward2 , and a non-negative integer k . Return the maximum points the mice can achieve if the first mouse eats exactly k types of cheese.   Example 1: Input: reward1 = [1,1,3,4], reward2 = [4,4,1,1], k = 2 Output: 15 Explanation: In this example, the first mouse eats the 2 nd  (0-indexed) and the 3 rd  types of cheese, and the second mouse eats the 0 th  and the 1 st types of cheese. The total points are 4 + 4 + 3 + 4 = 15. It can be proven that 15 is the maximum total points that the mice can achieve. Example 2: Input: reward1 = [1,1], reward2 = [1,1], k = 2 Output: 2 Explanation: In this example, the first mouse eats the 0 th  (0-indexed) and 1 st  types of cheese, and the second mouse does not eat any cheese. The total points are 1 + 1 = 2. It can be proven that 2 is the maximum total points that the mice can achieve.   Constraints: 1 <= n == reward1.length == reward2.length <= 10 5 1 <= reward1[i], reward2[i] <= 1000 0 <= k <= n
null
null
class Solution { public: int miceAndCheese(vector<int>& reward1, vector<int>& reward2, int k) { int n = reward1.size(); int ans = 0; for (int i = 0; i < n; ++i) { ans += reward2[i]; reward1[i] -= reward2[i]; } sort(reward1.rbegin(), reward1.rend()); ans += accumulate(reward1.begin(), reward1.begin() + k, 0); return ans; } };
null
null
func miceAndCheese(reward1 []int, reward2 []int, k int) (ans int) { for i, x := range reward2 { ans += x reward1[i] -= x } sort.Ints(reward1) n := len(reward1) for i := 0; i < k; i++ { ans += reward1[n-i-1] } return }
class Solution { public int miceAndCheese(int[] reward1, int[] reward2, int k) { int ans = 0; int n = reward1.length; for (int i = 0; i < n; ++i) { ans += reward2[i]; reward1[i] -= reward2[i]; } Arrays.sort(reward1); for (int i = 0; i < k; ++i) { ans += reward1[n - i - 1]; } return ans; } }
null
null
null
null
null
null
class Solution: def miceAndCheese(self, reward1: List[int], reward2: List[int], k: int) -> int: for i, x in enumerate(reward2): reward1[i] -= x reward1.sort(reverse=True) return sum(reward2) + sum(reward1[:k])
null
null
null
null
null
function miceAndCheese(reward1: number[], reward2: number[], k: number): number { const n = reward1.length; let ans = 0; for (let i = 0; i < n; ++i) { ans += reward2[i]; reward1[i] -= reward2[i]; } reward1.sort((a, b) => b - a); for (let i = 0; i < k; ++i) { ans += reward1[i]; } return ans; }
Lowest Common Ancestor of a Binary Search Tree
Given a binary search tree (BST), find the lowest common ancestor (LCA) node of two given nodes in the BST. According to the definition of LCA on Wikipedia : “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself ).”   Example 1: Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8 Output: 6 Explanation: The LCA of nodes 2 and 8 is 6. Example 2: Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4 Output: 2 Explanation: The LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition. Example 3: Input: root = [2,1], p = 2, q = 1 Output: 2   Constraints: The number of nodes in the tree is in the range [2, 10 5 ] . -10 9 <= Node.val <= 10 9 All Node.val are unique . p != q p and q will exist in the BST.
null
/** * Definition for a binary tree node. * public class TreeNode { * public int val; * public TreeNode left; * public TreeNode right; * public TreeNode(int x) { val = x; } * } */ public class Solution { public TreeNode LowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) { if (root.val < Math.Min(p.val, q.val)) { return LowestCommonAncestor(root.right, p, q); } if (root.val > Math.Max(p.val, q.val)) { return LowestCommonAncestor(root.left, p, q); } return root; } }
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) { if (root->val < min(p->val, q->val)) { return lowestCommonAncestor(root->right, p, q); } if (root->val > max(p->val, q->val)) { return lowestCommonAncestor(root->left, p, q); } return root; } };
null
null
/** * Definition for a binary tree node. * type TreeNode struct { * Val int * Left *TreeNode * Right *TreeNode * } */ func lowestCommonAncestor(root, p, q *TreeNode) *TreeNode { if root.Val < p.Val && root.Val < q.Val { return lowestCommonAncestor(root.Right, p, q) } if root.Val > p.Val && root.Val > q.Val { return lowestCommonAncestor(root.Left, p, q) } return root }
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ class Solution { public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) { if (root.val < Math.min(p.val, q.val)) { return lowestCommonAncestor(root.right, p, q); } if (root.val > Math.max(p.val, q.val)) { return lowestCommonAncestor(root.left, p, q); } return root; } }
null
null
null
null
null
null
# Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def lowestCommonAncestor( self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode' ) -> 'TreeNode': if root.val < min(p.val, q.val): return self.lowestCommonAncestor(root.right, p, q) if root.val > max(p.val, q.val): return self.lowestCommonAncestor(root.left, p, q) return root
null
null
null
null
null
/** * Definition for a binary tree node. * class TreeNode { * val: number * left: TreeNode | null * right: TreeNode | null * constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { * this.val = (val===undefined ? 0 : val) * this.left = (left===undefined ? null : left) * this.right = (right===undefined ? null : right) * } * } */ function lowestCommonAncestor( root: TreeNode | null, p: TreeNode | null, q: TreeNode | null, ): TreeNode | null { if (root.val > p.val && root.val > q.val) { return lowestCommonAncestor(root.left, p, q); } if (root.val < p.val && root.val < q.val) { return lowestCommonAncestor(root.right, p, q); } return root; }
Build Binary Expression Tree From Infix Expression 🔒
A binary expression tree is a kind of binary tree used to represent arithmetic expressions. Each node of a binary expression tree has either zero or two children. Leaf nodes (nodes with 0 children) correspond to operands (numbers), and internal nodes (nodes with 2 children) correspond to the operators '+' (addition), '-' (subtraction), '*' (multiplication), and '/' (division). For each internal node with operator o , the infix expression it represents is (A o B) , where A is the expression the left subtree represents and B is the expression the right subtree represents. You are given a string s , an infix expression containing operands, the operators described above, and parentheses '(' and ')' . Return any valid binary expression tree , whose in-order traversal reproduces s after omitting the parenthesis from it. Please note that order of operations applies in s . That is, expressions in parentheses are evaluated first, and multiplication and division happen before addition and subtraction. Operands must also appear in the same order in both s and the in-order traversal of the tree.   Example 1: Input: s = "3*4-2*5" Output: [-,*,*,3,4,2,5] Explanation: The tree above is the only valid tree whose inorder traversal produces s. Example 2: Input: s = "2-3/(5*2)+1" Output: [+,-,1,2,/,null,null,null,null,3,*,null,null,5,2] Explanation: The inorder traversal of the tree above is 2-3/5*2+1 which is the same as s without the parenthesis. The tree also produces the correct result and its operands are in the same order as they appear in s. The tree below is also a valid binary expression tree with the same inorder traversal as s, but it not a valid answer because it does not evaluate to the same value. The third tree below is also not valid. Although it produces the same result and is equivalent to the above trees, its inorder traversal does not produce s and its operands are not in the same order as s. Example 3: Input: s = "1+2+3+4+5" Output: [+,+,5,+,4,null,null,+,3,null,null,1,2] Explanation: The tree [+,+,5,+,+,null,null,1,2,3,4] is also one of many other valid trees.   Constraints: 1 <= s.length <= 100 s consists of digits and the characters '(' , ')' , '+' , '-' , '*' , and '/' . Operands in s are exactly 1 digit. It is guaranteed that s is a valid expression.
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
Count Pairs That Form a Complete Day I
Given an integer array hours representing times in hours , return an integer denoting the number of pairs i , j where i < j and hours[i] + hours[j] forms a complete day . A complete day is defined as a time duration that is an exact multiple of 24 hours. For example, 1 day is 24 hours, 2 days is 48 hours, 3 days is 72 hours, and so on.   Example 1: Input: hours = [12,12,30,24,24] Output: 2 Explanation: The pairs of indices that form a complete day are (0, 1) and (3, 4) . Example 2: Input: hours = [72,48,24,3] Output: 3 Explanation: The pairs of indices that form a complete day are (0, 1) , (0, 2) , and (1, 2) .   Constraints: 1 <= hours.length <= 100 1 <= hours[i] <= 10 9
null
null
class Solution { public: int countCompleteDayPairs(vector<int>& hours) { int cnt[24]{}; int ans = 0; for (int x : hours) { ans += cnt[(24 - x % 24) % 24]; ++cnt[x % 24]; } return ans; } };
null
null
func countCompleteDayPairs(hours []int) (ans int) { cnt := [24]int{} for _, x := range hours { ans += cnt[(24-x%24)%24] cnt[x%24]++ } return }
class Solution { public int countCompleteDayPairs(int[] hours) { int[] cnt = new int[24]; int ans = 0; for (int x : hours) { ans += cnt[(24 - x % 24) % 24]; ++cnt[x % 24]; } return ans; } }
null
null
null
null
null
null
class Solution: def countCompleteDayPairs(self, hours: List[int]) -> int: cnt = Counter() ans = 0 for x in hours: ans += cnt[(24 - (x % 24)) % 24] cnt[x % 24] += 1 return ans
null
null
null
null
null
function countCompleteDayPairs(hours: number[]): number { const cnt: number[] = Array(24).fill(0); let ans: number = 0; for (const x of hours) { ans += cnt[(24 - (x % 24)) % 24]; ++cnt[x % 24]; } return ans; }
Smallest Palindromic Rearrangement I
You are given a palindromic string s . Return the lexicographically smallest palindromic permutation of s .   Example 1: Input: s = "z" Output: "z" Explanation: A string of only one character is already the lexicographically smallest palindrome. Example 2: Input: s = "babab" Output: "abbba" Explanation: Rearranging "babab" → "abbba" gives the smallest lexicographic palindrome. Example 3: Input: s = "daccad" Output: "acddca" Explanation: Rearranging "daccad" → "acddca" gives the smallest lexicographic palindrome.   Constraints: 1 <= s.length <= 10 5 s consists of lowercase English letters. s is guaranteed to be palindromic.
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
Design Browser History
You have a browser of one tab where you start on the homepage and you can visit another url , get back in the history number of steps or move forward in the history number of steps . Implement the BrowserHistory class: BrowserHistory(string homepage) Initializes the object with the homepage  of the browser. void visit(string url)  Visits  url from the current page. It clears up all the forward history. string back(int steps)  Move steps back in history. If you can only return x steps in the history and steps > x , you will return only x steps. Return the current url  after moving back in history at most steps . string forward(int steps)  Move steps forward in history. If you can only forward x steps in the history and steps > x , you will forward only  x steps. Return the current url  after forwarding in history at most steps .   Example: Input: ["BrowserHistory","visit","visit","visit","back","back","forward","visit","forward","back","back"] [["leetcode.com"],["google.com"],["facebook.com"],["youtube.com"],[1],[1],[1],["linkedin.com"],[2],[2],[7]] Output: [null,null,null,null,"facebook.com","google.com","facebook.com",null,"linkedin.com","google.com","leetcode.com"] Explanation: BrowserHistory browserHistory = new BrowserHistory("leetcode.com"); browserHistory.visit("google.com"); // You are in "leetcode.com". Visit "google.com" browserHistory.visit("facebook.com"); // You are in "google.com". Visit "facebook.com" browserHistory.visit("youtube.com"); // You are in "facebook.com". Visit "youtube.com" browserHistory.back(1); // You are in "youtube.com", move back to "facebook.com" return "facebook.com" browserHistory.back(1); // You are in "facebook.com", move back to "google.com" return "google.com" browserHistory.forward(1); // You are in "google.com", move forward to "facebook.com" return "facebook.com" browserHistory.visit("linkedin.com"); // You are in "facebook.com". Visit "linkedin.com" browserHistory.forward(2); // You are in "linkedin.com", you cannot move forward any steps. browserHistory.back(2); // You are in "linkedin.com", move back two steps to "facebook.com" then to "google.com". return "google.com" browserHistory.back(7); // You are in "google.com", you can move back only one step to "leetcode.com". return "leetcode.com"   Constraints: 1 <= homepage.length <= 20 1 <= url.length <= 20 1 <= steps <= 100 homepage and url consist of  '.' or lower case English letters. At most 5000  calls will be made to visit , back , and forward .
null
null
class BrowserHistory { public: stack<string> stk1; stack<string> stk2; BrowserHistory(string homepage) { visit(homepage); } void visit(string url) { stk1.push(url); stk2 = stack<string>(); } string back(int steps) { for (; steps && stk1.size() > 1; --steps) { stk2.push(stk1.top()); stk1.pop(); } return stk1.top(); } string forward(int steps) { for (; steps && !stk2.empty(); --steps) { stk1.push(stk2.top()); stk2.pop(); } return stk1.top(); } }; /** * Your BrowserHistory object will be instantiated and called as such: * BrowserHistory* obj = new BrowserHistory(homepage); * obj->visit(url); * string param_2 = obj->back(steps); * string param_3 = obj->forward(steps); */
null
null
type BrowserHistory struct { stk1 []string stk2 []string } func Constructor(homepage string) BrowserHistory { t := BrowserHistory{[]string{}, []string{}} t.Visit(homepage) return t } func (this *BrowserHistory) Visit(url string) { this.stk1 = append(this.stk1, url) this.stk2 = []string{} } func (this *BrowserHistory) Back(steps int) string { for i := 0; i < steps && len(this.stk1) > 1; i++ { this.stk2 = append(this.stk2, this.stk1[len(this.stk1)-1]) this.stk1 = this.stk1[:len(this.stk1)-1] } return this.stk1[len(this.stk1)-1] } func (this *BrowserHistory) Forward(steps int) string { for i := 0; i < steps && len(this.stk2) > 0; i++ { this.stk1 = append(this.stk1, this.stk2[len(this.stk2)-1]) this.stk2 = this.stk2[:len(this.stk2)-1] } return this.stk1[len(this.stk1)-1] } /** * Your BrowserHistory object will be instantiated and called as such: * obj := Constructor(homepage); * obj.Visit(url); * param_2 := obj.Back(steps); * param_3 := obj.Forward(steps); */
class BrowserHistory { private Deque<String> stk1 = new ArrayDeque<>(); private Deque<String> stk2 = new ArrayDeque<>(); public BrowserHistory(String homepage) { visit(homepage); } public void visit(String url) { stk1.push(url); stk2.clear(); } public String back(int steps) { for (; steps > 0 && stk1.size() > 1; --steps) { stk2.push(stk1.pop()); } return stk1.peek(); } public String forward(int steps) { for (; steps > 0 && !stk2.isEmpty(); --steps) { stk1.push(stk2.pop()); } return stk1.peek(); } } /** * Your BrowserHistory object will be instantiated and called as such: * BrowserHistory obj = new BrowserHistory(homepage); * obj.visit(url); * String param_2 = obj.back(steps); * String param_3 = obj.forward(steps); */
null
null
null
null
null
null
class BrowserHistory: def __init__(self, homepage: str): self.stk1 = [] self.stk2 = [] self.visit(homepage) def visit(self, url: str) -> None: self.stk1.append(url) self.stk2.clear() def back(self, steps: int) -> str: while steps and len(self.stk1) > 1: self.stk2.append(self.stk1.pop()) steps -= 1 return self.stk1[-1] def forward(self, steps: int) -> str: while steps and self.stk2: self.stk1.append(self.stk2.pop()) steps -= 1 return self.stk1[-1] # Your BrowserHistory object will be instantiated and called as such: # obj = BrowserHistory(homepage) # obj.visit(url) # param_2 = obj.back(steps) # param_3 = obj.forward(steps)
null
null
null
null
null
null
Balance a Binary Search Tree
Given the root of a binary search tree, return a balanced binary search tree with the same node values . If there is more than one answer, return any of them . A binary search tree is balanced if the depth of the two subtrees of every node never differs by more than 1 .   Example 1: Input: root = [1,null,2,null,3,null,4,null,null] Output: [2,1,3,null,null,null,4] Explanation: This is not the only correct answer, [3,1,4,null,2] is also correct. Example 2: Input: root = [2,1,3] Output: [2,1,3]   Constraints: The number of nodes in the tree is in the range [1, 10 4 ] . 1 <= Node.val <= 10 5
null
null
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode() : val(0), left(nullptr), right(nullptr) {} * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} * }; */ class Solution { public: TreeNode* balanceBST(TreeNode* root) { dfs(root); return build(0, nums.size() - 1); } private: vector<int> nums; void dfs(TreeNode* root) { if (!root) { return; } dfs(root->left); nums.push_back(root->val); dfs(root->right); } TreeNode* build(int i, int j) { if (i > j) { return nullptr; } int mid = (i + j) >> 1; TreeNode* left = build(i, mid - 1); TreeNode* right = build(mid + 1, j); return new TreeNode(nums[mid], left, right); } };
null
null
/** * Definition for a binary tree node. * type TreeNode struct { * Val int * Left *TreeNode * Right *TreeNode * } */ func balanceBST(root *TreeNode) *TreeNode { ans := []int{} var dfs func(*TreeNode) dfs = func(root *TreeNode) { if root == nil { return } dfs(root.Left) ans = append(ans, root.Val) dfs(root.Right) } var build func(i, j int) *TreeNode build = func(i, j int) *TreeNode { if i > j { return nil } mid := (i + j) >> 1 left := build(i, mid-1) right := build(mid+1, j) return &TreeNode{Val: ans[mid], Left: left, Right: right} } dfs(root) return build(0, len(ans)-1) }
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode() {} * TreeNode(int val) { this.val = val; } * TreeNode(int val, TreeNode left, TreeNode right) { * this.val = val; * this.left = left; * this.right = right; * } * } */ class Solution { private List<Integer> nums = new ArrayList<>(); public TreeNode balanceBST(TreeNode root) { dfs(root); return build(0, nums.size() - 1); } private void dfs(TreeNode root) { if (root == null) { return; } dfs(root.left); nums.add(root.val); dfs(root.right); } private TreeNode build(int i, int j) { if (i > j) { return null; } int mid = (i + j) >> 1; TreeNode left = build(i, mid - 1); TreeNode right = build(mid + 1, j); return new TreeNode(nums.get(mid), left, right); } }
null
null
null
null
null
null
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def balanceBST(self, root: TreeNode) -> TreeNode: def dfs(root: TreeNode): if root is None: return dfs(root.left) nums.append(root.val) dfs(root.right) def build(i: int, j: int) -> TreeNode: if i > j: return None mid = (i + j) >> 1 left = build(i, mid - 1) right = build(mid + 1, j) return TreeNode(nums[mid], left, right) nums = [] dfs(root) return build(0, len(nums) - 1)
null
null
null
null
null
/** * Definition for a binary tree node. * class TreeNode { * val: number * left: TreeNode | null * right: TreeNode | null * constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { * this.val = (val===undefined ? 0 : val) * this.left = (left===undefined ? null : left) * this.right = (right===undefined ? null : right) * } * } */ function balanceBST(root: TreeNode | null): TreeNode | null { const nums: number[] = []; const dfs = (root: TreeNode | null): void => { if (root == null) { return; } dfs(root.left); nums.push(root.val); dfs(root.right); }; const build = (i: number, j: number): TreeNode | null => { if (i > j) { return null; } const mid: number = (i + j) >> 1; const left: TreeNode | null = build(i, mid - 1); const right: TreeNode | null = build(mid + 1, j); return new TreeNode(nums[mid], left, right); }; dfs(root); return build(0, nums.length - 1); }
Number of Integers With Popcount-Depth Equal to K II
You are given an integer array nums . For any positive integer x , define the following sequence: p 0 = x p i+1 = popcount(p i ) for all i >= 0 , where popcount(y) is the number of set bits (1's) in the binary representation of y . This sequence will eventually reach the value 1. The popcount-depth of x is defined as the smallest integer d >= 0 such that p d = 1 . For example, if x = 7 (binary representation "111" ). Then, the sequence is: 7 → 3 → 2 → 1 , so the popcount-depth of 7 is 3. You are also given a 2D integer array queries , where each queries[i] is either: [1, l, r, k] - Determine the number of indices j such that l <= j <= r and the popcount-depth of nums[j] is equal to k . [2, idx, val] - Update nums[idx] to val . Return an integer array answer , where answer[i] is the number of indices for the i th query of type [1, l, r, k] .   Example 1: Input: nums = [2,4], queries = [[1,0,1,1],[2,1,1],[1,0,1,0]] Output: [2,1] Explanation: i queries[i] nums binary( nums ) popcount- depth [l, r] k Valid nums[j] updated nums Answer 0 [1,0,1,1] [2,4] [10, 100] [1, 1] [0, 1] 1 [0, 1] — 2 1 [2,1,1] [2,4] [10, 100] [1, 1] — — — [2,1] — 2 [1,0,1,0] [2,1] [10, 1] [1, 0] [0, 1] 0 [1] — 1 Thus, the final answer is [2, 1] . Example 2: Input: nums = [3,5,6], queries = [[1,0,2,2],[2,1,4],[1,1,2,1],[1,0,1,0]] Output: [3,1,0] Explanation: i queries[i] nums binary( nums ) popcount- depth [l, r] k Valid nums[j] updated nums Answer 0 [1,0,2,2] [3, 5, 6] [11, 101, 110] [2, 2, 2] [0, 2] 2 [0, 1, 2] — 3 1 [2,1,4] [3, 5, 6] [11, 101, 110] [2, 2, 2] — — — [3, 4, 6] — 2 [1,1,2,1] [3, 4, 6] [11, 100, 110] [2, 1, 2] [1, 2] 1 [1] — 1 3 [1,0,1,0] [3, 4, 6] [11, 100, 110] [2, 1, 2] [0, 1] 0 [] — 0 Thus, the final answer is [3, 1, 0] . Example 3: Input: nums = [1,2], queries = [[1,0,1,1],[2,0,3],[1,0,0,1],[1,0,0,2]] Output: [1,0,1] Explanation: i queries[i] nums binary( nums ) popcount- depth [l, r] k Valid nums[j] updated nums Answer 0 [1,0,1,1] [1, 2] [1, 10] [0, 1] [0, 1] 1 [1] — 1 1 [2,0,3] [1, 2] [1, 10] [0, 1] — — — [3, 2]   2 [1,0,0,1] [3, 2] [11, 10] [2, 1] [0, 0] 1 [] — 0 3 [1,0,0,2] [3, 2] [11, 10] [2, 1] [0, 0] 2 [0] — 1 Thus, the final answer is [1, 0, 1] .   Constraints: 1 <= n == nums.length <= 10 5 1 <= nums[i] <= 10 15 1 <= queries.length <= 10 5 queries[i].length == 3 or 4 queries[i] == [1, l, r, k] or, queries[i] == [2, idx, val] 0 <= l <= r <= n - 1 0 <= k <= 5 0 <= idx <= n - 1 1 <= val <= 10 15
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
Distribute Candies to People
We distribute some number of candies , to a row of n = num_people  people in the following way: We then give 1 candy to the first person, 2 candies to the second person, and so on until we give n  candies to the last person. Then, we go back to the start of the row, giving n + 1 candies to the first person, n + 2 candies to the second person, and so on until we give 2 * n  candies to the last person. This process repeats (with us giving one more candy each time, and moving to the start of the row after we reach the end) until we run out of candies.  The last person will receive all of our remaining candies (not necessarily one more than the previous gift). Return an array (of length num_people  and sum candies ) that represents the final distribution of candies.   Example 1: Input: candies = 7, num_people = 4 Output: [1,2,3,1] Explanation: On the first turn, ans[0] += 1, and the array is [1,0,0,0]. On the second turn, ans[1] += 2, and the array is [1,2,0,0]. On the third turn, ans[2] += 3, and the array is [1,2,3,0]. On the fourth turn, ans[3] += 1 (because there is only one candy left), and the final array is [1,2,3,1]. Example 2: Input: candies = 10, num_people = 3 Output: [5,2,3] Explanation: On the first turn, ans[0] += 1, and the array is [1,0,0]. On the second turn, ans[1] += 2, and the array is [1,2,0]. On the third turn, ans[2] += 3, and the array is [1,2,3]. On the fourth turn, ans[0] += 4, and the final array is [5,2,3].   Constraints: 1 <= candies <= 10^9 1 <= num_people <= 1000
null
null
class Solution { public: vector<int> distributeCandies(int candies, int num_people) { vector<int> ans(num_people); for (int i = 0; candies > 0; ++i) { ans[i % num_people] += min(candies, i + 1); candies -= min(candies, i + 1); } return ans; } };
null
null
func distributeCandies(candies int, num_people int) []int { ans := make([]int, num_people) for i := 0; candies > 0; i++ { ans[i%num_people] += min(candies, i+1) candies -= min(candies, i+1) } return ans }
class Solution { public int[] distributeCandies(int candies, int num_people) { int[] ans = new int[num_people]; for (int i = 0; candies > 0; ++i) { ans[i % num_people] += Math.min(candies, i + 1); candies -= Math.min(candies, i + 1); } return ans; } }
null
null
null
null
null
null
class Solution: def distributeCandies(self, candies: int, num_people: int) -> List[int]: ans = [0] * num_people i = 0 while candies: ans[i % num_people] += min(candies, i + 1) candies -= min(candies, i + 1) i += 1 return ans
null
null
null
null
null
function distributeCandies(candies: number, num_people: number): number[] { const ans: number[] = Array(num_people).fill(0); for (let i = 0; candies > 0; ++i) { ans[i % num_people] += Math.min(candies, i + 1); candies -= Math.min(candies, i + 1); } return ans; }
Shortest Cycle in a Graph
There is a bi-directional graph with n vertices, where each vertex is labeled from 0 to n - 1 . The edges in the graph are represented by a given 2D integer array edges , where edges[i] = [u i , v i ] denotes an edge between vertex u i and vertex v i . Every vertex pair is connected by at most one edge, and no vertex has an edge to itself. Return the length of the shortest cycle in the graph . If no cycle exists, return -1 . A cycle is a path that starts and ends at the same node, and each edge in the path is used only once.   Example 1: Input: n = 7, edges = [[0,1],[1,2],[2,0],[3,4],[4,5],[5,6],[6,3]] Output: 3 Explanation: The cycle with the smallest length is : 0 -> 1 -> 2 -> 0 Example 2: Input: n = 4, edges = [[0,1],[0,2]] Output: -1 Explanation: There are no cycles in this graph.   Constraints: 2 <= n <= 1000 1 <= edges.length <= 1000 edges[i].length == 2 0 <= u i , v i < n u i != v i There are no repeated edges.
null
null
class Solution { public: int findShortestCycle(int n, vector<vector<int>>& edges) { vector<vector<int>> g(n); for (auto& e : edges) { int u = e[0], v = e[1]; g[u].push_back(v); g[v].push_back(u); } const int inf = 1 << 30; auto bfs = [&](int u) -> int { int dist[n]; memset(dist, -1, sizeof(dist)); dist[u] = 0; queue<pair<int, int>> q; q.emplace(u, -1); int ans = inf; while (!q.empty()) { auto p = q.front(); u = p.first; int fa = p.second; q.pop(); for (int v : g[u]) { if (dist[v] < 0) { dist[v] = dist[u] + 1; q.emplace(v, u); } else if (v != fa) { ans = min(ans, dist[u] + dist[v] + 1); } } } return ans; }; int ans = inf; for (int i = 0; i < n; ++i) { ans = min(ans, bfs(i)); } return ans < inf ? ans : -1; } };
null
null
func findShortestCycle(n int, edges [][]int) int { g := make([][]int, n) for _, e := range edges { u, v := e[0], e[1] g[u] = append(g[u], v) g[v] = append(g[v], u) } const inf = 1 << 30 bfs := func(u int) int { dist := make([]int, n) for i := range dist { dist[i] = -1 } dist[u] = 0 q := [][2]int{{u, -1}} ans := inf for len(q) > 0 { p := q[0] u = p[0] fa := p[1] q = q[1:] for _, v := range g[u] { if dist[v] < 0 { dist[v] = dist[u] + 1 q = append(q, [2]int{v, u}) } else if v != fa { ans = min(ans, dist[u]+dist[v]+1) } } } return ans } ans := inf for i := 0; i < n; i++ { ans = min(ans, bfs(i)) } if ans < inf { return ans } return -1 }
class Solution { private List<Integer>[] g; private final int inf = 1 << 30; public int findShortestCycle(int n, int[][] edges) { g = new List[n]; Arrays.setAll(g, k -> new ArrayList<>()); for (var e : edges) { int u = e[0], v = e[1]; g[u].add(v); g[v].add(u); } int ans = inf; for (int i = 0; i < n; ++i) { ans = Math.min(ans, bfs(i)); } return ans < inf ? ans : -1; } private int bfs(int u) { int[] dist = new int[g.length]; Arrays.fill(dist, -1); dist[u] = 0; Deque<int[]> q = new ArrayDeque<>(); q.offer(new int[] {u, -1}); int ans = inf; while (!q.isEmpty()) { var p = q.poll(); u = p[0]; int fa = p[1]; for (int v : g[u]) { if (dist[v] < 0) { dist[v] = dist[u] + 1; q.offer(new int[] {v, u}); } else if (v != fa) { ans = Math.min(ans, dist[u] + dist[v] + 1); } } } return ans; } }
null
null
null
null
null
null
class Solution: def findShortestCycle(self, n: int, edges: List[List[int]]) -> int: def bfs(u: int) -> int: dist = [-1] * n dist[u] = 0 q = deque([(u, -1)]) ans = inf while q: u, fa = q.popleft() for v in g[u]: if dist[v] < 0: dist[v] = dist[u] + 1 q.append((v, u)) elif v != fa: ans = min(ans, dist[u] + dist[v] + 1) return ans g = defaultdict(list) for u, v in edges: g[u].append(v) g[v].append(u) ans = min(bfs(i) for i in range(n)) return ans if ans < inf else -1
null
null
null
null
null
function findShortestCycle(n: number, edges: number[][]): number { const g: number[][] = new Array(n).fill(0).map(() => []); for (const [u, v] of edges) { g[u].push(v); g[v].push(u); } const inf = 1 << 30; let ans = inf; const bfs = (u: number) => { const dist: number[] = new Array(n).fill(-1); dist[u] = 0; const q: number[][] = [[u, -1]]; let ans = inf; while (q.length) { const p = q.shift()!; u = p[0]; const fa = p[1]; for (const v of g[u]) { if (dist[v] < 0) { dist[v] = dist[u] + 1; q.push([v, u]); } else if (v !== fa) { ans = Math.min(ans, dist[u] + dist[v] + 1); } } } return ans; }; for (let i = 0; i < n; ++i) { ans = Math.min(ans, bfs(i)); } return ans < inf ? ans : -1; }
Minimum Number of Swaps to Make the Binary String Alternating
Given a binary string s , return the minimum number of character swaps to make it alternating , or -1 if it is impossible. The string is called alternating if no two adjacent characters are equal. For example, the strings "010" and "1010" are alternating, while the string "0100" is not. Any two characters may be swapped, even if they are  not adjacent .   Example 1: Input: s = "111000" Output: 1 Explanation: Swap positions 1 and 4: "1 1 10 0 0" -> "1 0 10 1 0" The string is now alternating. Example 2: Input: s = "010" Output: 0 Explanation: The string is already alternating, no swaps are needed. Example 3: Input: s = "1110" Output: -1   Constraints: 1 <= s.length <= 1000 s[i] is either '0' or '1' .
null
null
class Solution { public: int minSwaps(string s) { int n0 = ranges::count(s, '0'); int n1 = s.size() - n0; if (abs(n0 - n1) > 1) { return -1; } auto calc = [&](int c) -> int { int cnt = 0; for (int i = 0; i < s.size(); ++i) { int x = s[i] - '0'; if ((i & 1 ^ c) != x) { ++cnt; } } return cnt / 2; }; if (n0 == n1) { return min(calc(0), calc(1)); } return calc(n0 > n1 ? 0 : 1); } };
null
null
func minSwaps(s string) int { n0 := strings.Count(s, "0") n1 := len(s) - n0 if abs(n0-n1) > 1 { return -1 } calc := func(c int) int { cnt := 0 for i, ch := range s { x := int(ch - '0') if i&1^c != x { cnt++ } } return cnt / 2 } if n0 == n1 { return min(calc(0), calc(1)) } if n0 > n1 { return calc(0) } return calc(1) } func abs(x int) int { if x < 0 { return -x } return x }
class Solution { private char[] s; public int minSwaps(String s) { this.s = s.toCharArray(); int n1 = 0; for (char c : this.s) { n1 += (c - '0'); } int n0 = this.s.length - n1; if (Math.abs(n0 - n1) > 1) { return -1; } if (n0 == n1) { return Math.min(calc(0), calc(1)); } return calc(n0 > n1 ? 0 : 1); } private int calc(int c) { int cnt = 0; for (int i = 0; i < s.length; ++i) { int x = s[i] - '0'; if ((i & 1 ^ c) != x) { ++cnt; } } return cnt / 2; } }
/** * @param {string} s * @return {number} */ var minSwaps = function (s) { const n0 = (s.match(/0/g) || []).length; const n1 = s.length - n0; if (Math.abs(n0 - n1) > 1) { return -1; } const calc = c => { let cnt = 0; for (let i = 0; i < s.length; i++) { const x = +s[i]; if (((i & 1) ^ c) !== x) { cnt++; } } return Math.floor(cnt / 2); }; if (n0 === n1) { return Math.min(calc(0), calc(1)); } return calc(n0 > n1 ? 0 : 1); };
null
null
null
null
null
class Solution: def minSwaps(self, s: str) -> int: def calc(c: int) -> int: return sum((c ^ i & 1) != x for i, x in enumerate(map(int, s))) // 2 n0 = s.count("0") n1 = len(s) - n0 if abs(n0 - n1) > 1: return -1 if n0 == n1: return min(calc(0), calc(1)) return calc(0 if n0 > n1 else 1)
null
null
null
null
null
function minSwaps(s: string): number { const n0 = (s.match(/0/g) || []).length; const n1 = s.length - n0; if (Math.abs(n0 - n1) > 1) { return -1; } const calc = (c: number): number => { let cnt = 0; for (let i = 0; i < s.length; i++) { const x = +s[i]; if (((i & 1) ^ c) !== x) { cnt++; } } return Math.floor(cnt / 2); }; if (n0 === n1) { return Math.min(calc(0), calc(1)); } return calc(n0 > n1 ? 0 : 1); }
Minimum Number of Steps to Make Two Strings Anagram II
You are given two strings s and t . In one step, you can append any character to either s or t . Return the minimum number of steps to make s and t anagrams of each other. An anagram of a string is a string that contains the same characters with a different (or the same) ordering.   Example 1: Input: s = " lee tco de ", t = "co a t s " Output: 7 Explanation: - In 2 steps, we can append the letters in "as" onto s = "leetcode", forming s = "leetcode as ". - In 5 steps, we can append the letters in "leede" onto t = "coats", forming t = "coats leede ". "leetcodeas" and "coatsleede" are now anagrams of each other. We used a total of 2 + 5 = 7 steps. It can be shown that there is no way to make them anagrams of each other with less than 7 steps. Example 2: Input: s = "night", t = "thing" Output: 0 Explanation: The given strings are already anagrams of each other. Thus, we do not need any further steps.   Constraints: 1 <= s.length, t.length <= 2 * 10 5 s and t consist of lowercase English letters.
null
null
class Solution { public: int minSteps(string s, string t) { vector<int> cnt(26); for (char& c : s) ++cnt[c - 'a']; for (char& c : t) --cnt[c - 'a']; int ans = 0; for (int& v : cnt) ans += abs(v); return ans; } };
null
null
func minSteps(s string, t string) int { cnt := make([]int, 26) for _, c := range s { cnt[c-'a']++ } for _, c := range t { cnt[c-'a']-- } ans := 0 for _, v := range cnt { ans += abs(v) } return ans } func abs(x int) int { if x < 0 { return -x } return x }
class Solution { public int minSteps(String s, String t) { int[] cnt = new int[26]; for (char c : s.toCharArray()) { ++cnt[c - 'a']; } for (char c : t.toCharArray()) { --cnt[c - 'a']; } int ans = 0; for (int v : cnt) { ans += Math.abs(v); } return ans; } }
/** * @param {string} s * @param {string} t * @return {number} */ var minSteps = function (s, t) { let cnt = new Array(26).fill(0); for (const c of s) { ++cnt[c.charCodeAt() - 'a'.charCodeAt()]; } for (const c of t) { --cnt[c.charCodeAt() - 'a'.charCodeAt()]; } let ans = 0; for (const v of cnt) { ans += Math.abs(v); } return ans; };
null
null
null
null
null
class Solution: def minSteps(self, s: str, t: str) -> int: cnt = Counter(s) for c in t: cnt[c] -= 1 return sum(abs(v) for v in cnt.values())
null
null
null
null
null
function minSteps(s: string, t: string): number { let cnt = new Array(128).fill(0); for (const c of s) { ++cnt[c.charCodeAt(0)]; } for (const c of t) { --cnt[c.charCodeAt(0)]; } let ans = 0; for (const v of cnt) { ans += Math.abs(v); } return ans; }
Check if Strings Can be Made Equal With Operations II
You are given two strings s1 and s2 , both of length n , consisting of lowercase English letters. You can apply the following operation on any of the two strings any number of times: Choose any two indices i and j such that i < j and the difference j - i is even , then swap the two characters at those indices in the string. Return true if you can make the strings s1 and s2 equal, and  false otherwise .   Example 1: Input: s1 = "abcdba", s2 = "cabdab" Output: true Explanation: We can apply the following operations on s1: - Choose the indices i = 0, j = 2. The resulting string is s1 = "cbadba". - Choose the indices i = 2, j = 4. The resulting string is s1 = "cbbdaa". - Choose the indices i = 1, j = 5. The resulting string is s1 = "cabdab" = s2. Example 2: Input: s1 = "abe", s2 = "bea" Output: false Explanation: It is not possible to make the two strings equal.   Constraints: n == s1.length == s2.length 1 <= n <= 10 5 s1 and s2 consist only of lowercase English letters.
null
null
class Solution { public: bool checkStrings(string s1, string s2) { vector<vector<int>> cnt(2, vector<int>(26, 0)); for (int i = 0; i < s1.size(); ++i) { ++cnt[i & 1][s1[i] - 'a']; --cnt[i & 1][s2[i] - 'a']; } for (int i = 0; i < 26; ++i) { if (cnt[0][i] || cnt[1][i]) { return false; } } return true; } };
null
null
func checkStrings(s1 string, s2 string) bool { cnt := [2][26]int{} for i := 0; i < len(s1); i++ { cnt[i&1][s1[i]-'a']++ cnt[i&1][s2[i]-'a']-- } for i := 0; i < 26; i++ { if cnt[0][i] != 0 || cnt[1][i] != 0 { return false } } return true }
class Solution { public boolean checkStrings(String s1, String s2) { int[][] cnt = new int[2][26]; for (int i = 0; i < s1.length(); ++i) { ++cnt[i & 1][s1.charAt(i) - 'a']; --cnt[i & 1][s2.charAt(i) - 'a']; } for (int i = 0; i < 26; ++i) { if (cnt[0][i] != 0 || cnt[1][i] != 0) { return false; } } return true; } }
null
null
null
null
null
null
class Solution: def checkStrings(self, s1: str, s2: str) -> bool: return sorted(s1[::2]) == sorted(s2[::2]) and sorted(s1[1::2]) == sorted( s2[1::2] )
null
null
null
null
null
function checkStrings(s1: string, s2: string): boolean { const cnt: number[][] = Array.from({ length: 2 }, () => Array.from({ length: 26 }, () => 0)); for (let i = 0; i < s1.length; ++i) { ++cnt[i & 1][s1.charCodeAt(i) - 97]; --cnt[i & 1][s2.charCodeAt(i) - 97]; } for (let i = 0; i < 26; ++i) { if (cnt[0][i] || cnt[1][i]) { return false; } } return true; }
Count Positions on Street With Required Brightness 🔒
You are given an integer n . A perfectly straight street is represented by a number line ranging from 0 to n - 1 . You are given a 2D integer array lights representing the street lamp(s) on the street. Each lights[i] = [position i , range i ] indicates that there is a street lamp at position position i that lights up the area from [max(0, position i - range i ), min(n - 1, position i + range i )] ( inclusive ). The brightness of a position p is defined as the number of street lamps that light up the position p . You are given a 0-indexed integer array requirement of size n where requirement[i] is the minimum brightness of the i th position on the street. Return the number of positions i on the street between 0 and n - 1 that have a brightness of at least requirement[i] .   Example 1: Input: n = 5, lights = [[0,1],[2,1],[3,2]], requirement = [0,2,1,4,1] Output: 4 Explanation: - The first street lamp lights up the area from [max(0, 0 - 1), min(n - 1, 0 + 1)] = [0, 1] (inclusive). - The second street lamp lights up the area from [max(0, 2 - 1), min(n - 1, 2 + 1)] = [1, 3] (inclusive). - The third street lamp lights up the area from [max(0, 3 - 2), min(n - 1, 3 + 2)] = [1, 4] (inclusive). - Position 0 is covered by the first street lamp. It is covered by 1 street lamp which is greater than requirement[0]. - Position 1 is covered by the first, second, and third street lamps. It is covered by 3 street lamps which is greater than requirement[1]. - Position 2 is covered by the second and third street lamps. It is covered by 2 street lamps which is greater than requirement[2]. - Position 3 is covered by the second and third street lamps. It is covered by 2 street lamps which is less than requirement[3]. - Position 4 is covered by the third street lamp. It is covered by 1 street lamp which is equal to requirement[4]. Positions 0, 1, 2, and 4 meet the requirement so we return 4. Example 2: Input: n = 1, lights = [[0,1]], requirement = [2] Output: 0 Explanation: - The first street lamp lights up the area from [max(0, 0 - 1), min(n - 1, 0 + 1)] = [0, 0] (inclusive). - Position 0 is covered by the first street lamp. It is covered by 1 street lamp which is less than requirement[0]. - We return 0 because no position meets their brightness requirement.   Constraints: 1 <= n <= 10 5 1 <= lights.length <= 10 5 0 <= position i < n 0 <= range i <= 10 5 requirement.length == n 0 <= requirement[i] <= 10 5
null
null
class Solution { public: int meetRequirement(int n, vector<vector<int>>& lights, vector<int>& requirement) { vector<int> d(n + 1); for (const auto& e : lights) { int i = max(0, e[0] - e[1]), j = min(n - 1, e[0] + e[1]); ++d[i]; --d[j + 1]; } int s = 0, ans = 0; for (int i = 0; i < n; ++i) { s += d[i]; if (s >= requirement[i]) { ++ans; } } return ans; } };
null
null
func meetRequirement(n int, lights [][]int, requirement []int) (ans int) { d := make([]int, n+1) for _, e := range lights { i, j := max(0, e[0]-e[1]), min(n-1, e[0]+e[1]) d[i]++ d[j+1]-- } s := 0 for i, r := range requirement { s += d[i] if s >= r { ans++ } } return }
class Solution { public int meetRequirement(int n, int[][] lights, int[] requirement) { int[] d = new int[n + 1]; for (int[] e : lights) { int i = Math.max(0, e[0] - e[1]); int j = Math.min(n - 1, e[0] + e[1]); ++d[i]; --d[j + 1]; } int s = 0; int ans = 0; for (int i = 0; i < n; ++i) { s += d[i]; if (s >= requirement[i]) { ++ans; } } return ans; } }
null
null
null
null
null
null
class Solution: def meetRequirement( self, n: int, lights: List[List[int]], requirement: List[int] ) -> int: d = [0] * (n + 1) for p, r in lights: i, j = max(0, p - r), min(n - 1, p + r) d[i] += 1 d[j + 1] -= 1 return sum(s >= r for s, r in zip(accumulate(d), requirement))
null
null
null
null
null
function meetRequirement(n: number, lights: number[][], requirement: number[]): number { const d: number[] = Array(n + 1).fill(0); for (const [p, r] of lights) { const [i, j] = [Math.max(0, p - r), Math.min(n - 1, p + r)]; ++d[i]; --d[j + 1]; } let [ans, s] = [0, 0]; for (let i = 0; i < n; ++i) { s += d[i]; if (s >= requirement[i]) { ++ans; } } return ans; }
Number of Common Factors
Given two positive integers a and b , return the number of common factors of a and b . An integer x is a common factor of a and b if x divides both a and b .   Example 1: Input: a = 12, b = 6 Output: 4 Explanation: The common factors of 12 and 6 are 1, 2, 3, 6. Example 2: Input: a = 25, b = 30 Output: 2 Explanation: The common factors of 25 and 30 are 1, 5.   Constraints: 1 <= a, b <= 1000
null
null
class Solution { public: int commonFactors(int a, int b) { int g = gcd(a, b); int ans = 0; for (int x = 1; x * x <= g; ++x) { if (g % x == 0) { ans++; ans += x * x < g; } } return ans; } };
null
null
func commonFactors(a int, b int) (ans int) { g := gcd(a, b) for x := 1; x*x <= g; x++ { if g%x == 0 { ans++ if x*x < g { ans++ } } } return } func gcd(a int, b int) int { if b == 0 { return a } return gcd(b, a%b) }
class Solution { public int commonFactors(int a, int b) { int g = gcd(a, b); int ans = 0; for (int x = 1; x * x <= g; ++x) { if (g % x == 0) { ++ans; if (x * x < g) { ++ans; } } } return ans; } private int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); } }
null
null
null
null
null
null
class Solution: def commonFactors(self, a: int, b: int) -> int: g = gcd(a, b) ans, x = 0, 1 while x * x <= g: if g % x == 0: ans += 1 ans += x * x < g x += 1 return ans
null
null
null
null
null
function commonFactors(a: number, b: number): number { const g = gcd(a, b); let ans = 0; for (let x = 1; x * x <= g; ++x) { if (g % x === 0) { ++ans; if (x * x < g) { ++ans; } } } return ans; } function gcd(a: number, b: number): number { return b === 0 ? a : gcd(b, a % b); }
Find the Derangement of An Array 🔒
In combinatorial mathematics, a derangement is a permutation of the elements of a set, such that no element appears in its original position. You are given an integer n . There is originally an array consisting of n integers from 1 to n in ascending order, return the number of derangements it can generate . Since the answer may be huge, return it modulo 10 9 + 7 .   Example 1: Input: n = 3 Output: 2 Explanation: The original array is [1,2,3]. The two derangements are [2,3,1] and [3,1,2]. Example 2: Input: n = 2 Output: 1   Constraints: 1 <= n <= 10 6
null
null
class Solution { public: int findDerangement(int n) { long long a = 1, b = 0; const int mod = 1e9 + 7; for (int i = 2; i <= n; ++i) { long long c = (i - 1) * (a + b) % mod; a = b; b = c; } return b; } };
null
null
func findDerangement(n int) int { a, b := 1, 0 const mod = 1e9 + 7 for i := 2; i <= n; i++ { a, b = b, (i-1)*(a+b)%mod } return b }
class Solution { public int findDerangement(int n) { final int mod = (int) 1e9 + 7; long a = 1, b = 0; for (int i = 2; i <= n; ++i) { long c = (i - 1) * (a + b) % mod; a = b; b = c; } return (int) b; } }
null
null
null
null
null
null
class Solution: def findDerangement(self, n: int) -> int: mod = 10**9 + 7 a, b = 1, 0 for i in range(2, n + 1): a, b = b, ((i - 1) * (a + b)) % mod return b
null
null
null
null
null
null
Check if Point Is Reachable
There exists an infinitely large grid. You are currently at point (1, 1) , and you need to reach the point (targetX, targetY) using a finite number of steps. In one step , you can move from point (x, y) to any one of the following points: (x, y - x) (x - y, y) (2 * x, y) (x, 2 * y) Given two integers targetX and targetY representing the X-coordinate and Y-coordinate of your final position, return true if you can reach the point from (1, 1) using some number of steps, and false otherwise .   Example 1: Input: targetX = 6, targetY = 9 Output: false Explanation: It is impossible to reach (6,9) from (1,1) using any sequence of moves, so false is returned. Example 2: Input: targetX = 4, targetY = 7 Output: true Explanation: You can follow the path (1,1) -> (1,2) -> (1,4) -> (1,8) -> (1,7) -> (2,7) -> (4,7).   Constraints: 1 <= targetX, targetY <= 10 9
null
null
class Solution { public: bool isReachable(int targetX, int targetY) { int x = gcd(targetX, targetY); return (x & (x - 1)) == 0; } };
null
null
func isReachable(targetX int, targetY int) bool { x := gcd(targetX, targetY) return x&(x-1) == 0 } func gcd(a, b int) int { if b == 0 { return a } return gcd(b, a%b) }
class Solution { public boolean isReachable(int targetX, int targetY) { int x = gcd(targetX, targetY); return (x & (x - 1)) == 0; } private int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); } }
null
null
null
null
null
null
class Solution: def isReachable(self, targetX: int, targetY: int) -> bool: x = gcd(targetX, targetY) return x & (x - 1) == 0
null
null
null
null
null
function isReachable(targetX: number, targetY: number): boolean { const x = gcd(targetX, targetY); return (x & (x - 1)) === 0; } function gcd(a: number, b: number): number { return b == 0 ? a : gcd(b, a % b); }
Island Perimeter
You are given row x col grid representing a map where grid[i][j] = 1 represents land and grid[i][j] = 0 represents water. Grid cells are connected horizontally/vertically (not diagonally). The grid is completely surrounded by water, and there is exactly one island (i.e., one or more connected land cells). The island doesn't have "lakes", meaning the water inside isn't connected to the water around the island. One cell is a square with side length 1. The grid is rectangular, width and height don't exceed 100. Determine the perimeter of the island.   Example 1: Input: grid = [[0,1,0,0],[1,1,1,0],[0,1,0,0],[1,1,0,0]] Output: 16 Explanation: The perimeter is the 16 yellow stripes in the image above. Example 2: Input: grid = [[1]] Output: 4 Example 3: Input: grid = [[1,0]] Output: 4   Constraints: row == grid.length col == grid[i].length 1 <= row, col <= 100 grid[i][j] is 0 or 1 . There is exactly one island in grid .
null
null
class Solution { public: int islandPerimeter(vector<vector<int>>& grid) { int m = grid.size(), n = grid[0].size(); int ans = 0; for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { if (grid[i][j] == 1) { ans += 4; if (i < m - 1 && grid[i + 1][j] == 1) ans -= 2; if (j < n - 1 && grid[i][j + 1] == 1) ans -= 2; } } } return ans; } };
null
null
func islandPerimeter(grid [][]int) int { m, n := len(grid), len(grid[0]) ans := 0 for i := 0; i < m; i++ { for j := 0; j < n; j++ { if grid[i][j] == 1 { ans += 4 if i < m-1 && grid[i+1][j] == 1 { ans -= 2 } if j < n-1 && grid[i][j+1] == 1 { ans -= 2 } } } } return ans }
class Solution { public int islandPerimeter(int[][] grid) { int ans = 0; int m = grid.length; int n = grid[0].length; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { if (grid[i][j] == 1) { ans += 4; if (i < m - 1 && grid[i + 1][j] == 1) { ans -= 2; } if (j < n - 1 && grid[i][j + 1] == 1) { ans -= 2; } } } } return ans; } }
null
null
null
null
null
null
class Solution: def islandPerimeter(self, grid: List[List[int]]) -> int: m, n = len(grid), len(grid[0]) ans = 0 for i in range(m): for j in range(n): if grid[i][j] == 1: ans += 4 if i < m - 1 and grid[i + 1][j] == 1: ans -= 2 if j < n - 1 and grid[i][j + 1] == 1: ans -= 2 return ans
null
null
null
null
null
function islandPerimeter(grid: number[][]): number { let m = grid.length, n = grid[0].length; let ans = 0; for (let i = 0; i < m; ++i) { for (let j = 0; j < n; ++j) { let top = 0, left = 0; if (i > 0) { top = grid[i - 1][j]; } if (j > 0) { left = grid[i][j - 1]; } let cur = grid[i][j]; if (cur != top) ++ans; if (cur != left) ++ans; } } // 最后一行, 最后一列 for (let i = 0; i < m; ++i) { if (grid[i][n - 1] == 1) ++ans; } for (let j = 0; j < n; ++j) { if (grid[m - 1][j] == 1) ++ans; } return ans; }
Handshakes That Don't Cross 🔒
You are given an even number of people numPeople that stand around a circle and each person shakes hands with someone else so that there are numPeople / 2 handshakes total. Return the number of ways these handshakes could occur such that none of the handshakes cross . Since the answer could be very large, return it modulo 10 9 + 7 .   Example 1: Input: numPeople = 4 Output: 2 Explanation: There are two ways to do it, the first way is [(1,2),(3,4)] and the second one is [(2,3),(4,1)]. Example 2: Input: numPeople = 6 Output: 5   Constraints: 2 <= numPeople <= 1000 numPeople is even.
null
null
class Solution { public: int numberOfWays(int numPeople) { const int mod = 1e9 + 7; int f[numPeople + 1]; memset(f, 0, sizeof(f)); function<int(int)> dfs = [&](int i) { if (i < 2) { return 1; } if (f[i]) { return f[i]; } for (int l = 0; l < i; l += 2) { int r = i - l - 2; f[i] = (f[i] + 1LL * dfs(l) * dfs(r) % mod) % mod; } return f[i]; }; return dfs(numPeople); } };
null
null
func numberOfWays(numPeople int) int { const mod int = 1e9 + 7 f := make([]int, numPeople+1) var dfs func(int) int dfs = func(i int) int { if i < 2 { return 1 } if f[i] != 0 { return f[i] } for l := 0; l < i; l += 2 { r := i - l - 2 f[i] = (f[i] + dfs(l)*dfs(r)) % mod } return f[i] } return dfs(numPeople) }
class Solution { private int[] f; private final int mod = (int) 1e9 + 7; public int numberOfWays(int numPeople) { f = new int[numPeople + 1]; return dfs(numPeople); } private int dfs(int i) { if (i < 2) { return 1; } if (f[i] != 0) { return f[i]; } for (int l = 0; l < i; l += 2) { int r = i - l - 2; f[i] = (int) ((f[i] + (1L * dfs(l) * dfs(r) % mod)) % mod); } return f[i]; } }
null
null
null
null
null
null
class Solution: def numberOfWays(self, numPeople: int) -> int: @cache def dfs(i: int) -> int: if i < 2: return 1 ans = 0 for l in range(0, i, 2): r = i - l - 2 ans += dfs(l) * dfs(r) ans %= mod return ans mod = 10**9 + 7 return dfs(numPeople)
null
null
null
null
null
function numberOfWays(numPeople: number): number { const mod = 10 ** 9 + 7; const f: number[] = Array(numPeople + 1).fill(0); const dfs = (i: number): number => { if (i < 2) { return 1; } if (f[i] !== 0) { return f[i]; } for (let l = 0; l < i; l += 2) { const r = i - l - 2; f[i] += Number((BigInt(dfs(l)) * BigInt(dfs(r))) % BigInt(mod)); f[i] %= mod; } return f[i]; }; return dfs(numPeople); }
Smallest Missing Integer Greater Than Sequential Prefix Sum
You are given a 0-indexed array of integers nums . A prefix nums[0..i] is sequential if, for all 1 <= j <= i , nums[j] = nums[j - 1] + 1 . In particular, the prefix consisting only of nums[0] is sequential . Return the smallest integer x missing from nums such that x is greater than or equal to the sum of the longest sequential prefix.   Example 1: Input: nums = [1,2,3,2,5] Output: 6 Explanation: The longest sequential prefix of nums is [1,2,3] with a sum of 6. 6 is not in the array, therefore 6 is the smallest missing integer greater than or equal to the sum of the longest sequential prefix. Example 2: Input: nums = [3,4,5,1,12,14,13] Output: 15 Explanation: The longest sequential prefix of nums is [3,4,5] with a sum of 12. 12, 13, and 14 belong to the array while 15 does not. Therefore 15 is the smallest missing integer greater than or equal to the sum of the longest sequential prefix.   Constraints: 1 <= nums.length <= 50 1 <= nums[i] <= 50
null
null
class Solution { public: int missingInteger(vector<int>& nums) { int s = nums[0]; for (int j = 1; j < nums.size() && nums[j] == nums[j - 1] + 1; ++j) { s += nums[j]; } bitset<51> vis; for (int x : nums) { vis[x] = 1; } for (int x = s;; ++x) { if (x >= 51 || !vis[x]) { return x; } } } };
null
null
func missingInteger(nums []int) int { s := nums[0] for j := 1; j < len(nums) && nums[j] == nums[j-1]+1; j++ { s += nums[j] } vis := [51]bool{} for _, x := range nums { vis[x] = true } for x := s; ; x++ { if x >= len(vis) || !vis[x] { return x } } }
class Solution { public int missingInteger(int[] nums) { int s = nums[0]; for (int j = 1; j < nums.length && nums[j] == nums[j - 1] + 1; ++j) { s += nums[j]; } boolean[] vis = new boolean[51]; for (int x : nums) { vis[x] = true; } for (int x = s;; ++x) { if (x >= vis.length || !vis[x]) { return x; } } } }
null
null
null
null
null
null
class Solution: def missingInteger(self, nums: List[int]) -> int: s, j = nums[0], 1 while j < len(nums) and nums[j] == nums[j - 1] + 1: s += nums[j] j += 1 vis = set(nums) for x in count(s): if x not in vis: return x
null
null
null
null
null
function missingInteger(nums: number[]): number { let s = nums[0]; for (let j = 1; j < nums.length && nums[j] === nums[j - 1] + 1; ++j) { s += nums[j]; } const vis: Set<number> = new Set(nums); for (let x = s; ; ++x) { if (!vis.has(x)) { return x; } } }
Check if All Characters Have Equal Number of Occurrences
Given a string s , return true if s is a good string, or false otherwise . A string s is good if all the characters that appear in s have the same number of occurrences (i.e., the same frequency).   Example 1: Input: s = "abacbc" Output: true Explanation: The characters that appear in s are 'a', 'b', and 'c'. All characters occur 2 times in s. Example 2: Input: s = "aaabb" Output: false Explanation: The characters that appear in s are 'a' and 'b'. 'a' occurs 3 times while 'b' occurs 2 times, which is not the same number of times.   Constraints: 1 <= s.length <= 1000 s consists of lowercase English letters.
null
null
class Solution { public: bool areOccurrencesEqual(string s) { vector<int> cnt(26); for (char c : s) { ++cnt[c - 'a']; } int v = 0; for (int x : cnt) { if (x == 0) { continue; } if (v && v != x) { return false; } v = x; } return true; } };
null
null
func areOccurrencesEqual(s string) bool { cnt := [26]int{} for _, c := range s { cnt[c-'a']++ } v := 0 for _, x := range cnt { if x == 0 { continue } if v > 0 && v != x { return false } v = x } return true }
class Solution { public boolean areOccurrencesEqual(String s) { int[] cnt = new int[26]; for (char c : s.toCharArray()) { ++cnt[c - 'a']; } int v = 0; for (int x : cnt) { if (x == 0) { continue; } if (v > 0 && v != x) { return false; } v = x; } return true; } }
null
null
null
null
class Solution { /** * @param String $s * @return Boolean */ function areOccurrencesEqual($s) { $cnt = array_fill(0, 26, 0); for ($i = 0; $i < strlen($s); $i++) { $cnt[ord($s[$i]) - ord('a')]++; } $v = 0; foreach ($cnt as $x) { if ($x == 0) { continue; } if ($v && $v != $x) { return false; } $v = $x; } return true; } }
null
class Solution: def areOccurrencesEqual(self, s: str) -> bool: return len(set(Counter(s).values())) == 1
null
null
null
null
null
function areOccurrencesEqual(s: string): boolean { const cnt: number[] = Array(26).fill(0); for (const c of s) { ++cnt[c.charCodeAt(0) - 'a'.charCodeAt(0)]; } const v = cnt.find(v => v); return cnt.every(x => !x || v === x); }
Recover the Original Array
Alice had a 0-indexed array arr consisting of n positive integers. She chose an arbitrary positive integer k and created two new 0-indexed integer arrays lower and higher in the following manner: lower[i] = arr[i] - k , for every index i where 0 <= i < n higher[i] = arr[i] + k , for every index i where 0 <= i < n Unfortunately, Alice lost all three arrays. However, she remembers the integers that were present in the arrays lower and higher , but not the array each integer belonged to. Help Alice and recover the original array. Given an array nums consisting of 2n integers, where exactly n of the integers were present in lower and the remaining in higher , return the original array arr . In case the answer is not unique, return any valid array . Note: The test cases are generated such that there exists at least one valid array arr .   Example 1: Input: nums = [2,10,6,4,8,12] Output: [3,7,11] Explanation: If arr = [3,7,11] and k = 1, we get lower = [2,6,10] and higher = [4,8,12]. Combining lower and higher gives us [2,6,10,4,8,12], which is a permutation of nums. Another valid possibility is that arr = [5,7,9] and k = 3. In that case, lower = [2,4,6] and higher = [8,10,12]. Example 2: Input: nums = [1,1,3,3] Output: [2,2] Explanation: If arr = [2,2] and k = 1, we get lower = [1,1] and higher = [3,3]. Combining lower and higher gives us [1,1,3,3], which is equal to nums. Note that arr cannot be [1,3] because in that case, the only possible way to obtain [1,1,3,3] is with k = 0. This is invalid since k must be positive. Example 3: Input: nums = [5,435] Output: [220] Explanation: The only possible combination is arr = [220] and k = 215. Using them, we get lower = [5] and higher = [435].   Constraints: 2 * n == nums.length 1 <= n <= 1000 1 <= nums[i] <= 10 9 The test cases are generated such that there exists at least one valid array arr .
null
null
class Solution { public: vector<int> recoverArray(vector<int>& nums) { sort(nums.begin(), nums.end()); for (int i = 1, n = nums.size(); i < n; ++i) { int d = nums[i] - nums[0]; if (d == 0 || d % 2 == 1) continue; vector<bool> vis(n); vis[i] = true; vector<int> ans; ans.push_back((nums[0] + nums[i]) >> 1); for (int l = 1, r = i + 1; r < n; ++l, ++r) { while (l < n && vis[l]) ++l; while (r < n && nums[r] - nums[l] < d) ++r; if (r == n || nums[r] - nums[l] > d) break; vis[r] = true; ans.push_back((nums[l] + nums[r]) >> 1); } if (ans.size() == (n >> 1)) return ans; } return {}; } };
null
null
func recoverArray(nums []int) []int { sort.Ints(nums) for i, n := 1, len(nums); i < n; i++ { d := nums[i] - nums[0] if d == 0 || d%2 == 1 { continue } vis := make([]bool, n) vis[i] = true ans := []int{(nums[0] + nums[i]) >> 1} for l, r := 1, i+1; r < n; l, r = l+1, r+1 { for l < n && vis[l] { l++ } for r < n && nums[r]-nums[l] < d { r++ } if r == n || nums[r]-nums[l] > d { break } vis[r] = true ans = append(ans, (nums[l]+nums[r])>>1) } if len(ans) == (n >> 1) { return ans } } return []int{} }
class Solution { public int[] recoverArray(int[] nums) { Arrays.sort(nums); for (int i = 1, n = nums.length; i < n; ++i) { int d = nums[i] - nums[0]; if (d == 0 || d % 2 == 1) { continue; } boolean[] vis = new boolean[n]; vis[i] = true; List<Integer> t = new ArrayList<>(); t.add((nums[0] + nums[i]) >> 1); for (int l = 1, r = i + 1; r < n; ++l, ++r) { while (l < n && vis[l]) { ++l; } while (r < n && nums[r] - nums[l] < d) { ++r; } if (r == n || nums[r] - nums[l] > d) { break; } vis[r] = true; t.add((nums[l] + nums[r]) >> 1); } if (t.size() == (n >> 1)) { int[] ans = new int[t.size()]; int idx = 0; for (int e : t) { ans[idx++] = e; } return ans; } } return null; } }
null
null
null
null
null
null
class Solution: def recoverArray(self, nums: List[int]) -> List[int]: nums.sort() n = len(nums) for i in range(1, n): d = nums[i] - nums[0] if d == 0 or d % 2 == 1: continue vis = [False] * n vis[i] = True ans = [(nums[0] + nums[i]) >> 1] l, r = 1, i + 1 while r < n: while l < n and vis[l]: l += 1 while r < n and nums[r] - nums[l] < d: r += 1 if r == n or nums[r] - nums[l] > d: break vis[r] = True ans.append((nums[l] + nums[r]) >> 1) l, r = l + 1, r + 1 if len(ans) == (n >> 1): return ans return []
null
null
null
null
null
null
Employees With Missing Information
Table: Employees +-------------+---------+ | Column Name | Type | +-------------+---------+ | employee_id | int | | name | varchar | +-------------+---------+ employee_id is the column with unique values for this table. Each row of this table indicates the name of the employee whose ID is employee_id.   Table: Salaries +-------------+---------+ | Column Name | Type | +-------------+---------+ | employee_id | int | | salary | int | +-------------+---------+ employee_id is the column with unique values for this table. Each row of this table indicates the salary of the employee whose ID is employee_id.   Write a solution to report the IDs of all the employees with missing information . The information of an employee is missing if: The employee's name is missing, or The employee's salary is missing. Return the result table ordered by employee_id in ascending order . The result format is in the following example.   Example 1: Input: Employees table: +-------------+----------+ | employee_id | name | +-------------+----------+ | 2 | Crew | | 4 | Haven | | 5 | Kristian | +-------------+----------+ Salaries table: +-------------+--------+ | employee_id | salary | +-------------+--------+ | 5 | 76071 | | 1 | 22517 | | 4 | 63539 | +-------------+--------+ Output: +-------------+ | employee_id | +-------------+ | 1 | | 2 | +-------------+ Explanation: Employees 1, 2, 4, and 5 are working at this company. The name of employee 1 is missing. The salary of employee 2 is missing.
null
null
null
null
null
null
null
null
null
# Write your MySQL query statement below SELECT employee_id FROM Employees WHERE employee_id NOT IN (SELECT employee_id FROM Salaries) UNION SELECT employee_id FROM Salaries WHERE employee_id NOT IN (SELECT employee_id FROM Employees) ORDER BY 1;
null
null
null
null
null
null
null
null
null
null
Shift 2D Grid
Given a 2D grid of size m x n  and an integer k . You need to shift the grid   k times. In one shift operation: Element at grid[i][j] moves to grid[i][j + 1] . Element at grid[i][n - 1] moves to grid[i + 1][0] . Element at grid[m - 1][n - 1] moves to grid[0][0] . Return the 2D grid after applying shift operation k times.   Example 1: Input: grid = [[1,2,3],[4,5,6],[7,8,9]], k = 1 Output: [[9,1,2],[3,4,5],[6,7,8]] Example 2: Input: grid = [[3,8,1,9],[19,7,2,5],[4,6,11,10],[12,0,21,13]], k = 4 Output: [[12,0,21,13],[3,8,1,9],[19,7,2,5],[4,6,11,10]] Example 3: Input: grid = [[1,2,3],[4,5,6],[7,8,9]], k = 9 Output: [[1,2,3],[4,5,6],[7,8,9]]   Constraints: m == grid.length n == grid[i].length 1 <= m <= 50 1 <= n <= 50 -1000 <= grid[i][j] <= 1000 0 <= k <= 100
null
null
class Solution { public: vector<vector<int>> shiftGrid(vector<vector<int>>& grid, int k) { int m = grid.size(), n = grid[0].size(); vector<vector<int>> ans(m, vector<int>(n)); for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { int idx = (i * n + j + k) % (m * n); int x = idx / n, y = idx % n; ans[x][y] = grid[i][j]; } } return ans; } };
null
null
func shiftGrid(grid [][]int, k int) [][]int { m, n := len(grid), len(grid[0]) ans := make([][]int, m) for i := range ans { ans[i] = make([]int, n) } for i := 0; i < m; i++ { for j := 0; j < n; j++ { idx := (i*n + j + k) % (m * n) x, y := idx/n, idx%n ans[x][y] = grid[i][j] } } return ans }
class Solution { public List<List<Integer>> shiftGrid(int[][] grid, int k) { int m = grid.length, n = grid[0].length; List<List<Integer>> ans = new ArrayList<>(); for (int i = 0; i < m; ++i) { List<Integer> row = new ArrayList<>(); for (int j = 0; j < n; ++j) { row.add(0); } ans.add(row); } for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { int idx = (i * n + j + k) % (m * n); int x = idx / n, y = idx % n; ans.get(x).set(y, grid[i][j]); } } return ans; } }
null
null
null
null
null
null
class Solution: def shiftGrid(self, grid: List[List[int]], k: int) -> List[List[int]]: m, n = len(grid), len(grid[0]) ans = [[0] * n for _ in range(m)] for i, row in enumerate(grid): for j, v in enumerate(row): x, y = divmod((i * n + j + k) % (m * n), n) ans[x][y] = v return ans
null
null
null
null
null
function shiftGrid(grid: number[][], k: number): number[][] { const [m, n] = [grid.length, grid[0].length]; const ans: number[][] = Array.from({ length: m }, () => Array.from({ length: n }, () => 0)); for (let i = 0; i < m; ++i) { for (let j = 0; j < n; ++j) { const idx = (i * n + j + k) % (m * n); const [x, y] = [Math.floor(idx / n), idx % n]; ans[x][y] = grid[i][j]; } } return ans; }
Combination Sum II
Given a collection of candidate numbers ( candidates ) and a target number ( target ), find all unique combinations in candidates  where the candidate numbers sum to target . Each number in candidates  may only be used once in the combination. Note:  The solution set must not contain duplicate combinations.   Example 1: Input: candidates = [10,1,2,7,6,1,5], target = 8 Output: [ [1,1,6], [1,2,5], [1,7], [2,6] ] Example 2: Input: candidates = [2,5,2,1,2], target = 5 Output: [ [1,2,2], [5] ]   Constraints: 1 <= candidates.length <= 100 1 <= candidates[i] <= 50 1 <= target <= 30
null
public class Solution { private List<IList<int>> ans = new List<IList<int>>(); private List<int> t = new List<int>(); private int[] candidates; public IList<IList<int>> CombinationSum2(int[] candidates, int target) { Array.Sort(candidates); this.candidates = candidates; dfs(0, target); return ans; } private void dfs(int i, int s) { if (s == 0) { ans.Add(new List<int>(t)); return; } if (i >= candidates.Length || s < candidates[i]) { return; } int x = candidates[i]; t.Add(x); dfs(i + 1, s - x); t.RemoveAt(t.Count - 1); while (i < candidates.Length && candidates[i] == x) { ++i; } dfs(i, s); } }
class Solution { public: vector<vector<int>> combinationSum2(vector<int>& candidates, int target) { sort(candidates.begin(), candidates.end()); vector<vector<int>> ans; vector<int> t; function<void(int, int)> dfs = [&](int i, int s) { if (s == 0) { ans.emplace_back(t); return; } if (i >= candidates.size() || s < candidates[i]) { return; } int x = candidates[i]; t.emplace_back(x); dfs(i + 1, s - x); t.pop_back(); while (i < candidates.size() && candidates[i] == x) { ++i; } dfs(i, s); }; dfs(0, target); return ans; } };
null
null
func combinationSum2(candidates []int, target int) (ans [][]int) { sort.Ints(candidates) t := []int{} var dfs func(i, s int) dfs = func(i, s int) { if s == 0 { ans = append(ans, slices.Clone(t)) return } if i >= len(candidates) || s < candidates[i] { return } for j := i; j < len(candidates); j++ { if j > i && candidates[j] == candidates[j-1] { continue } t = append(t, candidates[j]) dfs(j+1, s-candidates[j]) t = t[:len(t)-1] } } dfs(0, target) return }
class Solution { private List<List<Integer>> ans = new ArrayList<>(); private List<Integer> t = new ArrayList<>(); private int[] candidates; public List<List<Integer>> combinationSum2(int[] candidates, int target) { Arrays.sort(candidates); this.candidates = candidates; dfs(0, target); return ans; } private void dfs(int i, int s) { if (s == 0) { ans.add(new ArrayList<>(t)); return; } if (i >= candidates.length || s < candidates[i]) { return; } int x = candidates[i]; t.add(x); dfs(i + 1, s - x); t.remove(t.size() - 1); while (i < candidates.length && candidates[i] == x) { ++i; } dfs(i, s); } }
/** * @param {number[]} candidates * @param {number} target * @return {number[][]} */ var combinationSum2 = function (candidates, target) { candidates.sort((a, b) => a - b); const ans = []; const t = []; const dfs = (i, s) => { if (s === 0) { ans.push(t.slice()); return; } if (i >= candidates.length || s < candidates[i]) { return; } const x = candidates[i]; t.push(x); dfs(i + 1, s - x); t.pop(); while (i < candidates.length && candidates[i] === x) { ++i; } dfs(i, s); }; dfs(0, target); return ans; };
null
null
null
class Solution { /** * @param integer[] $candidates * @param integer $target * @return integer[][] */ function combinationSum2($candidates, $target) { $result = []; $currentCombination = []; $startIndex = 0; sort($candidates); $this->findCombinations($candidates, $target, $startIndex, $currentCombination, $result); return $result; } function findCombinations($candidates, $target, $startIndex, $currentCombination, &$result) { if ($target === 0) { $result[] = $currentCombination; return; } for ($i = $startIndex; $i < count($candidates); $i++) { $num = $candidates[$i]; if ($num > $target) { break; } if ($i > $startIndex && $candidates[$i] === $candidates[$i - 1]) { continue; } $currentCombination[] = $num; $this->findCombinations( $candidates, $target - $num, $i + 1, $currentCombination, $result, ); array_pop($currentCombination); } } }
null
class Solution: def combinationSum2(self, candidates: List[int], target: int) -> List[List[int]]: def dfs(i: int, s: int): if s == 0: ans.append(t[:]) return if i >= len(candidates) or s < candidates[i]: return x = candidates[i] t.append(x) dfs(i + 1, s - x) t.pop() while i < len(candidates) and candidates[i] == x: i += 1 dfs(i, s) candidates.sort() ans = [] t = [] dfs(0, target) return ans
null
impl Solution { fn dfs(mut i: usize, s: i32, candidates: &Vec<i32>, t: &mut Vec<i32>, ans: &mut Vec<Vec<i32>>) { if s == 0 { ans.push(t.clone()); return; } if i >= candidates.len() || s < candidates[i] { return; } let x = candidates[i]; t.push(x); Self::dfs(i + 1, s - x, candidates, t, ans); t.pop(); while i < candidates.len() && candidates[i] == x { i += 1; } Self::dfs(i, s, candidates, t, ans); } pub fn combination_sum2(mut candidates: Vec<i32>, target: i32) -> Vec<Vec<i32>> { candidates.sort(); let mut ans = Vec::new(); Self::dfs(0, target, &candidates, &mut vec![], &mut ans); ans } }
null
null
null
function combinationSum2(candidates: number[], target: number): number[][] { candidates.sort((a, b) => a - b); const ans: number[][] = []; const t: number[] = []; const dfs = (i: number, s: number) => { if (s === 0) { ans.push(t.slice()); return; } if (i >= candidates.length || s < candidates[i]) { return; } const x = candidates[i]; t.push(x); dfs(i + 1, s - x); t.pop(); while (i < candidates.length && candidates[i] === x) { ++i; } dfs(i, s); }; dfs(0, target); return ans; }
Find Top Scoring Students 🔒
Table: students +-------------+----------+ | Column Name | Type | +-------------+----------+ | student_id | int | | name | varchar | | major | varchar | +-------------+----------+ student_id is the primary key (combination of columns with unique values) for this table. Each row of this table contains the student ID, student name, and their major. Table: courses +-------------+----------+ | Column Name | Type | +-------------+----------+ | course_id | int | | name | varchar | | credits | int | | major | varchar | +-------------+----------+ course_id is the primary key (combination of columns with unique values) for this table. Each row of this table contains the course ID, course name, the number of credits for the course, and the major it belongs to. Table: enrollments +-------------+----------+ | Column Name | Type | +-------------+----------+ | student_id | int | | course_id | int | | semester | varchar | | grade | varchar | +-------------+----------+ (student_id, course_id, semester) is the primary key (combination of columns with unique values) for this table. Each row of this table contains the student ID, course ID, semester, and grade received. Write a solution to find the students who have taken all courses offered in their major and have achieved a grade of A in all these courses . Return the result table ordered by student_id in ascending order . The result format is in the following example.   Example: Input: students table: +------------+------------------+------------------+ | student_id | name | major | +------------+------------------+------------------+ | 1 | Alice | Computer Science | | 2 | Bob | Computer Science | | 3 | Charlie | Mathematics | | 4 | David | Mathematics | +------------+------------------+------------------+ courses table: +-----------+-----------------+---------+------------------+ | course_id | name | credits | major | +-----------+-----------------+---------+------------------+ | 101 | Algorithms | 3 | Computer Science | | 102 | Data Structures | 3 | Computer Science | | 103 | Calculus | 4 | Mathematics | | 104 | Linear Algebra | 4 | Mathematics | +-----------+-----------------+---------+------------------+ enrollments table: +------------+-----------+----------+-------+ | student_id | course_id | semester | grade | +------------+-----------+----------+-------+ | 1 | 101 | Fall 2023| A | | 1 | 102 | Fall 2023| A | | 2 | 101 | Fall 2023| B | | 2 | 102 | Fall 2023| A | | 3 | 103 | Fall 2023| A | | 3 | 104 | Fall 2023| A | | 4 | 103 | Fall 2023| A | | 4 | 104 | Fall 2023| B | +------------+-----------+----------+-------+ Output: +------------+ | student_id | +------------+ | 1 | | 3 | +------------+ Explanation: Alice (student_id 1) is a Computer Science major and has taken both "Algorithms" and "Data Structures", receiving an 'A' in both. Bob (student_id 2) is a Computer Science major but did not receive an 'A' in all required courses. Charlie (student_id 3) is a Mathematics major and has taken both "Calculus" and "Linear Algebra", receiving an 'A' in both. David (student_id 4) is a Mathematics major but did not receive an 'A' in all required courses. Note: Output table is ordered by student_id in ascending order.
null
null
null
null
null
null
null
null
null
# Write your MySQL query statement below SELECT student_id FROM students JOIN courses USING (major) LEFT JOIN enrollments USING (student_id, course_id) GROUP BY 1 HAVING SUM(grade = 'A') = COUNT(major) ORDER BY 1;
null
null
null
null
null
null
null
null
null
null
Successful Pairs of Spells and Potions
You are given two positive integer arrays spells and potions , of length n and m respectively, where spells[i] represents the strength of the i th spell and potions[j] represents the strength of the j th potion. You are also given an integer success . A spell and potion pair is considered successful if the product of their strengths is at least success . Return an integer array pairs of length n where pairs[i] is the number of potions that will form a successful pair with the i th spell.   Example 1: Input: spells = [5,1,3], potions = [1,2,3,4,5], success = 7 Output: [4,0,3] Explanation: - 0 th spell: 5 * [1,2,3,4,5] = [5, 10 , 15 , 20 , 25 ]. 4 pairs are successful. - 1 st spell: 1 * [1,2,3,4,5] = [1,2,3,4,5]. 0 pairs are successful. - 2 nd spell: 3 * [1,2,3,4,5] = [3,6, 9 , 12 , 15 ]. 3 pairs are successful. Thus, [4,0,3] is returned. Example 2: Input: spells = [3,1,2], potions = [8,5,8], success = 16 Output: [2,0,2] Explanation: - 0 th spell: 3 * [8,5,8] = [ 24 ,15, 24 ]. 2 pairs are successful. - 1 st spell: 1 * [8,5,8] = [8,5,8]. 0 pairs are successful. - 2 nd spell: 2 * [8,5,8] = [ 16 ,10, 16 ]. 2 pairs are successful. Thus, [2,0,2] is returned.   Constraints: n == spells.length m == potions.length 1 <= n, m <= 10 5 1 <= spells[i], potions[i] <= 10 5 1 <= success <= 10 10
null
null
class Solution { public: vector<int> successfulPairs(vector<int>& spells, vector<int>& potions, long long success) { sort(potions.begin(), potions.end()); vector<int> ans; int m = potions.size(); for (int& v : spells) { int i = lower_bound(potions.begin(), potions.end(), success * 1.0 / v) - potions.begin(); ans.push_back(m - i); } return ans; } };
null
null
func successfulPairs(spells []int, potions []int, success int64) (ans []int) { sort.Ints(potions) m := len(potions) for _, v := range spells { i := sort.Search(m, func(i int) bool { return int64(potions[i]*v) >= success }) ans = append(ans, m-i) } return ans }
class Solution { public int[] successfulPairs(int[] spells, int[] potions, long success) { Arrays.sort(potions); int n = spells.length, m = potions.length; int[] ans = new int[n]; for (int i = 0; i < n; ++i) { int left = 0, right = m; while (left < right) { int mid = (left + right) >> 1; if ((long) spells[i] * potions[mid] >= success) { right = mid; } else { left = mid + 1; } } ans[i] = m - left; } return ans; } }
null
null
null
null
null
null
class Solution: def successfulPairs( self, spells: List[int], potions: List[int], success: int ) -> List[int]: potions.sort() m = len(potions) return [m - bisect_left(potions, success / v) for v in spells]
null
impl Solution { pub fn successful_pairs(spells: Vec<i32>, mut potions: Vec<i32>, success: i64) -> Vec<i32> { potions.sort(); let m = potions.len(); spells.into_iter().map(|v| { let i = potions.binary_search_by(|&p| { let prod = (p as i64) * (v as i64); if prod >= success { std::cmp::Ordering::Greater } else { std::cmp::Ordering::Less } }).unwrap_or_else(|x| x); (m - i) as i32 }).collect() } }
null
null
null
function successfulPairs(spells: number[], potions: number[], success: number): number[] { potions.sort((a, b) => a - b); const m = potions.length; const ans: number[] = []; for (const v of spells) { let left = 0; let right = m; while (left < right) { const mid = (left + right) >> 1; if (v * potions[mid] >= success) { right = mid; } else { left = mid + 1; } } ans.push(m - left); } return ans; }
String Transforms Into Another String 🔒
Given two strings str1 and str2 of the same length, determine whether you can transform str1 into str2 by doing zero or more conversions . In one conversion you can convert all occurrences of one character in str1 to any other lowercase English character. Return true if and only if you can transform str1 into str2 .   Example 1: Input: str1 = "aabcc", str2 = "ccdee" Output: true Explanation: Convert 'c' to 'e' then 'b' to 'd' then 'a' to 'c'. Note that the order of conversions matter. Example 2: Input: str1 = "leetcode", str2 = "codeleet" Output: false Explanation: There is no way to transform str1 to str2.   Constraints: 1 <= str1.length == str2.length <= 10 4 str1 and str2 contain only lowercase English letters.
null
null
class Solution { public: bool canConvert(string str1, string str2) { if (str1 == str2) { return true; } int cnt[26]{}; int m = 0; for (char& c : str2) { if (++cnt[c - 'a'] == 1) { ++m; } } if (m == 26) { return false; } int d[26]{}; for (int i = 0; i < str1.size(); ++i) { int a = str1[i] - 'a'; int b = str2[i] - 'a'; if (d[a] == 0) { d[a] = b + 1; } else if (d[a] != b + 1) { return false; } } return true; } };
null
null
func canConvert(str1 string, str2 string) bool { if str1 == str2 { return true } s := map[rune]bool{} for _, c := range str2 { s[c] = true if len(s) == 26 { return false } } d := [26]int{} for i, c := range str1 { a, b := int(c-'a'), int(str2[i]-'a') if d[a] == 0 { d[a] = b + 1 } else if d[a] != b+1 { return false } } return true }
class Solution { public boolean canConvert(String str1, String str2) { if (str1.equals(str2)) { return true; } int m = 0; int[] cnt = new int[26]; int n = str1.length(); for (int i = 0; i < n; ++i) { if (++cnt[str2.charAt(i) - 'a'] == 1) { ++m; } } if (m == 26) { return false; } int[] d = new int[26]; for (int i = 0; i < n; ++i) { int a = str1.charAt(i) - 'a'; int b = str2.charAt(i) - 'a'; if (d[a] == 0) { d[a] = b + 1; } else if (d[a] != b + 1) { return false; } } return true; } }
null
null
null
null
null
null
class Solution: def canConvert(self, str1: str, str2: str) -> bool: if str1 == str2: return True if len(set(str2)) == 26: return False d = {} for a, b in zip(str1, str2): if a not in d: d[a] = b elif d[a] != b: return False return True
null
null
null
null
null
function canConvert(str1: string, str2: string): boolean { if (str1 === str2) { return true; } if (new Set(str2).size === 26) { return false; } const d: Map<string, string> = new Map(); for (const [i, c] of str1.split('').entries()) { if (!d.has(c)) { d.set(c, str2[i]); } else if (d.get(c) !== str2[i]) { return false; } } return true; }
Shuffle an Array
Given an integer array nums , design an algorithm to randomly shuffle the array. All permutations of the array should be equally likely as a result of the shuffling. Implement the Solution class: Solution(int[] nums) Initializes the object with the integer array nums . int[] reset() Resets the array to its original configuration and returns it. int[] shuffle() Returns a random shuffling of the array.   Example 1: Input ["Solution", "shuffle", "reset", "shuffle"] [[[1, 2, 3]], [], [], []] Output [null, [3, 1, 2], [1, 2, 3], [1, 3, 2]] Explanation Solution solution = new Solution([1, 2, 3]); solution.shuffle(); // Shuffle the array [1,2,3] and return its result. // Any permutation of [1,2,3] must be equally likely to be returned. // Example: return [3, 1, 2] solution.reset(); // Resets the array back to its original configuration [1,2,3]. Return [1, 2, 3] solution.shuffle(); // Returns the random shuffling of array [1,2,3]. Example: return [1, 3, 2]   Constraints: 1 <= nums.length <= 50 -10 6 <= nums[i] <= 10 6 All the elements of nums are unique . At most 10 4 calls in total will be made to reset and shuffle .
null
null
class Solution { public: vector<int> nums; vector<int> original; Solution(vector<int>& nums) { this->nums = nums; this->original.resize(nums.size()); copy(nums.begin(), nums.end(), original.begin()); } vector<int> reset() { copy(original.begin(), original.end(), nums.begin()); return nums; } vector<int> shuffle() { for (int i = 0; i < nums.size(); ++i) { int j = i + rand() % (nums.size() - i); swap(nums[i], nums[j]); } return nums; } }; /** * Your Solution object will be instantiated and called as such: * Solution* obj = new Solution(nums); * vector<int> param_1 = obj->reset(); * vector<int> param_2 = obj->shuffle(); */
null
null
type Solution struct { nums, original []int } func Constructor(nums []int) Solution { return Solution{nums, append([]int(nil), nums...)} } func (this *Solution) Reset() []int { copy(this.nums, this.original) return this.nums } func (this *Solution) Shuffle() []int { n := len(this.nums) for i := range this.nums { j := i + rand.Intn(n-i) this.nums[i], this.nums[j] = this.nums[j], this.nums[i] } return this.nums } /** * Your Solution object will be instantiated and called as such: * obj := Constructor(nums); * param_1 := obj.Reset(); * param_2 := obj.Shuffle(); */
class Solution { private int[] nums; private int[] original; private Random rand; public Solution(int[] nums) { this.nums = nums; this.original = Arrays.copyOf(nums, nums.length); this.rand = new Random(); } public int[] reset() { nums = Arrays.copyOf(original, original.length); return nums; } public int[] shuffle() { for (int i = 0; i < nums.length; ++i) { swap(i, i + rand.nextInt(nums.length - i)); } return nums; } private void swap(int i, int j) { int t = nums[i]; nums[i] = nums[j]; nums[j] = t; } } /** * Your Solution object will be instantiated and called as such: * Solution obj = new Solution(nums); * int[] param_1 = obj.reset(); * int[] param_2 = obj.shuffle(); */
/** * @param {number[]} nums */ const Solution = function (nums) { this.nums = nums || []; }; /** * Resets the array to its original configuration and return it. * @return {number[]} */ Solution.prototype.reset = function () { return this.nums; }; /** * Returns a random shuffling of the array. * @return {number[]} */ Solution.prototype.shuffle = function () { let a = this.nums.slice(); for (let i = 0; i < a.length; i++) { let rand = Math.floor(Math.random() * (a.length - i)) + i; let tmp = a[i]; a[i] = a[rand]; a[rand] = tmp; } return a; }; /** * Your Solution object will be instantiated and called as such: * var obj = Object.create(Solution).createNew(nums) * var param_1 = obj.reset() * var param_2 = obj.shuffle() */
null
null
null
null
null
class Solution: def __init__(self, nums: List[int]): self.nums = nums self.original = nums.copy() def reset(self) -> List[int]: self.nums = self.original.copy() return self.nums def shuffle(self) -> List[int]: for i in range(len(self.nums)): j = random.randrange(i, len(self.nums)) self.nums[i], self.nums[j] = self.nums[j], self.nums[i] return self.nums # Your Solution object will be instantiated and called as such: # obj = Solution(nums) # param_1 = obj.reset() # param_2 = obj.shuffle()
null
use rand::Rng; struct Solution { nums: Vec<i32>, } /** * `&self` means the method takes an immutable reference. * If you need a mutable reference, change it to `&mut self` instead. */ impl Solution { fn new(nums: Vec<i32>) -> Self { Self { nums } } fn reset(&self) -> Vec<i32> { self.nums.clone() } fn shuffle(&mut self) -> Vec<i32> { let n = self.nums.len(); let mut res = self.nums.clone(); for i in 0..n { let j = rand::thread_rng().gen_range(0, n); res.swap(i, j); } res } }
null
null
null
class Solution { private nums: number[]; constructor(nums: number[]) { this.nums = nums; } reset(): number[] { return this.nums; } shuffle(): number[] { const n = this.nums.length; const res = [...this.nums]; for (let i = 0; i < n; i++) { const j = Math.floor(Math.random() * n); [res[i], res[j]] = [res[j], res[i]]; } return res; } } /** * Your Solution object will be instantiated and called as such: * var obj = new Solution(nums) * var param_1 = obj.reset() * var param_2 = obj.shuffle() */
Number of Different Integers in a String
You are given a string word that consists of digits and lowercase English letters. You will replace every non-digit character with a space. For example, "a123bc34d8ef34" will become " 123  34 8  34" . Notice that you are left with some integers that are separated by at least one space: "123" , "34" , "8" , and "34" . Return the number of different integers after performing the replacement operations on word . Two integers are considered different if their decimal representations without any leading zeros are different.   Example 1: Input: word = "a 123 bc 34 d 8 ef 34 " Output: 3 Explanation: The three different integers are "123", "34", and "8". Notice that "34" is only counted once. Example 2: Input: word = "leet 1234 code 234 " Output: 2 Example 3: Input: word = "a 1 b 01 c 001 " Output: 1 Explanation: The three integers "1", "01", and "001" all represent the same integer because the leading zeros are ignored when comparing their decimal values.   Constraints: 1 <= word.length <= 1000 word consists of digits and lowercase English letters.
null
null
class Solution { public: int numDifferentIntegers(string word) { unordered_set<string> s; int n = word.size(); for (int i = 0; i < n; ++i) { if (isdigit(word[i])) { while (i < n && word[i] == '0') ++i; int j = i; while (j < n && isdigit(word[j])) ++j; s.insert(word.substr(i, j - i)); i = j; } } return s.size(); } };
null
null
func numDifferentIntegers(word string) int { s := map[string]struct{}{} n := len(word) for i := 0; i < n; i++ { if word[i] >= '0' && word[i] <= '9' { for i < n && word[i] == '0' { i++ } j := i for j < n && word[j] >= '0' && word[j] <= '9' { j++ } s[word[i:j]] = struct{}{} i = j } } return len(s) }
class Solution { public int numDifferentIntegers(String word) { Set<String> s = new HashSet<>(); int n = word.length(); for (int i = 0; i < n; ++i) { if (Character.isDigit(word.charAt(i))) { while (i < n && word.charAt(i) == '0') { ++i; } int j = i; while (j < n && Character.isDigit(word.charAt(j))) { ++j; } s.add(word.substring(i, j)); i = j; } } return s.size(); } }
null
null
null
null
null
null
class Solution: def numDifferentIntegers(self, word: str) -> int: s = set() i, n = 0, len(word) while i < n: if word[i].isdigit(): while i < n and word[i] == '0': i += 1 j = i while j < n and word[j].isdigit(): j += 1 s.add(word[i:j]) i = j i += 1 return len(s)
null
use std::collections::HashSet; impl Solution { pub fn num_different_integers(word: String) -> i32 { let s = word.as_bytes(); let n = s.len(); let mut set = HashSet::new(); let mut i = 0; while i < n { if s[i] >= b'0' && s[i] <= b'9' { let mut j = i; while j < n && s[j] >= b'0' && s[j] <= b'9' { j += 1; } while i < j - 1 && s[i] == b'0' { i += 1; } set.insert(String::from_utf8(s[i..j].to_vec()).unwrap()); i = j; } else { i += 1; } } set.len() as i32 } }
null
null
null
function numDifferentIntegers(word: string): number { return new Set( word .replace(/\D+/g, ' ') .trim() .split(' ') .filter(v => v !== '') .map(v => v.replace(/^0+/g, '')), ).size; }
Kth Distinct String in an Array
A distinct string is a string that is present only once in an array. Given an array of strings arr , and an integer k , return the k th distinct string present in arr . If there are fewer than k distinct strings, return an empty string "" . Note that the strings are considered in the order in which they appear in the array.   Example 1: Input: arr = ["d","b","c","b","c","a"], k = 2 Output: "a" Explanation: The only distinct strings in arr are "d" and "a". "d" appears 1 st , so it is the 1 st distinct string. "a" appears 2 nd , so it is the 2 nd distinct string. Since k == 2, "a" is returned. Example 2: Input: arr = ["aaa","aa","a"], k = 1 Output: "aaa" Explanation: All strings in arr are distinct, so the 1 st string "aaa" is returned. Example 3: Input: arr = ["a","b","a"], k = 3 Output: "" Explanation: The only distinct string is "b". Since there are fewer than 3 distinct strings, we return an empty string "".   Constraints: 1 <= k <= arr.length <= 1000 1 <= arr[i].length <= 5 arr[i] consists of lowercase English letters.
null
null
class Solution { public: string kthDistinct(vector<string>& arr, int k) { unordered_map<string, int> cnt; for (const auto& s : arr) { ++cnt[s]; } for (const auto& s : arr) { if (cnt[s] == 1 && --k == 0) { return s; } } return ""; } };
null
null
func kthDistinct(arr []string, k int) string { cnt := map[string]int{} for _, s := range arr { cnt[s]++ } for _, s := range arr { if cnt[s] == 1 { k-- if k == 0 { return s } } } return "" }
class Solution { public String kthDistinct(String[] arr, int k) { Map<String, Integer> cnt = new HashMap<>(); for (String s : arr) { cnt.merge(s, 1, Integer::sum); } for (String s : arr) { if (cnt.get(s) == 1 && --k == 0) { return s; } } return ""; } }
/** * @param {string[]} arr * @param {number} k * @return {string} */ var kthDistinct = function (arr, k) { const cnt = new Map(); for (const s of arr) { cnt.set(s, (cnt.get(s) || 0) + 1); } for (const s of arr) { if (cnt.get(s) === 1 && --k === 0) { return s; } } return ''; };
null
null
null
null
null
class Solution: def kthDistinct(self, arr: List[str], k: int) -> str: cnt = Counter(arr) for s in arr: if cnt[s] == 1: k -= 1 if k == 0: return s return ""
null
use std::collections::HashMap; impl Solution { pub fn kth_distinct(arr: Vec<String>, mut k: i32) -> String { let mut cnt = HashMap::new(); for s in &arr { *cnt.entry(s).or_insert(0) += 1; } for s in &arr { if *cnt.get(s).unwrap() == 1 { k -= 1; if k == 0 { return s.clone(); } } } "".to_string() } }
null
null
null
function kthDistinct(arr: string[], k: number): string { const cnt = new Map<string, number>(); for (const s of arr) { cnt.set(s, (cnt.get(s) || 0) + 1); } for (const s of arr) { if (cnt.get(s) === 1 && --k === 0) { return s; } } return ''; }
Largest Multiple of Three
Given an array of digits digits , return the largest multiple of three that can be formed by concatenating some of the given digits in any order . If there is no answer return an empty string. Since the answer may not fit in an integer data type, return the answer as a string. Note that the returning answer must not contain unnecessary leading zeros.   Example 1: Input: digits = [8,1,9] Output: "981" Example 2: Input: digits = [8,6,7,1,0] Output: "8760" Example 3: Input: digits = [1] Output: ""   Constraints: 1 <= digits.length <= 10 4 0 <= digits[i] <= 9
null
null
class Solution { public: string largestMultipleOfThree(vector<int>& digits) { sort(digits.begin(), digits.end()); int n = digits.size(); int f[n + 1][3]; memset(f, -0x3f, sizeof(f)); f[0][0] = 0; for (int i = 1; i <= n; ++i) { for (int j = 0; j < 3; ++j) { f[i][j] = max(f[i - 1][j], f[i - 1][(j - digits[i - 1] % 3 + 3) % 3] + 1); } } if (f[n][0] <= 0) { return ""; } string ans; for (int i = n, j = 0; i; --i) { int k = (j - digits[i - 1] % 3 + 3) % 3; if (f[i - 1][k] + 1 == f[i][j]) { ans += digits[i - 1] + '0'; j = k; } } int i = 0; while (i < ans.size() - 1 && ans[i] == '0') { ++i; } return ans.substr(i); } };
null
null
func largestMultipleOfThree(digits []int) string { sort.Ints(digits) n := len(digits) const inf = 1 << 30 f := make([][]int, n+1) for i := range f { f[i] = make([]int, 3) for j := range f[i] { f[i][j] = -inf } } f[0][0] = 0 for i := 1; i <= n; i++ { for j := 0; j < 3; j++ { f[i][j] = max(f[i-1][j], f[i-1][(j-digits[i-1]%3+3)%3]+1) } } if f[n][0] <= 0 { return "" } ans := []byte{} for i, j := n, 0; i > 0; i-- { k := (j - digits[i-1]%3 + 3) % 3 if f[i][j] == f[i-1][k]+1 { ans = append(ans, byte('0'+digits[i-1])) j = k } } i := 0 for i < len(ans)-1 && ans[i] == '0' { i++ } return string(ans[i:]) }
class Solution { public String largestMultipleOfThree(int[] digits) { Arrays.sort(digits); int n = digits.length; int[][] f = new int[n + 1][3]; final int inf = 1 << 30; for (var g : f) { Arrays.fill(g, -inf); } f[0][0] = 0; for (int i = 1; i <= n; ++i) { for (int j = 0; j < 3; ++j) { f[i][j] = Math.max(f[i - 1][j], f[i - 1][(j - digits[i - 1] % 3 + 3) % 3] + 1); } } if (f[n][0] <= 0) { return ""; } StringBuilder sb = new StringBuilder(); for (int i = n, j = 0; i > 0; --i) { int k = (j - digits[i - 1] % 3 + 3) % 3; if (f[i - 1][k] + 1 == f[i][j]) { sb.append(digits[i - 1]); j = k; } } int i = 0; while (i < sb.length() - 1 && sb.charAt(i) == '0') { ++i; } return sb.substring(i); } }
null
null
null
null
null
null
class Solution: def largestMultipleOfThree(self, digits: List[int]) -> str: digits.sort() n = len(digits) f = [[-inf] * 3 for _ in range(n + 1)] f[0][0] = 0 for i, x in enumerate(digits, 1): for j in range(3): f[i][j] = max(f[i - 1][j], f[i - 1][(j - x % 3 + 3) % 3] + 1) if f[n][0] <= 0: return "" arr = [] j = 0 for i in range(n, 0, -1): k = (j - digits[i - 1] % 3 + 3) % 3 if f[i - 1][k] + 1 == f[i][j]: arr.append(digits[i - 1]) j = k i = 0 while i < len(arr) - 1 and arr[i] == 0: i += 1 return "".join(map(str, arr[i:]))
null
null
null
null
null
function largestMultipleOfThree(digits: number[]): string { digits.sort((a, b) => a - b); const n = digits.length; const f: number[][] = new Array(n + 1).fill(0).map(() => new Array(3).fill(-Infinity)); f[0][0] = 0; for (let i = 1; i <= n; ++i) { for (let j = 0; j < 3; ++j) { f[i][j] = Math.max(f[i - 1][j], f[i - 1][(j - (digits[i - 1] % 3) + 3) % 3] + 1); } } if (f[n][0] <= 0) { return ''; } const arr: number[] = []; for (let i = n, j = 0; i; --i) { const k = (j - (digits[i - 1] % 3) + 3) % 3; if (f[i - 1][k] + 1 === f[i][j]) { arr.push(digits[i - 1]); j = k; } } let i = 0; while (i < arr.length - 1 && arr[i] === 0) { ++i; } return arr.slice(i).join(''); }
Reverse Odd Levels of Binary Tree
Given the root of a perfect binary tree, reverse the node values at each odd level of the tree. For example, suppose the node values at level 3 are [2,1,3,4,7,11,29,18] , then it should become [18,29,11,7,4,3,1,2] . Return the root of the reversed tree . A binary tree is perfect if all parent nodes have two children and all leaves are on the same level. The level of a node is the number of edges along the path between it and the root node.   Example 1: Input: root = [2,3,5,8,13,21,34] Output: [2,5,3,8,13,21,34] Explanation: The tree has only one odd level. The nodes at level 1 are 3, 5 respectively, which are reversed and become 5, 3. Example 2: Input: root = [7,13,11] Output: [7,11,13] Explanation: The nodes at level 1 are 13, 11, which are reversed and become 11, 13. Example 3: Input: root = [0,1,2,0,0,0,0,1,1,1,1,2,2,2,2] Output: [0,2,1,0,0,0,0,2,2,2,2,1,1,1,1] Explanation: The odd levels have non-zero values. The nodes at level 1 were 1, 2, and are 2, 1 after the reversal. The nodes at level 3 were 1, 1, 1, 1, 2, 2, 2, 2, and are 2, 2, 2, 2, 1, 1, 1, 1 after the reversal.   Constraints: The number of nodes in the tree is in the range [1, 2 14 ] . 0 <= Node.val <= 10 5 root is a perfect binary tree.
null
null
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode() : val(0), left(nullptr), right(nullptr) {} * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} * }; */ class Solution { public: TreeNode* reverseOddLevels(TreeNode* root) { queue<TreeNode*> q{{root}}; for (int i = 0; q.size(); ++i) { vector<TreeNode*> t; for (int k = q.size(); k; --k) { TreeNode* node = q.front(); q.pop(); if (i & 1) { t.push_back(node); } if (node->left) { q.push(node->left); q.push(node->right); } } for (int l = 0, r = t.size() - 1; l < r; ++l, --r) { swap(t[l]->val, t[r]->val); } } return root; } };
null
null
/** * Definition for a binary tree node. * type TreeNode struct { * Val int * Left *TreeNode * Right *TreeNode * } */ func reverseOddLevels(root *TreeNode) *TreeNode { q := []*TreeNode{root} for i := 0; len(q) > 0; i++ { t := []*TreeNode{} for k := len(q); k > 0; k-- { node := q[0] q = q[1:] if i%2 == 1 { t = append(t, node) } if node.Left != nil { q = append(q, node.Left) q = append(q, node.Right) } } for l, r := 0, len(t)-1; l < r; l, r = l+1, r-1 { t[l].Val, t[r].Val = t[r].Val, t[l].Val } } return root }
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode() {} * TreeNode(int val) { this.val = val; } * TreeNode(int val, TreeNode left, TreeNode right) { * this.val = val; * this.left = left; * this.right = right; * } * } */ class Solution { public TreeNode reverseOddLevels(TreeNode root) { Deque<TreeNode> q = new ArrayDeque<>(); q.offer(root); for (int i = 0; !q.isEmpty(); ++i) { List<TreeNode> t = new ArrayList<>(); for (int k = q.size(); k > 0; --k) { var node = q.poll(); if (i % 2 == 1) { t.add(node); } if (node.left != null) { q.offer(node.left); q.offer(node.right); } } for (int l = 0, r = t.size() - 1; l < r; ++l, --r) { var x = t.get(l).val; t.get(l).val = t.get(r).val; t.get(r).val = x; } } return root; } }
null
null
null
null
null
null
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def reverseOddLevels(self, root: Optional[TreeNode]) -> Optional[TreeNode]: q = deque([root]) i = 0 while q: if i & 1: l, r = 0, len(q) - 1 while l < r: q[l].val, q[r].val = q[r].val, q[l].val l, r = l + 1, r - 1 for _ in range(len(q)): node = q.popleft() if node.left: q.append(node.left) q.append(node.right) i += 1 return root
null
// Definition for a binary tree node. // #[derive(Debug, PartialEq, Eq)] // pub struct TreeNode { // pub val: i32, // pub left: Option<Rc<RefCell<TreeNode>>>, // pub right: Option<Rc<RefCell<TreeNode>>>, // } // // impl TreeNode { // #[inline] // pub fn new(val: i32) -> Self { // TreeNode { // val, // left: None, // right: None // } // } // } use std::cell::RefCell; use std::collections::VecDeque; use std::rc::Rc; impl Solution { fn create_tree(vals: &Vec<Vec<i32>>, i: usize, j: usize) -> Option<Rc<RefCell<TreeNode>>> { if i == vals.len() { return None; } Some(Rc::new(RefCell::new(TreeNode { val: vals[i][j], left: Self::create_tree(vals, i + 1, j * 2), right: Self::create_tree(vals, i + 1, j * 2 + 1), }))) } pub fn reverse_odd_levels( root: Option<Rc<RefCell<TreeNode>>>, ) -> Option<Rc<RefCell<TreeNode>>> { let mut queue = VecDeque::new(); queue.push_back(root); let mut d = 0; let mut vals = Vec::new(); while !queue.is_empty() { let mut val = Vec::new(); for _ in 0..queue.len() { let mut node = queue.pop_front().unwrap(); let mut node = node.as_mut().unwrap().borrow_mut(); val.push(node.val); if node.left.is_some() { queue.push_back(node.left.take()); } if node.right.is_some() { queue.push_back(node.right.take()); } } if d % 2 == 1 { val.reverse(); } vals.push(val); d += 1; } Self::create_tree(&vals, 0, 0) } }
null
null
null
/** * Definition for a binary tree node. * class TreeNode { * val: number * left: TreeNode | null * right: TreeNode | null * constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { * this.val = (val===undefined ? 0 : val) * this.left = (left===undefined ? null : left) * this.right = (right===undefined ? null : right) * } * } */ function reverseOddLevels(root: TreeNode | null): TreeNode | null { const q: TreeNode[] = [root]; for (let i = 0; q.length > 0; ++i) { if (i % 2) { for (let l = 0, r = q.length - 1; l < r; ++l, --r) { [q[l].val, q[r].val] = [q[r].val, q[l].val]; } } const nq: TreeNode[] = []; for (const { left, right } of q) { if (left) { nq.push(left); nq.push(right); } } q.splice(0, q.length, ...nq); } return root; }
Fruits Into Baskets II
You are given two arrays of integers, fruits and baskets , each of length n , where fruits[i] represents the quantity of the i th type of fruit, and baskets[j] represents the capacity of the j th basket. From left to right, place the fruits according to these rules: Each fruit type must be placed in the leftmost available basket with a capacity greater than or equal to the quantity of that fruit type. Each basket can hold only one type of fruit. If a fruit type cannot be placed in any basket, it remains unplaced . Return the number of fruit types that remain unplaced after all possible allocations are made.   Example 1: Input: fruits = [4,2,5], baskets = [3,5,4] Output: 1 Explanation: fruits[0] = 4 is placed in baskets[1] = 5 . fruits[1] = 2 is placed in baskets[0] = 3 . fruits[2] = 5 cannot be placed in baskets[2] = 4 . Since one fruit type remains unplaced, we return 1. Example 2: Input: fruits = [3,6,1], baskets = [6,4,7] Output: 0 Explanation: fruits[0] = 3 is placed in baskets[0] = 6 . fruits[1] = 6 cannot be placed in baskets[1] = 4 (insufficient capacity) but can be placed in the next available basket, baskets[2] = 7 . fruits[2] = 1 is placed in baskets[1] = 4 . Since all fruits are successfully placed, we return 0.   Constraints: n == fruits.length == baskets.length 1 <= n <= 100 1 <= fruits[i], baskets[i] <= 1000
null
null
class Solution { public: int numOfUnplacedFruits(vector<int>& fruits, vector<int>& baskets) { int n = fruits.size(); vector<bool> vis(n); int ans = n; for (int x : fruits) { for (int i = 0; i < n; ++i) { if (baskets[i] >= x && !vis[i]) { vis[i] = true; --ans; break; } } } return ans; } };
null
null
func numOfUnplacedFruits(fruits []int, baskets []int) int { n := len(fruits) ans := n vis := make([]bool, n) for _, x := range fruits { for i, y := range baskets { if y >= x && !vis[i] { vis[i] = true ans-- break } } } return ans }
class Solution { public int numOfUnplacedFruits(int[] fruits, int[] baskets) { int n = fruits.length; boolean[] vis = new boolean[n]; int ans = n; for (int x : fruits) { for (int i = 0; i < n; ++i) { if (baskets[i] >= x && !vis[i]) { vis[i] = true; --ans; break; } } } return ans; } }
null
null
null
null
null
null
class Solution: def numOfUnplacedFruits(self, fruits: List[int], baskets: List[int]) -> int: n = len(fruits) vis = [False] * n ans = n for x in fruits: for i, y in enumerate(baskets): if y >= x and not vis[i]: vis[i] = True ans -= 1 break return ans
null
null
null
null
null
function numOfUnplacedFruits(fruits: number[], baskets: number[]): number { const n = fruits.length; const vis: boolean[] = Array(n).fill(false); let ans = n; for (const x of fruits) { for (let i = 0; i < n; ++i) { if (baskets[i] >= x && !vis[i]) { vis[i] = true; --ans; break; } } } return ans; }
Partition Array for Maximum Sum
Given an integer array arr , partition the array into (contiguous) subarrays of length at most k . After partitioning, each subarray has their values changed to become the maximum value of that subarray. Return the largest sum of the given array after partitioning. Test cases are generated so that the answer fits in a 32-bit integer.   Example 1: Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10] Example 2: Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83 Example 3: Input: arr = [1], k = 1 Output: 1   Constraints: 1 <= arr.length <= 500 0 <= arr[i] <= 10 9 1 <= k <= arr.length
null
null
class Solution { public: int maxSumAfterPartitioning(vector<int>& arr, int k) { int n = arr.size(); int f[n + 1]; memset(f, 0, sizeof(f)); for (int i = 1; i <= n; ++i) { int mx = 0; for (int j = i; j > max(0, i - k); --j) { mx = max(mx, arr[j - 1]); f[i] = max(f[i], f[j - 1] + mx * (i - j + 1)); } } return f[n]; } };
null
null
func maxSumAfterPartitioning(arr []int, k int) int { n := len(arr) f := make([]int, n+1) for i := 1; i <= n; i++ { mx := 0 for j := i; j > max(0, i-k); j-- { mx = max(mx, arr[j-1]) f[i] = max(f[i], f[j-1]+mx*(i-j+1)) } } return f[n] }
class Solution { public int maxSumAfterPartitioning(int[] arr, int k) { int n = arr.length; int[] f = new int[n + 1]; for (int i = 1; i <= n; ++i) { int mx = 0; for (int j = i; j > Math.max(0, i - k); --j) { mx = Math.max(mx, arr[j - 1]); f[i] = Math.max(f[i], f[j - 1] + mx * (i - j + 1)); } } return f[n]; } }
null
null
null
null
null
null
class Solution: def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int: n = len(arr) f = [0] * (n + 1) for i in range(1, n + 1): mx = 0 for j in range(i, max(0, i - k), -1): mx = max(mx, arr[j - 1]) f[i] = max(f[i], f[j - 1] + mx * (i - j + 1)) return f[n]
null
null
null
null
null
function maxSumAfterPartitioning(arr: number[], k: number): number { const n: number = arr.length; const f: number[] = new Array(n + 1).fill(0); for (let i = 1; i <= n; ++i) { let mx: number = 0; for (let j = i; j > Math.max(0, i - k); --j) { mx = Math.max(mx, arr[j - 1]); f[i] = Math.max(f[i], f[j - 1] + mx * (i - j + 1)); } } return f[n]; }
Once Twice 🔒
You are given an integer array nums . In this array: Exactly one element appears once . Exactly one element appears twice . All other elements appear exactly three times . Return an integer array of length 2, where the first element is the one that appears once , and the second is the one that appears twice . Your solution must run in O(n) time and O(1) space.   Example 1: Input: nums = [2,2,3,2,5,5,5,7,7] Output: [3,7] Explanation: The element 3 appears once , and the element 7 appears twice . The remaining elements each appear three times . Example 2: Input: nums = [4,4,6,4,9,9,9,6,8] Output: [8,6] Explanation: The element 8 appears once , and the element 6 appears twice . The remaining elements each appear three times .   Constraints: 3 <= nums.length <= 10 5 -2 31 <= nums[i] <= 2 31 - 1 nums.length is a multiple of 3. Exactly one element appears once, one element appears twice, and all other elements appear three times.
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
Find Longest Special Substring That Occurs Thrice II
You are given a string s that consists of lowercase English letters. A string is called special if it is made up of only a single character. For example, the string "abc" is not special, whereas the strings "ddd" , "zz" , and "f" are special. Return the length of the longest special substring of s which occurs at least thrice , or -1 if no special substring occurs at least thrice . A substring is a contiguous non-empty sequence of characters within a string.   Example 1: Input: s = "aaaa" Output: 2 Explanation: The longest special substring which occurs thrice is "aa": substrings " aa aa", "a aa a", and "aa aa ". It can be shown that the maximum length achievable is 2. Example 2: Input: s = "abcdef" Output: -1 Explanation: There exists no special substring which occurs at least thrice. Hence return -1. Example 3: Input: s = "abcaba" Output: 1 Explanation: The longest special substring which occurs thrice is "a": substrings " a bcaba", "abc a ba", and "abcab a ". It can be shown that the maximum length achievable is 1.   Constraints: 3 <= s.length <= 5 * 10 5 s consists of only lowercase English letters.
null
null
class Solution { public: int maximumLength(string s) { int n = s.size(); int l = 0, r = n; auto check = [&](int x) { int cnt[26]{}; for (int i = 0; i < n;) { int j = i + 1; while (j < n && s[j] == s[i]) { ++j; } int k = s[i] - 'a'; cnt[k] += max(0, j - i - x + 1); if (cnt[k] >= 3) { return true; } i = j; } return false; }; while (l < r) { int mid = (l + r + 1) >> 1; if (check(mid)) { l = mid; } else { r = mid - 1; } } return l == 0 ? -1 : l; } };
null
null
func maximumLength(s string) int { n := len(s) l, r := 0, n check := func(x int) bool { cnt := [26]int{} for i := 0; i < n; { j := i + 1 for j < n && s[j] == s[i] { j++ } k := s[i] - 'a' cnt[k] += max(0, j-i-x+1) if cnt[k] >= 3 { return true } i = j } return false } for l < r { mid := (l + r + 1) >> 1 if check(mid) { l = mid } else { r = mid - 1 } } if l == 0 { return -1 } return l }
class Solution { private String s; private int n; public int maximumLength(String s) { this.s = s; n = s.length(); int l = 0, r = n; while (l < r) { int mid = (l + r + 1) >> 1; if (check(mid)) { l = mid; } else { r = mid - 1; } } return l == 0 ? -1 : l; } private boolean check(int x) { int[] cnt = new int[26]; for (int i = 0; i < n;) { int j = i + 1; while (j < n && s.charAt(j) == s.charAt(i)) { j++; } int k = s.charAt(i) - 'a'; cnt[k] += Math.max(0, j - i - x + 1); if (cnt[k] >= 3) { return true; } i = j; } return false; } }
null
null
null
null
null
null
class Solution: def maximumLength(self, s: str) -> int: def check(x: int) -> bool: cnt = defaultdict(int) i = 0 while i < n: j = i + 1 while j < n and s[j] == s[i]: j += 1 cnt[s[i]] += max(0, j - i - x + 1) i = j return max(cnt.values()) >= 3 n = len(s) l, r = 0, n while l < r: mid = (l + r + 1) >> 1 if check(mid): l = mid else: r = mid - 1 return -1 if l == 0 else l
null
null
null
null
null
function maximumLength(s: string): number { const n = s.length; let [l, r] = [0, n]; const check = (x: number): boolean => { const cnt: number[] = Array(26).fill(0); for (let i = 0; i < n; ) { let j = i + 1; while (j < n && s[j] === s[i]) { j++; } const k = s[i].charCodeAt(0) - 'a'.charCodeAt(0); cnt[k] += Math.max(0, j - i - x + 1); if (cnt[k] >= 3) { return true; } i = j; } return false; }; while (l < r) { const mid = (l + r + 1) >> 1; if (check(mid)) { l = mid; } else { r = mid - 1; } } return l === 0 ? -1 : l; }
Minimum Flips in Binary Tree to Get Result 🔒
You are given the root of a binary tree with the following properties: Leaf nodes have either the value 0 or 1 , representing false and true respectively. Non-leaf nodes have either the value 2 , 3 , 4 , or 5 , representing the boolean operations OR , AND , XOR , and NOT , respectively. You are also given a boolean result , which is the desired result of the evaluation of the root node. The evaluation of a node is as follows: If the node is a leaf node, the evaluation is the value of the node, i.e. true or false . Otherwise, evaluate the node's children and apply the boolean operation of its value with the children's evaluations. In one operation, you can flip a leaf node, which causes a false node to become true , and a true node to become false . Return the minimum number of operations that need to be performed such that the evaluation of root yields result . It can be shown that there is always a way to achieve result . A leaf node is a node that has zero children. Note: NOT nodes have either a left child or a right child, but other non-leaf nodes have both a left child and a right child.   Example 1: Input: root = [3,5,4,2,null,1,1,1,0], result = true Output: 2 Explanation: It can be shown that a minimum of 2 nodes have to be flipped to make the root of the tree evaluate to true. One way to achieve this is shown in the diagram above. Example 2: Input: root = [0], result = false Output: 0 Explanation: The root of the tree already evaluates to false, so 0 nodes have to be flipped.   Constraints: The number of nodes in the tree is in the range [1, 10 5 ] . 0 <= Node.val <= 5 OR , AND , and XOR nodes have 2 children. NOT nodes have 1 child. Leaf nodes have a value of 0 or 1 . Non-leaf nodes have a value of 2 , 3 , 4 , or 5 .
null
null
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode() : val(0), left(nullptr), right(nullptr) {} * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} * }; */ class Solution { public: int minimumFlips(TreeNode* root, bool result) { function<pair<int, int>(TreeNode*)> dfs = [&](TreeNode* root) -> pair<int, int> { if (!root) { return {1 << 30, 1 << 30}; } int x = root->val; if (x < 2) { return {x, x ^ 1}; } auto [l0, l1] = dfs(root->left); auto [r0, r1] = dfs(root->right); int a = 0, b = 0; if (x == 2) { a = l0 + r0; b = min({l0 + r1, l1 + r0, l1 + r1}); } else if (x == 3) { a = min({l0 + r0, l0 + r1, l1 + r0}); b = l1 + r1; } else if (x == 4) { a = min(l0 + r0, l1 + r1); b = min(l0 + r1, l1 + r0); } else { a = min(l1, r1); b = min(l0, r0); } return {a, b}; }; auto [a, b] = dfs(root); return result ? b : a; } };
null
null
/** * Definition for a binary tree node. * type TreeNode struct { * Val int * Left *TreeNode * Right *TreeNode * } */ func minimumFlips(root *TreeNode, result bool) int { var dfs func(*TreeNode) (int, int) dfs = func(root *TreeNode) (int, int) { if root == nil { return 1 << 30, 1 << 30 } x := root.Val if x < 2 { return x, x ^ 1 } l0, l1 := dfs(root.Left) r0, r1 := dfs(root.Right) var a, b int if x == 2 { a = l0 + r0 b = min(l0+r1, min(l1+r0, l1+r1)) } else if x == 3 { a = min(l0+r0, min(l0+r1, l1+r0)) b = l1 + r1 } else if x == 4 { a = min(l0+r0, l1+r1) b = min(l0+r1, l1+r0) } else { a = min(l1, r1) b = min(l0, r0) } return a, b } a, b := dfs(root) if result { return b } return a }
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode() {} * TreeNode(int val) { this.val = val; } * TreeNode(int val, TreeNode left, TreeNode right) { * this.val = val; * this.left = left; * this.right = right; * } * } */ class Solution { public int minimumFlips(TreeNode root, boolean result) { return dfs(root)[result ? 1 : 0]; } private int[] dfs(TreeNode root) { if (root == null) { return new int[] {1 << 30, 1 << 30}; } int x = root.val; if (x < 2) { return new int[] {x, x ^ 1}; } var l = dfs(root.left); var r = dfs(root.right); int a = 0, b = 0; if (x == 2) { a = l[0] + r[0]; b = Math.min(l[0] + r[1], Math.min(l[1] + r[0], l[1] + r[1])); } else if (x == 3) { a = Math.min(l[0] + r[0], Math.min(l[0] + r[1], l[1] + r[0])); b = l[1] + r[1]; } else if (x == 4) { a = Math.min(l[0] + r[0], l[1] + r[1]); b = Math.min(l[0] + r[1], l[1] + r[0]); } else { a = Math.min(l[1], r[1]); b = Math.min(l[0], r[0]); } return new int[] {a, b}; } }
null
null
null
null
null
null
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def minimumFlips(self, root: Optional[TreeNode], result: bool) -> int: def dfs(root: Optional[TreeNode]) -> (int, int): if root is None: return inf, inf x = root.val if x in (0, 1): return x, x ^ 1 l, r = dfs(root.left), dfs(root.right) if x == 2: return l[0] + r[0], min(l[0] + r[1], l[1] + r[0], l[1] + r[1]) if x == 3: return min(l[0] + r[0], l[0] + r[1], l[1] + r[0]), l[1] + r[1] if x == 4: return min(l[0] + r[0], l[1] + r[1]), min(l[0] + r[1], l[1] + r[0]) return min(l[1], r[1]), min(l[0], r[0]) return dfs(root)[int(result)]
null
null
null
null
null
/** * Definition for a binary tree node. * class TreeNode { * val: number * left: TreeNode | null * right: TreeNode | null * constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { * this.val = (val===undefined ? 0 : val) * this.left = (left===undefined ? null : left) * this.right = (right===undefined ? null : right) * } * } */ function minimumFlips(root: TreeNode | null, result: boolean): number { const dfs = (root: TreeNode | null): [number, number] => { if (!root) { return [1 << 30, 1 << 30]; } const x = root.val; if (x < 2) { return [x, x ^ 1]; } const [l0, l1] = dfs(root.left); const [r0, r1] = dfs(root.right); if (x === 2) { return [l0 + r0, Math.min(l0 + r1, l1 + r0, l1 + r1)]; } if (x === 3) { return [Math.min(l0 + r0, l0 + r1, l1 + r0), l1 + r1]; } if (x === 4) { return [Math.min(l0 + r0, l1 + r1), Math.min(l0 + r1, l1 + r0)]; } return [Math.min(l1, r1), Math.min(l0, r0)]; }; return dfs(root)[result ? 1 : 0]; }
Second Minimum Time to Reach Destination
A city is represented as a bi-directional connected graph with n vertices where each vertex is labeled from 1 to n ( inclusive ). The edges in the graph are represented as a 2D integer array edges , where each edges[i] = [u i , v i ] denotes a bi-directional edge between vertex u i and vertex v i . Every vertex pair is connected by at most one edge, and no vertex has an edge to itself. The time taken to traverse any edge is time minutes. Each vertex has a traffic signal which changes its color from green to red and vice versa every  change minutes. All signals change at the same time . You can enter a vertex at any time , but can leave a vertex only when the signal is green . You cannot wait at a vertex if the signal is green . The second minimum value is defined as the smallest value strictly larger than the minimum value. For example the second minimum value of [2, 3, 4] is 3 , and the second minimum value of [2, 2, 4] is 4 . Given n , edges , time , and change , return the second minimum time it will take to go from vertex 1 to vertex n . Notes: You can go through any vertex any number of times, including 1 and n . You can assume that when the journey starts , all signals have just turned green .   Example 1:         Input: n = 5, edges = [[1,2],[1,3],[1,4],[3,4],[4,5]], time = 3, change = 5 Output: 13 Explanation: The figure on the left shows the given graph. The blue path in the figure on the right is the minimum time path. The time taken is: - Start at 1, time elapsed=0 - 1 -> 4: 3 minutes, time elapsed=3 - 4 -> 5: 3 minutes, time elapsed=6 Hence the minimum time needed is 6 minutes. The red path shows the path to get the second minimum time. - Start at 1, time elapsed=0 - 1 -> 3: 3 minutes, time elapsed=3 - 3 -> 4: 3 minutes, time elapsed=6 - Wait at 4 for 4 minutes, time elapsed=10 - 4 -> 5: 3 minutes, time elapsed=13 Hence the second minimum time is 13 minutes. Example 2: Input: n = 2, edges = [[1,2]], time = 3, change = 2 Output: 11 Explanation: The minimum time path is 1 -> 2 with time = 3 minutes. The second minimum time path is 1 -> 2 -> 1 -> 2 with time = 11 minutes.   Constraints: 2 <= n <= 10 4 n - 1 <= edges.length <= min(2 * 10 4 , n * (n - 1) / 2) edges[i].length == 2 1 <= u i , v i <= n u i != v i There are no duplicate edges. Each vertex can be reached directly or indirectly from every other vertex. 1 <= time, change <= 10 3
null
null
null
null
null
null
class Solution { public int secondMinimum(int n, int[][] edges, int time, int change) { List<Integer>[] g = new List[n + 1]; Arrays.setAll(g, k -> new ArrayList<>()); for (int[] e : edges) { int u = e[0], v = e[1]; g[u].add(v); g[v].add(u); } Deque<int[]> q = new LinkedList<>(); q.offerLast(new int[] {1, 0}); int[][] dist = new int[n + 1][2]; for (int i = 0; i < n + 1; ++i) { Arrays.fill(dist[i], Integer.MAX_VALUE); } dist[1][1] = 0; while (!q.isEmpty()) { int[] e = q.pollFirst(); int u = e[0], d = e[1]; for (int v : g[u]) { if (d + 1 < dist[v][0]) { dist[v][0] = d + 1; q.offerLast(new int[] {v, d + 1}); } else if (dist[v][0] < d + 1 && d + 1 < dist[v][1]) { dist[v][1] = d + 1; if (v == n) { break; } q.offerLast(new int[] {v, d + 1}); } } } int ans = 0; for (int i = 0; i < dist[n][1]; ++i) { ans += time; if (i < dist[n][1] - 1 && (ans / change) % 2 == 1) { ans = (ans + change) / change * change; } } return ans; } }
null
null
null
null
null
null
class Solution: def secondMinimum( self, n: int, edges: List[List[int]], time: int, change: int ) -> int: g = defaultdict(set) for u, v in edges: g[u].add(v) g[v].add(u) q = deque([(1, 0)]) dist = [[inf] * 2 for _ in range(n + 1)] dist[1][1] = 0 while q: u, d = q.popleft() for v in g[u]: if d + 1 < dist[v][0]: dist[v][0] = d + 1 q.append((v, d + 1)) elif dist[v][0] < d + 1 < dist[v][1]: dist[v][1] = d + 1 if v == n: break q.append((v, d + 1)) ans = 0 for i in range(dist[n][1]): ans += time if i < dist[n][1] - 1 and (ans // change) % 2 == 1: ans = (ans + change) // change * change return ans
null
null
null
null
null
null
Maximum Number of Tasks You Can Assign
You have n tasks and m workers. Each task has a strength requirement stored in a 0-indexed integer array tasks , with the i th task requiring tasks[i] strength to complete. The strength of each worker is stored in a 0-indexed integer array workers , with the j th worker having workers[j] strength. Each worker can only be assigned to a single task and must have a strength greater than or equal to the task's strength requirement (i.e., workers[j] >= tasks[i] ). Additionally, you have pills magical pills that will increase a worker's strength by strength . You can decide which workers receive the magical pills, however, you may only give each worker at most one magical pill. Given the 0-indexed integer arrays tasks and workers and the integers pills and strength , return the maximum number of tasks that can be completed.   Example 1: Input: tasks = [ 3 , 2 , 1 ], workers = [ 0 , 3 , 3 ], pills = 1, strength = 1 Output: 3 Explanation: We can assign the magical pill and tasks as follows: - Give the magical pill to worker 0. - Assign worker 0 to task 2 (0 + 1 >= 1) - Assign worker 1 to task 1 (3 >= 2) - Assign worker 2 to task 0 (3 >= 3) Example 2: Input: tasks = [ 5 ,4], workers = [ 0 ,0,0], pills = 1, strength = 5 Output: 1 Explanation: We can assign the magical pill and tasks as follows: - Give the magical pill to worker 0. - Assign worker 0 to task 0 (0 + 5 >= 5) Example 3: Input: tasks = [ 10 , 15 ,30], workers = [ 0 , 10 ,10,10,10], pills = 3, strength = 10 Output: 2 Explanation: We can assign the magical pills and tasks as follows: - Give the magical pill to worker 0 and worker 1. - Assign worker 0 to task 0 (0 + 10 >= 10) - Assign worker 1 to task 1 (10 + 10 >= 15) The last pill is not given because it will not make any worker strong enough for the last task.   Constraints: n == tasks.length m == workers.length 1 <= n, m <= 5 * 10 4 0 <= pills <= m 0 <= tasks[i], workers[j], strength <= 10 9
null
null
class Solution { public: int maxTaskAssign(vector<int>& tasks, vector<int>& workers, int pills, int strength) { sort(tasks.begin(), tasks.end()); sort(workers.begin(), workers.end()); int n = tasks.size(), m = workers.size(); int left = 0, right = min(m, n); auto check = [&](int x) { int p = pills; deque<int> q; int i = 0; for (int j = m - x; j < m; ++j) { while (i < x && tasks[i] <= workers[j] + strength) { q.push_back(tasks[i++]); } if (q.empty()) { return false; } if (q.front() <= workers[j]) { q.pop_front(); } else if (p == 0) { return false; } else { --p; q.pop_back(); } } return true; }; while (left < right) { int mid = (left + right + 1) >> 1; if (check(mid)) { left = mid; } else { right = mid - 1; } } return left; } };
null
null
func maxTaskAssign(tasks []int, workers []int, pills int, strength int) int { sort.Ints(tasks) sort.Ints(workers) n, m := len(tasks), len(workers) left, right := 0, min(m, n) check := func(x int) bool { p := pills q := []int{} i := 0 for j := m - x; j < m; j++ { for i < x && tasks[i] <= workers[j]+strength { q = append(q, tasks[i]) i++ } if len(q) == 0 { return false } if q[0] <= workers[j] { q = q[1:] } else if p == 0 { return false } else { p-- q = q[:len(q)-1] } } return true } for left < right { mid := (left + right + 1) >> 1 if check(mid) { left = mid } else { right = mid - 1 } } return left }
class Solution { private int[] tasks; private int[] workers; private int strength; private int pills; private int m; private int n; public int maxTaskAssign(int[] tasks, int[] workers, int pills, int strength) { Arrays.sort(tasks); Arrays.sort(workers); this.tasks = tasks; this.workers = workers; this.strength = strength; this.pills = pills; n = tasks.length; m = workers.length; int left = 0, right = Math.min(m, n); while (left < right) { int mid = (left + right + 1) >> 1; if (check(mid)) { left = mid; } else { right = mid - 1; } } return left; } private boolean check(int x) { int i = 0; Deque<Integer> q = new ArrayDeque<>(); int p = pills; for (int j = m - x; j < m; ++j) { while (i < x && tasks[i] <= workers[j] + strength) { q.offer(tasks[i++]); } if (q.isEmpty()) { return false; } if (q.peekFirst() <= workers[j]) { q.pollFirst(); } else if (p == 0) { return false; } else { --p; q.pollLast(); } } return true; } }
null
null
null
null
null
null
class Solution: def maxTaskAssign( self, tasks: List[int], workers: List[int], pills: int, strength: int ) -> int: def check(x): i = 0 q = deque() p = pills for j in range(m - x, m): while i < x and tasks[i] <= workers[j] + strength: q.append(tasks[i]) i += 1 if not q: return False if q[0] <= workers[j]: q.popleft() elif p == 0: return False else: p -= 1 q.pop() return True n, m = len(tasks), len(workers) tasks.sort() workers.sort() left, right = 0, min(n, m) while left < right: mid = (left + right + 1) >> 1 if check(mid): left = mid else: right = mid - 1 return left
null
null
null
null
null
function maxTaskAssign( tasks: number[], workers: number[], pills: number, strength: number, ): number { tasks.sort((a, b) => a - b); workers.sort((a, b) => a - b); const n = tasks.length; const m = workers.length; const check = (x: number): boolean => { const dq = new Array<number>(x); let head = 0; let tail = 0; const empty = () => head === tail; const pushBack = (val: number) => { dq[tail++] = val; }; const popFront = () => { head++; }; const popBack = () => { tail--; }; const front = () => dq[head]; let i = 0; let p = pills; for (let j = m - x; j < m; j++) { while (i < x && tasks[i] <= workers[j] + strength) { pushBack(tasks[i]); i++; } if (empty()) return false; if (front() <= workers[j]) { popFront(); } else { if (p === 0) return false; p--; popBack(); } } return true; }; let [left, right] = [0, Math.min(n, m)]; while (left < right) { const mid = (left + right + 1) >> 1; if (check(mid)) left = mid; else right = mid - 1; } return left; }
Phone Number Prefix 🔒
You are given a string array numbers that represents phone numbers. Return true if no phone number is a prefix of any other phone number; otherwise, return false .   Example 1: Input: numbers = ["1","2","4","3"] Output: true Explanation: No number is a prefix of another number, so the output is true . Example 2: Input: numbers = ["001","007","15","00153"] Output: false Explanation: The string "001" is a prefix of the string "00153" . Thus, the output is false .   Constraints: 2 <= numbers.length <= 50 1 <= numbers[i].length <= 50 All numbers contain only digits '0' to '9' .
null
null
#include <ranges> class Solution { public: bool phonePrefix(vector<string>& numbers) { ranges::sort(numbers, [](const string& a, const string& b) { return a.size() < b.size(); }); for (int i = 0; i < numbers.size(); i++) { if (ranges::any_of(numbers | views::take(i), [&](const string& t) { return numbers[i].starts_with(t); })) { return false; } } return true; } };
null
null
func phonePrefix(numbers []string) bool { sort.Slice(numbers, func(i, j int) bool { return len(numbers[i]) < len(numbers[j]) }) for i, s := range numbers { for _, t := range numbers[:i] { if strings.HasPrefix(s, t) { return false } } } return true }
class Solution { public boolean phonePrefix(String[] numbers) { Arrays.sort(numbers, (a, b) -> Integer.compare(a.length(), b.length())); for (int i = 0; i < numbers.length; i++) { String s = numbers[i]; for (int j = 0; j < i; j++) { if (s.startsWith(numbers[j])) { return false; } } } return true; } }
null
null
null
null
null
null
class Solution: def phonePrefix(self, numbers: List[str]) -> bool: numbers.sort(key=len) for i, s in enumerate(numbers): if any(s.startswith(t) for t in numbers[:i]): return False return True
null
null
null
null
null
function phonePrefix(numbers: string[]): boolean { numbers.sort((a, b) => a.length - b.length); for (let i = 0; i < numbers.length; i++) { for (let j = 0; j < i; j++) { if (numbers[i].startsWith(numbers[j])) { return false; } } } return true; }
Minimum Element After Replacement With Digit Sum
You are given an integer array nums . You replace each element in nums with the sum of its digits. Return the minimum element in nums after all replacements.   Example 1: Input: nums = [10,12,13,14] Output: 1 Explanation: nums becomes [1, 3, 4, 5] after all replacements, with minimum element 1. Example 2: Input: nums = [1,2,3,4] Output: 1 Explanation: nums becomes [1, 2, 3, 4] after all replacements, with minimum element 1. Example 3: Input: nums = [999,19,199] Output: 10 Explanation: nums becomes [27, 10, 19] after all replacements, with minimum element 10.   Constraints: 1 <= nums.length <= 100 1 <= nums[i] <= 10 4
null
null
class Solution { public: int minElement(vector<int>& nums) { int ans = 100; for (int x : nums) { int y = 0; for (; x > 0; x /= 10) { y += x % 10; } ans = min(ans, y); } return ans; } };
null
null
func minElement(nums []int) int { ans := 100 for _, x := range nums { y := 0 for ; x > 0; x /= 10 { y += x % 10 } ans = min(ans, y) } return ans }
class Solution { public int minElement(int[] nums) { int ans = 100; for (int x : nums) { int y = 0; for (; x > 0; x /= 10) { y += x % 10; } ans = Math.min(ans, y); } return ans; } }
null
null
null
null
null
null
class Solution: def minElement(self, nums: List[int]) -> int: return min(sum(int(b) for b in str(x)) for x in nums)
null
null
null
null
null
function minElement(nums: number[]): number { let ans: number = 100; for (let x of nums) { let y = 0; for (; x; x = Math.floor(x / 10)) { y += x % 10; } ans = Math.min(ans, y); } return ans; }
Grid Game
You are given a 0-indexed 2D array grid of size 2 x n , where grid[r][c] represents the number of points at position (r, c) on the matrix. Two robots are playing a game on this matrix. Both robots initially start at (0, 0) and want to reach (1, n-1) . Each robot may only move to the right ( (r, c) to (r, c + 1) ) or down ( (r, c) to (r + 1, c) ). At the start of the game, the first robot moves from (0, 0) to (1, n-1) , collecting all the points from the cells on its path. For all cells (r, c) traversed on the path, grid[r][c] is set to 0 . Then, the second robot moves from (0, 0) to (1, n-1) , collecting the points on its path. Note that their paths may intersect with one another. The first robot wants to minimize the number of points collected by the second robot. In contrast, the second robot wants to maximize the number of points it collects. If both robots play optimally , return the number of points collected by the second robot.   Example 1: Input: grid = [[2,5,4],[1,5,1]] Output: 4 Explanation: The optimal path taken by the first robot is shown in red, and the optimal path taken by the second robot is shown in blue. The cells visited by the first robot are set to 0. The second robot will collect 0 + 0 + 4 + 0 = 4 points. Example 2: Input: grid = [[3,3,1],[8,5,2]] Output: 4 Explanation: The optimal path taken by the first robot is shown in red, and the optimal path taken by the second robot is shown in blue. The cells visited by the first robot are set to 0. The second robot will collect 0 + 3 + 1 + 0 = 4 points. Example 3: Input: grid = [[1,3,1,15],[1,3,3,1]] Output: 7 Explanation: The optimal path taken by the first robot is shown in red, and the optimal path taken by the second robot is shown in blue. The cells visited by the first robot are set to 0. The second robot will collect 0 + 1 + 3 + 3 + 0 = 7 points.   Constraints: grid.length == 2 n == grid[r].length 1 <= n <= 5 * 10 4 1 <= grid[r][c] <= 10 5
null
null
using ll = long long; class Solution { public: long long gridGame(vector<vector<int>>& grid) { ll ans = LONG_MAX; int n = grid[0].size(); ll s1 = 0, s2 = 0; for (int& v : grid[0]) s1 += v; for (int j = 0; j < n; ++j) { s1 -= grid[0][j]; ans = min(ans, max(s1, s2)); s2 += grid[1][j]; } return ans; } };
null
null
func gridGame(grid [][]int) int64 { ans := math.MaxInt64 s1, s2 := 0, 0 for _, v := range grid[0] { s1 += v } for j, v := range grid[0] { s1 -= v ans = min(ans, max(s1, s2)) s2 += grid[1][j] } return int64(ans) }
class Solution { public long gridGame(int[][] grid) { long ans = Long.MAX_VALUE; long s1 = 0, s2 = 0; for (int v : grid[0]) { s1 += v; } int n = grid[0].length; for (int j = 0; j < n; ++j) { s1 -= grid[0][j]; ans = Math.min(ans, Math.max(s1, s2)); s2 += grid[1][j]; } return ans; } }
null
null
null
null
null
null
class Solution: def gridGame(self, grid: List[List[int]]) -> int: ans = inf s1, s2 = sum(grid[0]), 0 for j, v in enumerate(grid[0]): s1 -= v ans = min(ans, max(s1, s2)) s2 += grid[1][j] return ans
null
null
null
null
null
function gridGame(grid: number[][]): number { let ans = Number.MAX_SAFE_INTEGER; let s1 = grid[0].reduce((a, b) => a + b, 0); let s2 = 0; for (let j = 0; j < grid[0].length; ++j) { s1 -= grid[0][j]; ans = Math.min(ans, Math.max(s1, s2)); s2 += grid[1][j]; } return ans; }
Minimum Incompatibility
You are given an integer array nums ​​​ and an integer k . You are asked to distribute this array into k subsets of equal size such that there are no two equal elements in the same subset. A subset's incompatibility is the difference between the maximum and minimum elements in that array. Return the minimum possible sum of incompatibilities of the k subsets after distributing the array optimally, or return -1 if it is not possible. A subset is a group integers that appear in the array with no particular order.   Example 1: Input: nums = [1,2,1,4], k = 2 Output: 4 Explanation: The optimal distribution of subsets is [1,2] and [1,4]. The incompatibility is (2-1) + (4-1) = 4. Note that [1,1] and [2,4] would result in a smaller sum, but the first subset contains 2 equal elements. Example 2: Input: nums = [6,3,8,1,3,1,2,2], k = 4 Output: 6 Explanation: The optimal distribution of subsets is [1,2], [2,3], [6,8], and [1,3]. The incompatibility is (2-1) + (3-2) + (8-6) + (3-1) = 6. Example 3: Input: nums = [5,3,3,6,3,3], k = 3 Output: -1 Explanation: It is impossible to distribute nums into 3 subsets where no two elements are equal in the same subset.   Constraints: 1 <= k <= nums.length <= 16 nums.length is divisible by k 1 <= nums[i] <= nums.length
null
public class Solution { public int MinimumIncompatibility(int[] nums, int k) { int n = nums.Length; int m = n / k; int[] g = new int[1 << n]; Array.Fill(g, -1); for (int i = 1; i < 1 << n; ++i) { if (bitCount(i) != m) { continue; } HashSet<int> s = new(); int mi = 20, mx = 0; for (int j = 0; j < n; ++j) { if ((i >> j & 1) == 1) { if (s.Contains(nums[j])) { break; } s.Add(nums[j]); mi = Math.Min(mi, nums[j]); mx = Math.Max(mx, nums[j]); } } if (s.Count == m) { g[i] = mx - mi; } } int[] f = new int[1 << n]; int inf = 1 << 30; Array.Fill(f, inf); f[0] = 0; for (int i = 0; i < 1 << n; ++i) { if (f[i] == inf) { continue; } HashSet<int> s = new(); int mask = 0; for (int j = 0; j < n; ++j) { if ((i >> j & 1) == 0 && !s.Contains(nums[j])) { s.Add(nums[j]); mask |= 1 << j; } } if (s.Count < m) { continue; } for (int j = mask; j > 0; j = (j - 1) & mask) { if (g[j] != -1) { f[i | j] = Math.Min(f[i | j], f[i] + g[j]); } } } return f[(1 << n) - 1] == inf ? -1 : f[(1 << n) - 1]; } private int bitCount(int x) { int cnt = 0; while (x > 0) { x &= x - 1; ++cnt; } return cnt; } }
class Solution { public: int minimumIncompatibility(vector<int>& nums, int k) { int n = nums.size(); int m = n / k; int g[1 << n]; memset(g, -1, sizeof(g)); for (int i = 1; i < 1 << n; ++i) { if (__builtin_popcount(i) != m) { continue; } unordered_set<int> s; int mi = 20, mx = 0; for (int j = 0; j < n; ++j) { if (i >> j & 1) { if (s.count(nums[j])) { break; } s.insert(nums[j]); mi = min(mi, nums[j]); mx = max(mx, nums[j]); } } if (s.size() == m) { g[i] = mx - mi; } } int f[1 << n]; memset(f, 0x3f, sizeof(f)); f[0] = 0; for (int i = 0; i < 1 << n; ++i) { if (f[i] == 0x3f3f3f3f) { continue; } unordered_set<int> s; int mask = 0; for (int j = 0; j < n; ++j) { if ((i >> j & 1) == 0 && !s.count(nums[j])) { s.insert(nums[j]); mask |= 1 << j; } } if (s.size() < m) { continue; } for (int j = mask; j; j = (j - 1) & mask) { if (g[j] != -1) { f[i | j] = min(f[i | j], f[i] + g[j]); } } } return f[(1 << n) - 1] == 0x3f3f3f3f ? -1 : f[(1 << n) - 1]; } };
null
null
func minimumIncompatibility(nums []int, k int) int { n := len(nums) m := n / k const inf = 1 << 30 f := make([]int, 1<<n) g := make([]int, 1<<n) for i := range g { f[i] = inf g[i] = -1 } for i := 1; i < 1<<n; i++ { if bits.OnesCount(uint(i)) != m { continue } s := map[int]struct{}{} mi, mx := 20, 0 for j, x := range nums { if i>>j&1 == 1 { if _, ok := s[x]; ok { break } s[x] = struct{}{} mi = min(mi, x) mx = max(mx, x) } } if len(s) == m { g[i] = mx - mi } } f[0] = 0 for i := 0; i < 1<<n; i++ { if f[i] == inf { continue } s := map[int]struct{}{} mask := 0 for j, x := range nums { if _, ok := s[x]; !ok && i>>j&1 == 0 { s[x] = struct{}{} mask |= 1 << j } } if len(s) < m { continue } for j := mask; j > 0; j = (j - 1) & mask { if g[j] != -1 { f[i|j] = min(f[i|j], f[i]+g[j]) } } } if f[1<<n-1] == inf { return -1 } return f[1<<n-1] }
class Solution { public int minimumIncompatibility(int[] nums, int k) { int n = nums.length; int m = n / k; int[] g = new int[1 << n]; Arrays.fill(g, -1); for (int i = 1; i < 1 << n; ++i) { if (Integer.bitCount(i) != m) { continue; } Set<Integer> s = new HashSet<>(); int mi = 20, mx = 0; for (int j = 0; j < n; ++j) { if ((i >> j & 1) == 1) { if (!s.add(nums[j])) { break; } mi = Math.min(mi, nums[j]); mx = Math.max(mx, nums[j]); } } if (s.size() == m) { g[i] = mx - mi; } } int[] f = new int[1 << n]; final int inf = 1 << 30; Arrays.fill(f, inf); f[0] = 0; for (int i = 0; i < 1 << n; ++i) { if (f[i] == inf) { continue; } Set<Integer> s = new HashSet<>(); int mask = 0; for (int j = 0; j < n; ++j) { if ((i >> j & 1) == 0 && !s.contains(nums[j])) { s.add(nums[j]); mask |= 1 << j; } } if (s.size() < m) { continue; } for (int j = mask; j > 0; j = (j - 1) & mask) { if (g[j] != -1) { f[i | j] = Math.min(f[i | j], f[i] + g[j]); } } } return f[(1 << n) - 1] == inf ? -1 : f[(1 << n) - 1]; } }
null
null
null
null
null
null
class Solution: def minimumIncompatibility(self, nums: List[int], k: int) -> int: n = len(nums) m = n // k g = [-1] * (1 << n) for i in range(1, 1 << n): if i.bit_count() != m: continue s = set() mi, mx = 20, 0 for j, x in enumerate(nums): if i >> j & 1: if x in s: break s.add(x) mi = min(mi, x) mx = max(mx, x) if len(s) == m: g[i] = mx - mi f = [inf] * (1 << n) f[0] = 0 for i in range(1 << n): if f[i] == inf: continue s = set() mask = 0 for j, x in enumerate(nums): if (i >> j & 1) == 0 and x not in s: s.add(x) mask |= 1 << j if len(s) < m: continue j = mask while j: if g[j] != -1: f[i | j] = min(f[i | j], f[i] + g[j]) j = (j - 1) & mask return f[-1] if f[-1] != inf else -1
null
null
null
null
null
function minimumIncompatibility(nums: number[], k: number): number { const n = nums.length; const m = Math.floor(n / k); const g: number[] = Array(1 << n).fill(-1); for (let i = 1; i < 1 << n; ++i) { if (bitCount(i) !== m) { continue; } const s: Set<number> = new Set(); let [mi, mx] = [20, 0]; for (let j = 0; j < n; ++j) { if ((i >> j) & 1) { if (s.has(nums[j])) { break; } s.add(nums[j]); mi = Math.min(mi, nums[j]); mx = Math.max(mx, nums[j]); } } if (s.size === m) { g[i] = mx - mi; } } const inf = 1e9; const f: number[] = Array(1 << n).fill(inf); f[0] = 0; for (let i = 0; i < 1 << n; ++i) { if (f[i] === inf) { continue; } const s: Set<number> = new Set(); let mask = 0; for (let j = 0; j < n; ++j) { if (((i >> j) & 1) === 0 && !s.has(nums[j])) { s.add(nums[j]); mask |= 1 << j; } } if (s.size < m) { continue; } for (let j = mask; j; j = (j - 1) & mask) { if (g[j] !== -1) { f[i | j] = Math.min(f[i | j], f[i] + g[j]); } } } return f[(1 << n) - 1] === inf ? -1 : f[(1 << n) - 1]; } function bitCount(i: number): number { i = i - ((i >>> 1) & 0x55555555); i = (i & 0x33333333) + ((i >>> 2) & 0x33333333); i = (i + (i >>> 4)) & 0x0f0f0f0f; i = i + (i >>> 8); i = i + (i >>> 16); return i & 0x3f; }
Last Stone Weight
You are given an array of integers stones where stones[i] is the weight of the i th stone. We are playing a game with the stones. On each turn, we choose the heaviest two stones and smash them together. Suppose the heaviest two stones have weights x and y with x <= y . The result of this smash is: If x == y , both stones are destroyed, and If x != y , the stone of weight x is destroyed, and the stone of weight y has new weight y - x . At the end of the game, there is at most one stone left. Return the weight of the last remaining stone . If there are no stones left, return 0 .   Example 1: Input: stones = [2,7,4,1,8,1] Output: 1 Explanation: We combine 7 and 8 to get 1 so the array converts to [2,4,1,1,1] then, we combine 2 and 4 to get 2 so the array converts to [2,1,1,1] then, we combine 2 and 1 to get 1 so the array converts to [1,1,1] then, we combine 1 and 1 to get 0 so the array converts to [1] then that's the value of the last stone. Example 2: Input: stones = [1] Output: 1   Constraints: 1 <= stones.length <= 30 1 <= stones[i] <= 1000
null
null
class Solution { public: int lastStoneWeight(vector<int>& stones) { priority_queue<int> pq; for (int x : stones) { pq.push(x); } while (pq.size() > 1) { int y = pq.top(); pq.pop(); int x = pq.top(); pq.pop(); if (x != y) { pq.push(y - x); } } return pq.empty() ? 0 : pq.top(); } };
null
null
func lastStoneWeight(stones []int) int { q := &hp{stones} heap.Init(q) for q.Len() > 1 { y, x := q.pop(), q.pop() if x != y { q.push(y - x) } } if q.Len() > 0 { return q.IntSlice[0] } return 0 } type hp struct{ sort.IntSlice } func (h hp) Less(i, j int) bool { return h.IntSlice[i] > h.IntSlice[j] } func (h *hp) Push(v any) { h.IntSlice = append(h.IntSlice, v.(int)) } func (h *hp) Pop() any { a := h.IntSlice v := a[len(a)-1] h.IntSlice = a[:len(a)-1] return v } func (h *hp) push(v int) { heap.Push(h, v) } func (h *hp) pop() int { return heap.Pop(h).(int) }
class Solution { public int lastStoneWeight(int[] stones) { PriorityQueue<Integer> q = new PriorityQueue<>((a, b) -> b - a); for (int x : stones) { q.offer(x); } while (q.size() > 1) { int y = q.poll(); int x = q.poll(); if (x != y) { q.offer(y - x); } } return q.isEmpty() ? 0 : q.poll(); } }
/** * @param {number[]} stones * @return {number} */ var lastStoneWeight = function (stones) { const pq = new MaxPriorityQueue(); for (const x of stones) { pq.enqueue(x); } while (pq.size() > 1) { const y = pq.dequeue(); const x = pq.dequeue(); if (x != y) { pq.enqueue(y - x); } } return pq.isEmpty() ? 0 : pq.dequeue(); };
null
null
null
null
null
class Solution: def lastStoneWeight(self, stones: List[int]) -> int: h = [-x for x in stones] heapify(h) while len(h) > 1: y, x = -heappop(h), -heappop(h) if x != y: heappush(h, x - y) return 0 if not h else -h[0]
null
null
null
null
null
function lastStoneWeight(stones: number[]): number { const pq = new MaxPriorityQueue<number>(); for (const x of stones) { pq.enqueue(x); } while (pq.size() > 1) { const y = pq.dequeue(); const x = pq.dequeue(); if (x !== y) { pq.enqueue(y - x); } } return pq.isEmpty() ? 0 : pq.dequeue(); }
Minimum Total Distance Traveled
There are some robots and factories on the X-axis. You are given an integer array robot where robot[i] is the position of the i th robot. You are also given a 2D integer array factory where factory[j] = [position j , limit j ] indicates that position j is the position of the j th factory and that the j th factory can repair at most limit j robots. The positions of each robot are unique . The positions of each factory are also unique . Note that a robot can be in the same position as a factory initially. All the robots are initially broken; they keep moving in one direction. The direction could be the negative or the positive direction of the X-axis. When a robot reaches a factory that did not reach its limit, the factory repairs the robot, and it stops moving. At any moment , you can set the initial direction of moving for some robot. Your target is to minimize the total distance traveled by all the robots. Return the minimum total distance traveled by all the robots . The test cases are generated such that all the robots can be repaired. Note that All robots move at the same speed. If two robots move in the same direction, they will never collide. If two robots move in opposite directions and they meet at some point, they do not collide. They cross each other. If a robot passes by a factory that reached its limits, it crosses it as if it does not exist. If the robot moved from a position x to a position y , the distance it moved is |y - x| .   Example 1: Input: robot = [0,4,6], factory = [[2,2],[6,2]] Output: 4 Explanation: As shown in the figure: - The first robot at position 0 moves in the positive direction. It will be repaired at the first factory. - The second robot at position 4 moves in the negative direction. It will be repaired at the first factory. - The third robot at position 6 will be repaired at the second factory. It does not need to move. The limit of the first factory is 2, and it fixed 2 robots. The limit of the second factory is 2, and it fixed 1 robot. The total distance is |2 - 0| + |2 - 4| + |6 - 6| = 4. It can be shown that we cannot achieve a better total distance than 4. Example 2: Input: robot = [1,-1], factory = [[-2,1],[2,1]] Output: 2 Explanation: As shown in the figure: - The first robot at position 1 moves in the positive direction. It will be repaired at the second factory. - The second robot at position -1 moves in the negative direction. It will be repaired at the first factory. The limit of the first factory is 1, and it fixed 1 robot. The limit of the second factory is 1, and it fixed 1 robot. The total distance is |2 - 1| + |(-2) - (-1)| = 2. It can be shown that we cannot achieve a better total distance than 2.   Constraints: 1 <= robot.length, factory.length <= 100 factory[j].length == 2 -10 9 <= robot[i], position j <= 10 9 0 <= limit j <= robot.length The input will be generated such that it is always possible to repair every robot.
null
null
using ll = long long; class Solution { public: long long minimumTotalDistance(vector<int>& robot, vector<vector<int>>& factory) { sort(robot.begin(), robot.end()); sort(factory.begin(), factory.end()); vector<vector<ll>> f(robot.size(), vector<ll>(factory.size())); function<ll(int i, int j)> dfs = [&](int i, int j) -> ll { if (i == robot.size()) return 0; if (j == factory.size()) return 1e15; if (f[i][j]) return f[i][j]; ll ans = dfs(i, j + 1); ll t = 0; for (int k = 0; k < factory[j][1]; ++k) { if (i + k >= robot.size()) break; t += abs(robot[i + k] - factory[j][0]); ans = min(ans, t + dfs(i + k + 1, j + 1)); } f[i][j] = ans; return ans; }; return dfs(0, 0); } };
null
null
func minimumTotalDistance(robot []int, factory [][]int) int64 { sort.Ints(robot) sort.Slice(factory, func(i, j int) bool { return factory[i][0] < factory[j][0] }) f := make([][]int, len(robot)) for i := range f { f[i] = make([]int, len(factory)) } var dfs func(i, j int) int dfs = func(i, j int) int { if i == len(robot) { return 0 } if j == len(factory) { return 1e15 } if f[i][j] != 0 { return f[i][j] } ans := dfs(i, j+1) t := 0 for k := 0; k < factory[j][1]; k++ { if i+k >= len(robot) { break } t += abs(robot[i+k] - factory[j][0]) ans = min(ans, t+dfs(i+k+1, j+1)) } f[i][j] = ans return ans } return int64(dfs(0, 0)) } func abs(x int) int { if x < 0 { return -x } return x }
class Solution { private long[][] f; private List<Integer> robot; private int[][] factory; public long minimumTotalDistance(List<Integer> robot, int[][] factory) { Collections.sort(robot); Arrays.sort(factory, (a, b) -> a[0] - b[0]); this.robot = robot; this.factory = factory; f = new long[robot.size()][factory.length]; return dfs(0, 0); } private long dfs(int i, int j) { if (i == robot.size()) { return 0; } if (j == factory.length) { return Long.MAX_VALUE / 1000; } if (f[i][j] != 0) { return f[i][j]; } long ans = dfs(i, j + 1); long t = 0; for (int k = 0; k < factory[j][1]; ++k) { if (i + k == robot.size()) { break; } t += Math.abs(robot.get(i + k) - factory[j][0]); ans = Math.min(ans, t + dfs(i + k + 1, j + 1)); } f[i][j] = ans; return ans; } }
null
null
null
null
null
null
class Solution: def minimumTotalDistance(self, robot: List[int], factory: List[List[int]]) -> int: @cache def dfs(i, j): if i == len(robot): return 0 if j == len(factory): return inf ans = dfs(i, j + 1) t = 0 for k in range(factory[j][1]): if i + k == len(robot): break t += abs(robot[i + k] - factory[j][0]) ans = min(ans, t + dfs(i + k + 1, j + 1)) return ans robot.sort() factory.sort() ans = dfs(0, 0) dfs.cache_clear() return ans
null
null
null
null
null
null
How Many Numbers Are Smaller Than the Current Number
Given the array nums , for each nums[i] find out how many numbers in the array are smaller than it. That is, for each nums[i] you have to count the number of valid j's  such that  j != i and nums[j] < nums[i] . Return the answer in an array.   Example 1: Input: nums = [8,1,2,2,3] Output: [4,0,1,1,3] Explanation: For nums[0]=8 there exist four smaller numbers than it (1, 2, 2 and 3). For nums[1]=1 does not exist any smaller number than it. For nums[2]=2 there exist one smaller number than it (1). For nums[3]=2 there exist one smaller number than it (1). For nums[4]=3 there exist three smaller numbers than it (1, 2 and 2). Example 2: Input: nums = [6,5,4,8] Output: [2,1,0,3] Example 3: Input: nums = [7,7,7,7] Output: [0,0,0,0]   Constraints: 2 <= nums.length <= 500 0 <= nums[i] <= 100
null
null
class Solution { public: vector<int> smallerNumbersThanCurrent(vector<int>& nums) { int cnt[102]{}; for (int& x : nums) { ++cnt[x + 1]; } for (int i = 1; i < 102; ++i) { cnt[i] += cnt[i - 1]; } vector<int> ans; for (int& x : nums) { ans.push_back(cnt[x]); } return ans; } };
null
null
func smallerNumbersThanCurrent(nums []int) (ans []int) { cnt := [102]int{} for _, x := range nums { cnt[x+1]++ } for i := 1; i < len(cnt); i++ { cnt[i] += cnt[i-1] } for _, x := range nums { ans = append(ans, cnt[x]) } return }
class Solution { public int[] smallerNumbersThanCurrent(int[] nums) { int[] cnt = new int[102]; for (int x : nums) { ++cnt[x + 1]; } for (int i = 1; i < cnt.length; ++i) { cnt[i] += cnt[i - 1]; } int n = nums.length; int[] ans = new int[n]; for (int i = 0; i < n; ++i) { ans[i] = cnt[nums[i]]; } return ans; } }
null
null
null
null
null
null
class Solution: def smallerNumbersThanCurrent(self, nums: List[int]) -> List[int]: cnt = [0] * 102 for x in nums: cnt[x + 1] += 1 s = list(accumulate(cnt)) return [s[x] for x in nums]
null
null
null
null
null
function smallerNumbersThanCurrent(nums: number[]): number[] { const cnt: number[] = new Array(102).fill(0); for (const x of nums) { ++cnt[x + 1]; } for (let i = 1; i < cnt.length; ++i) { cnt[i] += cnt[i - 1]; } const n = nums.length; const ans: number[] = new Array(n); for (let i = 0; i < n; ++i) { ans[i] = cnt[nums[i]]; } return ans; }
Count Triplets with Even XOR Set Bits II 🔒
Given three integer arrays a , b , and c , return the number of triplets (a[i], b[j], c[k]) , such that the bitwise XOR between the elements of each triplet has an even number of set bits .   Example 1: Input: a = [1], b = [2], c = [3] Output: 1 Explanation: The only triplet is (a[0], b[0], c[0]) and their XOR is: 1 XOR 2 XOR 3 = 00 2 . Example 2: Input: a = [1,1], b = [2,3], c = [1,5] Output: 4 Explanation: Consider these four triplets: (a[0], b[1], c[0]) : 1 XOR 3 XOR 1 = 011 2 (a[1], b[1], c[0]) : 1 XOR 3 XOR 1 = 011 2 (a[0], b[0], c[1]) : 1 XOR 2 XOR 5 = 110 2 (a[1], b[0], c[1]) : 1 XOR 2 XOR 5 = 110 2   Constraints: 1 <= a.length, b.length, c.length <= 10 5 0 <= a[i], b[i], c[i] <= 10 9
null
null
class Solution { public: long long tripletCount(vector<int>& a, vector<int>& b, vector<int>& c) { int cnt1[2]{}; int cnt2[2]{}; int cnt3[2]{}; for (int x : a) { ++cnt1[__builtin_popcount(x) & 1]; } for (int x : b) { ++cnt2[__builtin_popcount(x) & 1]; } for (int x : c) { ++cnt3[__builtin_popcount(x) & 1]; } long long ans = 0; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 2; ++j) { for (int k = 0; k < 2; ++k) { if ((i + j + k) % 2 == 0) { ans += 1LL * cnt1[i] * cnt2[j] * cnt3[k]; } } } } return ans; } };
null
null
func tripletCount(a []int, b []int, c []int) (ans int64) { cnt1 := [2]int{} cnt2 := [2]int{} cnt3 := [2]int{} for _, x := range a { cnt1[bits.OnesCount(uint(x))%2]++ } for _, x := range b { cnt2[bits.OnesCount(uint(x))%2]++ } for _, x := range c { cnt3[bits.OnesCount(uint(x))%2]++ } for i := 0; i < 2; i++ { for j := 0; j < 2; j++ { for k := 0; k < 2; k++ { if (i+j+k)%2 == 0 { ans += int64(cnt1[i] * cnt2[j] * cnt3[k]) } } } } return }
class Solution { public long tripletCount(int[] a, int[] b, int[] c) { int[] cnt1 = new int[2]; int[] cnt2 = new int[2]; int[] cnt3 = new int[2]; for (int x : a) { ++cnt1[Integer.bitCount(x) & 1]; } for (int x : b) { ++cnt2[Integer.bitCount(x) & 1]; } for (int x : c) { ++cnt3[Integer.bitCount(x) & 1]; } long ans = 0; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 2; ++j) { for (int k = 0; k < 2; ++k) { if ((i + j + k) % 2 == 0) { ans += 1L * cnt1[i] * cnt2[j] * cnt3[k]; } } } } return ans; } }
null
null
null
null
null
null
class Solution: def tripletCount(self, a: List[int], b: List[int], c: List[int]) -> int: cnt1 = Counter(x.bit_count() & 1 for x in a) cnt2 = Counter(x.bit_count() & 1 for x in b) cnt3 = Counter(x.bit_count() & 1 for x in c) ans = 0 for i in range(2): for j in range(2): for k in range(2): if (i + j + k) & 1 ^ 1: ans += cnt1[i] * cnt2[j] * cnt3[k] return ans
null
null
null
null
null
function tripletCount(a: number[], b: number[], c: number[]): number { const cnt1: [number, number] = [0, 0]; const cnt2: [number, number] = [0, 0]; const cnt3: [number, number] = [0, 0]; for (const x of a) { ++cnt1[bitCount(x) & 1]; } for (const x of b) { ++cnt2[bitCount(x) & 1]; } for (const x of c) { ++cnt3[bitCount(x) & 1]; } let ans = 0; for (let i = 0; i < 2; ++i) { for (let j = 0; j < 2; ++j) { for (let k = 0; k < 2; ++k) { if ((i + j + k) % 2 === 0) { ans += cnt1[i] * cnt2[j] * cnt3[k]; } } } } return ans; } function bitCount(i: number): number { i = i - ((i >>> 1) & 0x55555555); i = (i & 0x33333333) + ((i >>> 2) & 0x33333333); i = (i + (i >>> 4)) & 0x0f0f0f0f; i = i + (i >>> 8); i = i + (i >>> 16); return i & 0x3f; }
Divide Chocolate 🔒
You have one chocolate bar that consists of some chunks. Each chunk has its own sweetness given by the array  sweetness . You want to share the chocolate with your k  friends so you start cutting the chocolate bar into k + 1  pieces using  k  cuts, each piece consists of some consecutive chunks. Being generous, you will eat the piece with the minimum total sweetness and give the other pieces to your friends. Find the maximum total sweetness of the piece you can get by cutting the chocolate bar optimally.   Example 1: Input: sweetness = [1,2,3,4,5,6,7,8,9], k = 5 Output: 6 Explanation: You can divide the chocolate to [1,2,3], [4,5], [6], [7], [8], [9] Example 2: Input: sweetness = [5,6,7,8,9,1,2,3,4], k = 8 Output: 1 Explanation: There is only one way to cut the bar into 9 pieces. Example 3: Input: sweetness = [1,2,2,1,2,2,1,2,2], k = 2 Output: 5 Explanation: You can divide the chocolate to [1,2,2], [1,2,2], [1,2,2]   Constraints: 0 <= k < sweetness.length <= 10 4 1 <= sweetness[i] <= 10 5
null
null
class Solution { public: int maximizeSweetness(vector<int>& sweetness, int k) { int l = 0, r = accumulate(sweetness.begin(), sweetness.end(), 0); auto check = [&](int x) { int s = 0, cnt = 0; for (int v : sweetness) { s += v; if (s >= x) { s = 0; ++cnt; } } return cnt > k; }; while (l < r) { int mid = (l + r + 1) >> 1; if (check(mid)) { l = mid; } else { r = mid - 1; } } return l; } };
null
null
func maximizeSweetness(sweetness []int, k int) int { l, r := 0, 0 for _, v := range sweetness { r += v } check := func(x int) bool { s, cnt := 0, 0 for _, v := range sweetness { s += v if s >= x { s = 0 cnt++ } } return cnt > k } for l < r { mid := (l + r + 1) >> 1 if check(mid) { l = mid } else { r = mid - 1 } } return l }
class Solution { public int maximizeSweetness(int[] sweetness, int k) { int l = 0, r = 0; for (int v : sweetness) { r += v; } while (l < r) { int mid = (l + r + 1) >> 1; if (check(sweetness, mid, k)) { l = mid; } else { r = mid - 1; } } return l; } private boolean check(int[] nums, int x, int k) { int s = 0, cnt = 0; for (int v : nums) { s += v; if (s >= x) { s = 0; ++cnt; } } return cnt > k; } }
null
null
null
null
null
null
class Solution: def maximizeSweetness(self, sweetness: List[int], k: int) -> int: def check(x: int) -> bool: s = cnt = 0 for v in sweetness: s += v if s >= x: s = 0 cnt += 1 return cnt > k l, r = 0, sum(sweetness) while l < r: mid = (l + r + 1) >> 1 if check(mid): l = mid else: r = mid - 1 return l
null
null
null
null
null
function maximizeSweetness(sweetness: number[], k: number): number { let l = 0; let r = sweetness.reduce((a, b) => a + b); const check = (x: number): boolean => { let s = 0; let cnt = 0; for (const v of sweetness) { s += v; if (s >= x) { s = 0; ++cnt; } } return cnt > k; }; while (l < r) { const mid = (l + r + 1) >> 1; if (check(mid)) { l = mid; } else { r = mid - 1; } } return l; }
Maximum Star Sum of a Graph
There is an undirected graph consisting of n nodes numbered from 0 to n - 1 . You are given a 0-indexed integer array vals of length n where vals[i] denotes the value of the i th node. You are also given a 2D integer array edges where edges[i] = [a i , b i ] denotes that there exists an undirected edge connecting nodes a i and b i. A star graph is a subgraph of the given graph having a center node containing 0 or more neighbors. In other words, it is a subset of edges of the given graph such that there exists a common node for all edges. The image below shows star graphs with 3 and 4 neighbors respectively, centered at the blue node. The star sum is the sum of the values of all the nodes present in the star graph. Given an integer k , return the maximum star sum of a star graph containing at most k edges.   Example 1: Input: vals = [1,2,3,4,10,-10,-20], edges = [[0,1],[1,2],[1,3],[3,4],[3,5],[3,6]], k = 2 Output: 16 Explanation: The above diagram represents the input graph. The star graph with the maximum star sum is denoted by blue. It is centered at 3 and includes its neighbors 1 and 4. It can be shown it is not possible to get a star graph with a sum greater than 16. Example 2: Input: vals = [-5], edges = [], k = 0 Output: -5 Explanation: There is only one possible star graph, which is node 0 itself. Hence, we return -5.   Constraints: n == vals.length 1 <= n <= 10 5 -10 4 <= vals[i] <= 10 4 0 <= edges.length <= min(n * (n - 1) / 2 , 10 5 ) edges[i].length == 2 0 <= a i , b i <= n - 1 a i != b i 0 <= k <= n - 1
null
null
class Solution { public: int maxStarSum(vector<int>& vals, vector<vector<int>>& edges, int k) { int n = vals.size(); vector<vector<int>> g(n); for (auto& e : edges) { int a = e[0], b = e[1]; if (vals[b] > 0) g[a].emplace_back(vals[b]); if (vals[a] > 0) g[b].emplace_back(vals[a]); } for (auto& e : g) sort(e.rbegin(), e.rend()); int ans = INT_MIN; for (int i = 0; i < n; ++i) { int v = vals[i]; for (int j = 0; j < min((int) g[i].size(), k); ++j) v += g[i][j]; ans = max(ans, v); } return ans; } };
null
null
func maxStarSum(vals []int, edges [][]int, k int) (ans int) { n := len(vals) g := make([][]int, n) for _, e := range edges { a, b := e[0], e[1] if vals[b] > 0 { g[a] = append(g[a], vals[b]) } if vals[a] > 0 { g[b] = append(g[b], vals[a]) } } for _, e := range g { sort.Sort(sort.Reverse(sort.IntSlice(e))) } ans = math.MinInt32 for i, v := range vals { for j := 0; j < min(len(g[i]), k); j++ { v += g[i][j] } ans = max(ans, v) } return }
class Solution { public int maxStarSum(int[] vals, int[][] edges, int k) { int n = vals.length; List<Integer>[] g = new List[n]; Arrays.setAll(g, key -> new ArrayList<>()); for (var e : edges) { int a = e[0], b = e[1]; if (vals[b] > 0) { g[a].add(vals[b]); } if (vals[a] > 0) { g[b].add(vals[a]); } } for (var e : g) { Collections.sort(e, (a, b) -> b - a); } int ans = Integer.MIN_VALUE; for (int i = 0; i < n; ++i) { int v = vals[i]; for (int j = 0; j < Math.min(g[i].size(), k); ++j) { v += g[i].get(j); } ans = Math.max(ans, v); } return ans; } }
null
null
null
null
null
null
class Solution: def maxStarSum(self, vals: List[int], edges: List[List[int]], k: int) -> int: g = defaultdict(list) for a, b in edges: if vals[b] > 0: g[a].append(vals[b]) if vals[a] > 0: g[b].append(vals[a]) for bs in g.values(): bs.sort(reverse=True) return max(v + sum(g[i][:k]) for i, v in enumerate(vals))
null
null
null
null
null
null
Prime Number of Set Bits in Binary Representation
Given two integers left and right , return the count of numbers in the inclusive range [left, right] having a prime number of set bits in their binary representation . Recall that the number of set bits an integer has is the number of 1 's present when written in binary. For example, 21 written in binary is 10101 , which has 3 set bits.   Example 1: Input: left = 6, right = 10 Output: 4 Explanation: 6 -> 110 (2 set bits, 2 is prime) 7 -> 111 (3 set bits, 3 is prime) 8 -> 1000 (1 set bit, 1 is not prime) 9 -> 1001 (2 set bits, 2 is prime) 10 -> 1010 (2 set bits, 2 is prime) 4 numbers have a prime number of set bits. Example 2: Input: left = 10, right = 15 Output: 5 Explanation: 10 -> 1010 (2 set bits, 2 is prime) 11 -> 1011 (3 set bits, 3 is prime) 12 -> 1100 (2 set bits, 2 is prime) 13 -> 1101 (3 set bits, 3 is prime) 14 -> 1110 (3 set bits, 3 is prime) 15 -> 1111 (4 set bits, 4 is not prime) 5 numbers have a prime number of set bits.   Constraints: 1 <= left <= right <= 10 6 0 <= right - left <= 10 4
null
null
class Solution { public: int countPrimeSetBits(int left, int right) { unordered_set<int> primes{2, 3, 5, 7, 11, 13, 17, 19}; int ans = 0; for (int i = left; i <= right; ++i) ans += primes.count(__builtin_popcount(i)); return ans; } };
null
null
func countPrimeSetBits(left int, right int) (ans int) { primes := map[int]int{} for _, v := range []int{2, 3, 5, 7, 11, 13, 17, 19} { primes[v] = 1 } for i := left; i <= right; i++ { ans += primes[bits.OnesCount(uint(i))] } return }
class Solution { private static Set<Integer> primes = Set.of(2, 3, 5, 7, 11, 13, 17, 19); public int countPrimeSetBits(int left, int right) { int ans = 0; for (int i = left; i <= right; ++i) { if (primes.contains(Integer.bitCount(i))) { ++ans; } } return ans; } }
null
null
null
null
null
null
class Solution: def countPrimeSetBits(self, left: int, right: int) -> int: primes = {2, 3, 5, 7, 11, 13, 17, 19} return sum(i.bit_count() in primes for i in range(left, right + 1))
null
null
null
null
null
null
Number of Connected Components in an Undirected Graph 🔒
You have a graph of n nodes. You are given an integer n and an array edges where edges[i] = [a i , b i ] indicates that there is an edge between a i and b i in the graph. Return the number of connected components in the graph .   Example 1: Input: n = 5, edges = [[0,1],[1,2],[3,4]] Output: 2 Example 2: Input: n = 5, edges = [[0,1],[1,2],[2,3],[3,4]] Output: 1   Constraints: 1 <= n <= 2000 1 <= edges.length <= 5000 edges[i].length == 2 0 <= a i <= b i < n a i != b i There are no repeated edges.
null
null
class Solution { public: int countComponents(int n, vector<vector<int>>& edges) { vector<int> g[n]; for (auto& e : edges) { int a = e[0], b = e[1]; g[a].push_back(b); g[b].push_back(a); } vector<bool> vis(n); int ans = 0; for (int i = 0; i < n; ++i) { if (vis[i]) { continue; } vis[i] = true; ++ans; queue<int> q{{i}}; while (!q.empty()) { int a = q.front(); q.pop(); for (int b : g[a]) { if (!vis[b]) { vis[b] = true; q.push(b); } } } } return ans; } };
null
null
func countComponents(n int, edges [][]int) (ans int) { g := make([][]int, n) for _, e := range edges { a, b := e[0], e[1] g[a] = append(g[a], b) g[b] = append(g[b], a) } vis := make([]bool, n) for i := range g { if vis[i] { continue } vis[i] = true ans++ q := []int{i} for len(q) > 0 { a := q[0] q = q[1:] for _, b := range g[a] { if !vis[b] { vis[b] = true q = append(q, b) } } } } return }
class Solution { public int countComponents(int n, int[][] edges) { List<Integer>[] g = new List[n]; Arrays.setAll(g, k -> new ArrayList<>()); for (var e : edges) { int a = e[0], b = e[1]; g[a].add(b); g[b].add(a); } int ans = 0; boolean[] vis = new boolean[n]; for (int i = 0; i < n; ++i) { if (vis[i]) { continue; } vis[i] = true; ++ans; Deque<Integer> q = new ArrayDeque<>(); q.offer(i); while (!q.isEmpty()) { int a = q.poll(); for (int b : g[a]) { if (!vis[b]) { vis[b] = true; q.offer(b); } } } } return ans; } }
/** * @param {number} n * @param {number[][]} edges * @return {number} */ var countComponents = function (n, edges) { const g = Array.from({ length: n }, () => []); for (const [a, b] of edges) { g[a].push(b); g[b].push(a); } const vis = Array(n).fill(false); const dfs = i => { if (vis[i]) { return 0; } vis[i] = true; for (const j of g[i]) { dfs(j); } return 1; }; return g.reduce((acc, _, i) => acc + dfs(i), 0); };
null
null
null
null
null
class Solution: def countComponents(self, n: int, edges: List[List[int]]) -> int: g = [[] for _ in range(n)] for a, b in edges: g[a].append(b) g[b].append(a) vis = set() ans = 0 for i in range(n): if i in vis: continue vis.add(i) q = deque([i]) while q: a = q.popleft() for b in g[a]: if b not in vis: vis.add(b) q.append(b) ans += 1 return ans
null
null
null
null
null
function countComponents(n: number, edges: number[][]): number { const g: Map<number, number[]> = new Map(Array.from({ length: n }, (_, i) => [i, []])); for (const [a, b] of edges) { g.get(a)!.push(b); g.get(b)!.push(a); } const vis = new Set<number>(); let ans = 0; for (const [i] of g) { if (vis.has(i)) { continue; } const q = [i]; for (const j of q) { if (vis.has(j)) { continue; } vis.add(j); q.push(...g.get(j)!); } ans++; } return ans; }
Swap Adjacent in LR String
In a string composed of 'L' , 'R' , and 'X' characters, like "RXXLRXRXL" , a move consists of either replacing one occurrence of "XL" with "LX" , or replacing one occurrence of "RX" with "XR" . Given the starting string start and the ending string result , return True if and only if there exists a sequence of moves to transform start to result .   Example 1: Input: start = "RXXLRXRXL", result = "XRLXXRRLX" Output: true Explanation: We can transform start to result following these steps: RXXLRXRXL -> XRXLRXRXL -> XRLXRXRXL -> XRLXXRRXL -> XRLXXRRLX Example 2: Input: start = "X", result = "L" Output: false   Constraints: 1 <= start.length <= 10 4 start.length == result.length Both start and result will only consist of characters in 'L' , 'R' , and  'X' .
null
null
class Solution { public: bool canTransform(string start, string end) { int n = start.size(); int i = 0, j = 0; while (true) { while (i < n && start[i] == 'X') ++i; while (j < n && end[j] == 'X') ++j; if (i == n && j == n) return true; if (i == n || j == n || start[i] != end[j]) return false; if (start[i] == 'L' && i < j) return false; if (start[i] == 'R' && i > j) return false; ++i; ++j; } } };
null
null
func canTransform(start string, end string) bool { n := len(start) i, j := 0, 0 for { for i < n && start[i] == 'X' { i++ } for j < n && end[j] == 'X' { j++ } if i == n && j == n { return true } if i == n || j == n || start[i] != end[j] { return false } if start[i] == 'L' && i < j { return false } if start[i] == 'R' && i > j { return false } i, j = i+1, j+1 } }
class Solution { public boolean canTransform(String start, String end) { int n = start.length(); int i = 0, j = 0; while (true) { while (i < n && start.charAt(i) == 'X') { ++i; } while (j < n && end.charAt(j) == 'X') { ++j; } if (i == n && j == n) { return true; } if (i == n || j == n || start.charAt(i) != end.charAt(j)) { return false; } if (start.charAt(i) == 'L' && i < j || start.charAt(i) == 'R' && i > j) { return false; } ++i; ++j; } } }
null
null
null
null
null
null
class Solution: def canTransform(self, start: str, end: str) -> bool: n = len(start) i = j = 0 while 1: while i < n and start[i] == 'X': i += 1 while j < n and end[j] == 'X': j += 1 if i >= n and j >= n: return True if i >= n or j >= n or start[i] != end[j]: return False if start[i] == 'L' and i < j: return False if start[i] == 'R' and i > j: return False i, j = i + 1, j + 1
null
null
null
null
null
null
Transpose Matrix
Given a 2D integer array matrix , return the transpose of matrix . The transpose of a matrix is the matrix flipped over its main diagonal, switching the matrix's row and column indices.   Example 1: Input: matrix = [[1,2,3],[4,5,6],[7,8,9]] Output: [[1,4,7],[2,5,8],[3,6,9]] Example 2: Input: matrix = [[1,2,3],[4,5,6]] Output: [[1,4],[2,5],[3,6]]   Constraints: m == matrix.length n == matrix[i].length 1 <= m, n <= 1000 1 <= m * n <= 10 5 -10 9 <= matrix[i][j] <= 10 9
null
null
class Solution { public: vector<vector<int>> transpose(vector<vector<int>>& matrix) { int m = matrix.size(), n = matrix[0].size(); vector<vector<int>> ans(n, vector<int>(m)); for (int i = 0; i < n; ++i) { for (int j = 0; j < m; ++j) { ans[i][j] = matrix[j][i]; } } return ans; } };
null
null
func transpose(matrix [][]int) [][]int { m, n := len(matrix), len(matrix[0]) ans := make([][]int, n) for i := range ans { ans[i] = make([]int, m) for j := range ans[i] { ans[i][j] = matrix[j][i] } } return ans }
class Solution { public int[][] transpose(int[][] matrix) { int m = matrix.length, n = matrix[0].length; int[][] ans = new int[n][m]; for (int i = 0; i < n; ++i) { for (int j = 0; j < m; ++j) { ans[i][j] = matrix[j][i]; } } return ans; } }
/** * @param {number[][]} matrix * @return {number[][]} */ var transpose = function (matrix) { const [m, n] = [matrix.length, matrix[0].length]; const ans = Array.from({ length: n }, () => Array(m).fill(0)); for (let i = 0; i < n; ++i) { for (let j = 0; j < m; ++j) { ans[i][j] = matrix[j][i]; } } return ans; };
null
null
null
null
null
class Solution: def transpose(self, matrix: List[List[int]]) -> List[List[int]]: return list(zip(*matrix))
null
null
null
null
null
function transpose(matrix: number[][]): number[][] { const [m, n] = [matrix.length, matrix[0].length]; const ans: number[][] = Array.from({ length: n }, () => Array(m).fill(0)); for (let i = 0; i < n; ++i) { for (let j = 0; j < m; ++j) { ans[i][j] = matrix[j][i]; } } return ans; }
Minimum Number of Taps to Open to Water a Garden
There is a one-dimensional garden on the x-axis. The garden starts at the point 0 and ends at the point n . (i.e., the length of the garden is n ). There are n + 1 taps located at points [0, 1, ..., n] in the garden. Given an integer n and an integer array ranges of length n + 1 where ranges[i] (0-indexed) means the i-th tap can water the area [i - ranges[i], i + ranges[i]] if it was open. Return the minimum number of taps that should be open to water the whole garden, If the garden cannot be watered return -1 .   Example 1: Input: n = 5, ranges = [3,4,1,1,0,0] Output: 1 Explanation: The tap at point 0 can cover the interval [-3,3] The tap at point 1 can cover the interval [-3,5] The tap at point 2 can cover the interval [1,3] The tap at point 3 can cover the interval [2,4] The tap at point 4 can cover the interval [4,4] The tap at point 5 can cover the interval [5,5] Opening Only the second tap will water the whole garden [0,5] Example 2: Input: n = 3, ranges = [0,0,0,0] Output: -1 Explanation: Even if you activate all the four taps you cannot water the whole garden.   Constraints: 1 <= n <= 10 4 ranges.length == n + 1 0 <= ranges[i] <= 100
null
null
class Solution { public: int minTaps(int n, vector<int>& ranges) { vector<int> last(n + 1); for (int i = 0; i < n + 1; ++i) { int l = max(0, i - ranges[i]), r = i + ranges[i]; last[l] = max(last[l], r); } int ans = 0, mx = 0, pre = 0; for (int i = 0; i < n; ++i) { mx = max(mx, last[i]); if (mx <= i) { return -1; } if (pre == i) { ++ans; pre = mx; } } return ans; } };
null
null
func minTaps(n int, ranges []int) (ans int) { last := make([]int, n+1) for i, x := range ranges { l, r := max(0, i-x), i+x last[l] = max(last[l], r) } var pre, mx int for i, j := range last[:n] { mx = max(mx, j) if mx <= i { return -1 } if pre == i { ans++ pre = mx } } return }
class Solution { public int minTaps(int n, int[] ranges) { int[] last = new int[n + 1]; for (int i = 0; i < n + 1; ++i) { int l = Math.max(0, i - ranges[i]), r = i + ranges[i]; last[l] = Math.max(last[l], r); } int ans = 0, mx = 0, pre = 0; for (int i = 0; i < n; ++i) { mx = Math.max(mx, last[i]); if (mx <= i) { return -1; } if (pre == i) { ++ans; pre = mx; } } return ans; } }
null
null
null
null
null
null
class Solution: def minTaps(self, n: int, ranges: List[int]) -> int: last = [0] * (n + 1) for i, x in enumerate(ranges): l, r = max(0, i - x), i + x last[l] = max(last[l], r) ans = mx = pre = 0 for i in range(n): mx = max(mx, last[i]) if mx <= i: return -1 if pre == i: ans += 1 pre = mx return ans
null
impl Solution { #[allow(dead_code)] pub fn min_taps(n: i32, ranges: Vec<i32>) -> i32 { let mut last = vec![0; (n + 1) as usize]; let mut ans = 0; let mut mx = 0; let mut pre = 0; // Initialize the last vector for (i, &r) in ranges.iter().enumerate() { if (i as i32) - r >= 0 { last[((i as i32) - r) as usize] = std::cmp::max(last[((i as i32) - r) as usize], (i as i32) + r); } else { last[0] = std::cmp::max(last[0], (i as i32) + r); } } for i in 0..n as usize { mx = std::cmp::max(mx, last[i]); if mx <= (i as i32) { return -1; } if pre == (i as i32) { ans += 1; pre = mx; } } ans } }
null
null
null
function minTaps(n: number, ranges: number[]): number { const last = new Array(n + 1).fill(0); for (let i = 0; i < n + 1; ++i) { const l = Math.max(0, i - ranges[i]); const r = i + ranges[i]; last[l] = Math.max(last[l], r); } let ans = 0; let mx = 0; let pre = 0; for (let i = 0; i < n; ++i) { mx = Math.max(mx, last[i]); if (mx <= i) { return -1; } if (pre == i) { ++ans; pre = mx; } } return ans; }
Daily Temperatures
Given an array of integers temperatures represents the daily temperatures, return an array answer such that answer[i] is the number of days you have to wait after the i th day to get a warmer temperature . If there is no future day for which this is possible, keep answer[i] == 0 instead.   Example 1: Input: temperatures = [73,74,75,71,69,72,76,73] Output: [1,1,4,2,1,1,0,0] Example 2: Input: temperatures = [30,40,50,60] Output: [1,1,1,0] Example 3: Input: temperatures = [30,60,90] Output: [1,1,0]   Constraints: 1 <= temperatures.length <= 10 5 30 <= temperatures[i] <= 100
null
null
class Solution { public: vector<int> dailyTemperatures(vector<int>& temperatures) { int n = temperatures.size(); stack<int> stk; vector<int> ans(n); for (int i = n - 1; ~i; --i) { while (!stk.empty() && temperatures[stk.top()] <= temperatures[i]) { stk.pop(); } if (!stk.empty()) { ans[i] = stk.top() - i; } stk.push(i); } return ans; } };
null
null
func dailyTemperatures(temperatures []int) []int { n := len(temperatures) ans := make([]int, n) stk := []int{} for i := n - 1; i >= 0; i-- { for len(stk) > 0 && temperatures[stk[len(stk)-1]] <= temperatures[i] { stk = stk[:len(stk)-1] } if len(stk) > 0 { ans[i] = stk[len(stk)-1] - i } stk = append(stk, i) } return ans }
class Solution { public int[] dailyTemperatures(int[] temperatures) { int n = temperatures.length; Deque<Integer> stk = new ArrayDeque<>(); int[] ans = new int[n]; for (int i = n - 1; i >= 0; --i) { while (!stk.isEmpty() && temperatures[stk.peek()] <= temperatures[i]) { stk.pop(); } if (!stk.isEmpty()) { ans[i] = stk.peek() - i; } stk.push(i); } return ans; } }
/** * @param {number[]} temperatures * @return {number[]} */ var dailyTemperatures = function (temperatures) { const n = temperatures.length; const ans = Array(n).fill(0); const stk = []; for (let i = n - 1; ~i; --i) { while (stk.length && temperatures[stk.at(-1)] <= temperatures[i]) { stk.pop(); } if (stk.length) { ans[i] = stk.at(-1) - i; } stk.push(i); } return ans; };
null
null
null
null
null
class Solution: def dailyTemperatures(self, temperatures: List[int]) -> List[int]: stk = [] n = len(temperatures) ans = [0] * n for i in range(n - 1, -1, -1): while stk and temperatures[stk[-1]] <= temperatures[i]: stk.pop() if stk: ans[i] = stk[-1] - i stk.append(i) return ans
null
impl Solution { pub fn daily_temperatures(temperatures: Vec<i32>) -> Vec<i32> { let n = temperatures.len(); let mut stk: Vec<usize> = Vec::new(); let mut ans = vec![0; n]; for i in (0..n).rev() { while let Some(&top) = stk.last() { if temperatures[top] <= temperatures[i] { stk.pop(); } else { break; } } if let Some(&top) = stk.last() { ans[i] = (top - i) as i32; } stk.push(i); } ans } }
null
null
null
function dailyTemperatures(temperatures: number[]): number[] { const n = temperatures.length; const ans: number[] = Array(n).fill(0); const stk: number[] = []; for (let i = n - 1; ~i; --i) { while (stk.length && temperatures[stk.at(-1)!] <= temperatures[i]) { stk.pop(); } if (stk.length) { ans[i] = stk.at(-1)! - i; } stk.push(i); } return ans; }
Minimum One Bit Operations to Make Integers Zero
Given an integer n , you must transform it into 0 using the following operations any number of times: Change the rightmost ( 0 th ) bit in the binary representation of n . Change the i th bit in the binary representation of n if the (i-1) th bit is set to 1 and the (i-2) th through 0 th bits are set to 0 . Return the minimum number of operations to transform n into 0 .   Example 1: Input: n = 3 Output: 2 Explanation: The binary representation of 3 is "11". " 1 1" -> " 0 1" with the 2 nd operation since the 0 th bit is 1. "0 1 " -> "0 0 " with the 1 st operation. Example 2: Input: n = 6 Output: 4 Explanation: The binary representation of 6 is "110". " 1 10" -> " 0 10" with the 2 nd operation since the 1 st bit is 1 and 0 th through 0 th bits are 0. "01 0 " -> "01 1 " with the 1 st operation. "0 1 1" -> "0 0 1" with the 2 nd operation since the 0 th bit is 1. "00 1 " -> "00 0 " with the 1 st operation.   Constraints: 0 <= n <= 10 9
null
null
class Solution { public: int minimumOneBitOperations(int n) { if (n == 0) { return 0; } return n ^ minimumOneBitOperations(n >> 1); } };
null
null
func minimumOneBitOperations(n int) int { if n == 0 { return 0 } return n ^ minimumOneBitOperations(n>>1) }
class Solution { public int minimumOneBitOperations(int n) { if (n == 0) { return 0; } return n ^ minimumOneBitOperations(n >> 1); } }
null
null
null
null
null
null
class Solution: def minimumOneBitOperations(self, n: int) -> int: if n == 0: return 0 return n ^ self.minimumOneBitOperations(n >> 1)
null
null
null
null
null
function minimumOneBitOperations(n: number): number { if (n === 0) { return 0; } return n ^ minimumOneBitOperations(n >> 1); }
Maximum Deletions on a String
You are given a string s consisting of only lowercase English letters. In one operation, you can: Delete the entire string s , or Delete the first i letters of s if the first i letters of s are equal to the following i letters in s , for any i in the range 1 <= i <= s.length / 2 . For example, if s = "ababc" , then in one operation, you could delete the first two letters of s to get "abc" , since the first two letters of s and the following two letters of s are both equal to "ab" . Return the maximum number of operations needed to delete all of s .   Example 1: Input: s = "abcabcdabc" Output: 2 Explanation: - Delete the first 3 letters ("abc") since the next 3 letters are equal. Now, s = "abcdabc". - Delete all the letters. We used 2 operations so return 2. It can be proven that 2 is the maximum number of operations needed. Note that in the second operation we cannot delete "abc" again because the next occurrence of "abc" does not happen in the next 3 letters. Example 2: Input: s = "aaabaab" Output: 4 Explanation: - Delete the first letter ("a") since the next letter is equal. Now, s = "aabaab". - Delete the first 3 letters ("aab") since the next 3 letters are equal. Now, s = "aab". - Delete the first letter ("a") since the next letter is equal. Now, s = "ab". - Delete all the letters. We used 4 operations so return 4. It can be proven that 4 is the maximum number of operations needed. Example 3: Input: s = "aaaaa" Output: 5 Explanation: In each operation, we can delete the first letter of s.   Constraints: 1 <= s.length <= 4000 s consists only of lowercase English letters.
null
null
class Solution { public: int deleteString(string s) { int n = s.size(); int g[n + 1][n + 1]; memset(g, 0, sizeof(g)); for (int i = n - 1; ~i; --i) { for (int j = i + 1; j < n; ++j) { if (s[i] == s[j]) { g[i][j] = g[i + 1][j + 1] + 1; } } } int f[n]; for (int i = n - 1; ~i; --i) { f[i] = 1; for (int j = 1; j <= (n - i) / 2; ++j) { if (g[i][i + j] >= j) { f[i] = max(f[i], f[i + j] + 1); } } } return f[0]; } };
null
null
func deleteString(s string) int { n := len(s) g := make([][]int, n+1) for i := range g { g[i] = make([]int, n+1) } for i := n - 1; i >= 0; i-- { for j := i + 1; j < n; j++ { if s[i] == s[j] { g[i][j] = g[i+1][j+1] + 1 } } } f := make([]int, n) for i := n - 1; i >= 0; i-- { f[i] = 1 for j := 1; j <= (n-i)/2; j++ { if g[i][i+j] >= j { f[i] = max(f[i], f[i+j]+1) } } } return f[0] }
class Solution { public int deleteString(String s) { int n = s.length(); int[][] g = new int[n + 1][n + 1]; for (int i = n - 1; i >= 0; --i) { for (int j = i + 1; j < n; ++j) { if (s.charAt(i) == s.charAt(j)) { g[i][j] = g[i + 1][j + 1] + 1; } } } int[] f = new int[n]; for (int i = n - 1; i >= 0; --i) { f[i] = 1; for (int j = 1; j <= (n - i) / 2; ++j) { if (g[i][i + j] >= j) { f[i] = Math.max(f[i], f[i + j] + 1); } } } return f[0]; } }
null
null
null
null
null
null
class Solution: def deleteString(self, s: str) -> int: n = len(s) g = [[0] * (n + 1) for _ in range(n + 1)] for i in range(n - 1, -1, -1): for j in range(i + 1, n): if s[i] == s[j]: g[i][j] = g[i + 1][j + 1] + 1 f = [1] * n for i in range(n - 1, -1, -1): for j in range(1, (n - i) // 2 + 1): if g[i][i + j] >= j: f[i] = max(f[i], f[i + j] + 1) return f[0]
null
null
null
null
null
function deleteString(s: string): number { const n = s.length; const f: number[] = new Array(n).fill(1); for (let i = n - 1; i >= 0; --i) { for (let j = 1; j <= (n - i) >> 1; ++j) { if (s.slice(i, i + j) === s.slice(i + j, i + j + j)) { f[i] = Math.max(f[i], f[i + j] + 1); } } } return f[0]; }
Merge Intervals
Given an array of intervals  where intervals[i] = [start i , end i ] , merge all overlapping intervals, and return an array of the non-overlapping intervals that cover all the intervals in the input .   Example 1: Input: intervals = [[1,3],[2,6],[8,10],[15,18]] Output: [[1,6],[8,10],[15,18]] Explanation: Since intervals [1,3] and [2,6] overlap, merge them into [1,6]. Example 2: Input: intervals = [[1,4],[4,5]] Output: [[1,5]] Explanation: Intervals [1,4] and [4,5] are considered overlapping.   Constraints: 1 <= intervals.length <= 10 4 intervals[i].length == 2 0 <= start i <= end i <= 10 4
null
public class Solution { public int[][] Merge(int[][] intervals) { intervals = intervals.OrderBy(a => a[0]).ToArray(); var ans = new List<int[]>(); ans.Add(intervals[0]); for (int i = 1; i < intervals.Length; ++i) { if (ans[ans.Count - 1][1] < intervals[i][0]) { ans.Add(intervals[i]); } else { ans[ans.Count - 1][1] = Math.Max(ans[ans.Count - 1][1], intervals[i][1]); } } return ans.ToArray(); } }
class Solution { public: vector<vector<int>> merge(vector<vector<int>>& intervals) { sort(intervals.begin(), intervals.end()); vector<vector<int>> ans; ans.emplace_back(intervals[0]); for (int i = 1; i < intervals.size(); ++i) { if (ans.back()[1] < intervals[i][0]) { ans.emplace_back(intervals[i]); } else { ans.back()[1] = max(ans.back()[1], intervals[i][1]); } } return ans; } };
null
null
func merge(intervals [][]int) (ans [][]int) { sort.Slice(intervals, func(i, j int) bool { return intervals[i][0] < intervals[j][0] }) ans = append(ans, intervals[0]) for _, e := range intervals[1:] { if ans[len(ans)-1][1] < e[0] { ans = append(ans, e) } else { ans[len(ans)-1][1] = max(ans[len(ans)-1][1], e[1]) } } return }
class Solution { public int[][] merge(int[][] intervals) { Arrays.sort(intervals, (a, b) -> a[0] - b[0]); List<int[]> ans = new ArrayList<>(); ans.add(intervals[0]); for (int i = 1; i < intervals.length; ++i) { int s = intervals[i][0], e = intervals[i][1]; if (ans.get(ans.size() - 1)[1] < s) { ans.add(intervals[i]); } else { ans.get(ans.size() - 1)[1] = Math.max(ans.get(ans.size() - 1)[1], e); } } return ans.toArray(new int[ans.size()][]); } }
null
class Solution { fun merge(intervals: Array<IntArray>): Array<IntArray> { intervals.sortBy { it[0] } val result = mutableListOf<IntArray>() val n = intervals.size var i = 0 while (i < n) { val left = intervals[i][0] var right = intervals[i][1] while (true) { i++ if (i < n && right >= intervals[i][0]) { right = maxOf(right, intervals[i][1]) } else { result.add(intArrayOf(left, right)) break } } } return result.toTypedArray() } }
null
null
null
null
class Solution: def merge(self, intervals: List[List[int]]) -> List[List[int]]: intervals.sort() ans = [intervals[0]] for s, e in intervals[1:]: if ans[-1][1] < s: ans.append([s, e]) else: ans[-1][1] = max(ans[-1][1], e) return ans
null
impl Solution { pub fn merge(mut intervals: Vec<Vec<i32>>) -> Vec<Vec<i32>> { intervals.sort_unstable_by(|a, b| a[0].cmp(&b[0])); let n = intervals.len(); let mut res = vec![]; let mut i = 0; while i < n { let l = intervals[i][0]; let mut r = intervals[i][1]; i += 1; while i < n && r >= intervals[i][0] { r = r.max(intervals[i][1]); i += 1; } res.push(vec![l, r]); } res } }
null
null
null
function merge(intervals: number[][]): number[][] { intervals.sort((a, b) => a[0] - b[0]); const n = intervals.length; const res = []; let i = 0; while (i < n) { let [l, r] = intervals[i]; i++; while (i < n && r >= intervals[i][0]) { r = Math.max(r, intervals[i][1]); i++; } res.push([l, r]); } return res; }
Beautiful Towers II
You are given a 0-indexed array maxHeights of n integers. You are tasked with building n towers in the coordinate line. The i th tower is built at coordinate i and has a height of heights[i] . A configuration of towers is beautiful if the following conditions hold: 1 <= heights[i] <= maxHeights[i] heights is a mountain array. Array heights is a mountain if there exists an index i such that: For all 0 < j <= i , heights[j - 1] <= heights[j] For all i <= k < n - 1 , heights[k + 1] <= heights[k] Return the maximum possible sum of heights of a beautiful configuration of towers .   Example 1: Input: maxHeights = [5,3,4,1,1] Output: 13 Explanation: One beautiful configuration with a maximum sum is heights = [5,3,3,1,1]. This configuration is beautiful since: - 1 <= heights[i] <= maxHeights[i] - heights is a mountain of peak i = 0. It can be shown that there exists no other beautiful configuration with a sum of heights greater than 13. Example 2: Input: maxHeights = [6,5,3,9,2,7] Output: 22 Explanation: One beautiful configuration with a maximum sum is heights = [3,3,3,9,2,2]. This configuration is beautiful since: - 1 <= heights[i] <= maxHeights[i] - heights is a mountain of peak i = 3. It can be shown that there exists no other beautiful configuration with a sum of heights greater than 22. Example 3: Input: maxHeights = [3,2,5,5,2,3] Output: 18 Explanation: One beautiful configuration with a maximum sum is heights = [2,2,5,5,2,2]. This configuration is beautiful since: - 1 <= heights[i] <= maxHeights[i] - heights is a mountain of peak i = 2. Note that, for this configuration, i = 3 can also be considered a peak. It can be shown that there exists no other beautiful configuration with a sum of heights greater than 18.   Constraints: 1 <= n == maxHeights.length <= 10 5 1 <= maxHeights[i] <= 10 9
null
null
class Solution { public: long long maximumSumOfHeights(vector<int>& maxHeights) { int n = maxHeights.size(); stack<int> stk; vector<int> left(n, -1); vector<int> right(n, n); for (int i = 0; i < n; ++i) { int x = maxHeights[i]; while (!stk.empty() && maxHeights[stk.top()] > x) { stk.pop(); } if (!stk.empty()) { left[i] = stk.top(); } stk.push(i); } stk = stack<int>(); for (int i = n - 1; ~i; --i) { int x = maxHeights[i]; while (!stk.empty() && maxHeights[stk.top()] >= x) { stk.pop(); } if (!stk.empty()) { right[i] = stk.top(); } stk.push(i); } long long f[n], g[n]; for (int i = 0; i < n; ++i) { int x = maxHeights[i]; if (i && x >= maxHeights[i - 1]) { f[i] = f[i - 1] + x; } else { int j = left[i]; f[i] = 1LL * x * (i - j) + (j != -1 ? f[j] : 0); } } for (int i = n - 1; ~i; --i) { int x = maxHeights[i]; if (i < n - 1 && x >= maxHeights[i + 1]) { g[i] = g[i + 1] + x; } else { int j = right[i]; g[i] = 1LL * x * (j - i) + (j != n ? g[j] : 0); } } long long ans = 0; for (int i = 0; i < n; ++i) { ans = max(ans, f[i] + g[i] - maxHeights[i]); } return ans; } };
null
null
func maximumSumOfHeights(maxHeights []int) (ans int64) { n := len(maxHeights) stk := []int{} left := make([]int, n) right := make([]int, n) for i := range left { left[i] = -1 right[i] = n } for i, x := range maxHeights { for len(stk) > 0 && maxHeights[stk[len(stk)-1]] > x { stk = stk[:len(stk)-1] } if len(stk) > 0 { left[i] = stk[len(stk)-1] } stk = append(stk, i) } stk = []int{} for i := n - 1; i >= 0; i-- { x := maxHeights[i] for len(stk) > 0 && maxHeights[stk[len(stk)-1]] >= x { stk = stk[:len(stk)-1] } if len(stk) > 0 { right[i] = stk[len(stk)-1] } stk = append(stk, i) } f := make([]int64, n) g := make([]int64, n) for i, x := range maxHeights { if i > 0 && x >= maxHeights[i-1] { f[i] = f[i-1] + int64(x) } else { j := left[i] f[i] = int64(x) * int64(i-j) if j != -1 { f[i] += f[j] } } } for i := n - 1; i >= 0; i-- { x := maxHeights[i] if i < n-1 && x >= maxHeights[i+1] { g[i] = g[i+1] + int64(x) } else { j := right[i] g[i] = int64(x) * int64(j-i) if j != n { g[i] += g[j] } } } for i, x := range maxHeights { ans = max(ans, f[i]+g[i]-int64(x)) } return }
class Solution { public long maximumSumOfHeights(List<Integer> maxHeights) { int n = maxHeights.size(); Deque<Integer> stk = new ArrayDeque<>(); int[] left = new int[n]; int[] right = new int[n]; Arrays.fill(left, -1); Arrays.fill(right, n); for (int i = 0; i < n; ++i) { int x = maxHeights.get(i); while (!stk.isEmpty() && maxHeights.get(stk.peek()) > x) { stk.pop(); } if (!stk.isEmpty()) { left[i] = stk.peek(); } stk.push(i); } stk.clear(); for (int i = n - 1; i >= 0; --i) { int x = maxHeights.get(i); while (!stk.isEmpty() && maxHeights.get(stk.peek()) >= x) { stk.pop(); } if (!stk.isEmpty()) { right[i] = stk.peek(); } stk.push(i); } long[] f = new long[n]; long[] g = new long[n]; for (int i = 0; i < n; ++i) { int x = maxHeights.get(i); if (i > 0 && x >= maxHeights.get(i - 1)) { f[i] = f[i - 1] + x; } else { int j = left[i]; f[i] = 1L * x * (i - j) + (j >= 0 ? f[j] : 0); } } for (int i = n - 1; i >= 0; --i) { int x = maxHeights.get(i); if (i < n - 1 && x >= maxHeights.get(i + 1)) { g[i] = g[i + 1] + x; } else { int j = right[i]; g[i] = 1L * x * (j - i) + (j < n ? g[j] : 0); } } long ans = 0; for (int i = 0; i < n; ++i) { ans = Math.max(ans, f[i] + g[i] - maxHeights.get(i)); } return ans; } }
null
null
null
null
null
null
class Solution: def maximumSumOfHeights(self, maxHeights: List[int]) -> int: n = len(maxHeights) stk = [] left = [-1] * n for i, x in enumerate(maxHeights): while stk and maxHeights[stk[-1]] > x: stk.pop() if stk: left[i] = stk[-1] stk.append(i) stk = [] right = [n] * n for i in range(n - 1, -1, -1): x = maxHeights[i] while stk and maxHeights[stk[-1]] >= x: stk.pop() if stk: right[i] = stk[-1] stk.append(i) f = [0] * n for i, x in enumerate(maxHeights): if i and x >= maxHeights[i - 1]: f[i] = f[i - 1] + x else: j = left[i] f[i] = x * (i - j) + (f[j] if j != -1 else 0) g = [0] * n for i in range(n - 1, -1, -1): if i < n - 1 and maxHeights[i] >= maxHeights[i + 1]: g[i] = g[i + 1] + maxHeights[i] else: j = right[i] g[i] = maxHeights[i] * (j - i) + (g[j] if j != n else 0) return max(a + b - c for a, b, c in zip(f, g, maxHeights))
null
null
null
null
null
function maximumSumOfHeights(maxHeights: number[]): number { const n = maxHeights.length; const stk: number[] = []; const left: number[] = Array(n).fill(-1); const right: number[] = Array(n).fill(n); for (let i = 0; i < n; ++i) { const x = maxHeights[i]; while (stk.length && maxHeights[stk.at(-1)] > x) { stk.pop(); } if (stk.length) { left[i] = stk.at(-1); } stk.push(i); } stk.length = 0; for (let i = n - 1; ~i; --i) { const x = maxHeights[i]; while (stk.length && maxHeights[stk.at(-1)] >= x) { stk.pop(); } if (stk.length) { right[i] = stk.at(-1); } stk.push(i); } const f: number[] = Array(n).fill(0); const g: number[] = Array(n).fill(0); for (let i = 0; i < n; ++i) { const x = maxHeights[i]; if (i && x >= maxHeights[i - 1]) { f[i] = f[i - 1] + x; } else { const j = left[i]; f[i] = x * (i - j) + (j >= 0 ? f[j] : 0); } } for (let i = n - 1; ~i; --i) { const x = maxHeights[i]; if (i + 1 < n && x >= maxHeights[i + 1]) { g[i] = g[i + 1] + x; } else { const j = right[i]; g[i] = x * (j - i) + (j < n ? g[j] : 0); } } let ans = 0; for (let i = 0; i < n; ++i) { ans = Math.max(ans, f[i] + g[i] - maxHeights[i]); } return ans; }
Find the Longest Substring Containing Vowels in Even Counts
Given the string s , return the size of the longest substring containing each vowel an even number of times. That is, 'a', 'e', 'i', 'o', and 'u' must appear an even number of times.   Example 1: Input: s = "eleetminicoworoep" Output: 13 Explanation: The longest substring is "leetminicowor" which contains two each of the vowels: e , i and o and zero of the vowels: a and u . Example 2: Input: s = "leetcodeisgreat" Output: 5 Explanation: The longest substring is "leetc" which contains two e's. Example 3: Input: s = "bcbcbc" Output: 6 Explanation: In this case, the given string "bcbcbc" is the longest because all vowels: a , e , i , o and u appear zero times.   Constraints: 1 <= s.length <= 5 x 10^5 s  contains only lowercase English letters.
null
null
class Solution { public: int findTheLongestSubstring(string s) { string vowels = "aeiou"; vector<int> d(32, INT_MAX); d[0] = 0; int ans = 0, mask = 0; for (int i = 1; i <= s.length(); ++i) { char c = s[i - 1]; for (int j = 0; j < 5; ++j) { if (c == vowels[j]) { mask ^= 1 << j; break; } } ans = max(ans, i - d[mask]); d[mask] = min(d[mask], i); } return ans; } };
null
null
func findTheLongestSubstring(s string) (ans int) { vowels := "aeiou" d := [32]int{} for i := range d { d[i] = 1 << 29 } d[0] = 0 mask := 0 for i := 1; i <= len(s); i++ { c := s[i-1] for j := 0; j < 5; j++ { if c == vowels[j] { mask ^= 1 << j break } } ans = max(ans, i-d[mask]) d[mask] = min(d[mask], i) } return }
class Solution { public int findTheLongestSubstring(String s) { String vowels = "aeiou"; int[] d = new int[32]; Arrays.fill(d, 1 << 29); d[0] = 0; int ans = 0, mask = 0; for (int i = 1; i <= s.length(); ++i) { char c = s.charAt(i - 1); for (int j = 0; j < 5; ++j) { if (c == vowels.charAt(j)) { mask ^= 1 << j; break; } } ans = Math.max(ans, i - d[mask]); d[mask] = Math.min(d[mask], i); } return ans; } }
null
null
null
null
null
null
class Solution: def findTheLongestSubstring(self, s: str) -> int: d = {0: -1} ans = mask = 0 for i, c in enumerate(s): if c in "aeiou": mask ^= 1 << (ord(c) - ord("a")) if mask in d: j = d[mask] ans = max(ans, i - j) else: d[mask] = i return ans
null
null
null
null
null
function findTheLongestSubstring(s: string): number { const vowels = 'aeiou'; const d: number[] = Array(32).fill(1 << 29); d[0] = 0; let [ans, mask] = [0, 0]; for (let i = 1; i <= s.length; i++) { const c = s[i - 1]; for (let j = 0; j < 5; j++) { if (c === vowels[j]) { mask ^= 1 << j; break; } } ans = Math.max(ans, i - d[mask]); d[mask] = Math.min(d[mask], i); } return ans; }
Minimum Cost Path with Alternating Directions I 🔒
You are given two integers m and n representing the number of rows and columns of a grid, respectively. The cost to enter cell (i, j) is defined as (i + 1) * (j + 1) . The path will always begin by entering cell (0, 0) on move 1 and paying the entrance cost. At each step, you move to an adjacent cell, following an alternating pattern: On odd-numbered moves, you must move either right or down . On even-numbered moves, you must move either left or up . Return the minimum total cost required to reach (m - 1, n - 1) . If it is impossible, return -1.   Example 1: Input: m = 1, n = 1 Output: 1 Explanation: You start at cell (0, 0) . The cost to enter (0, 0) is (0 + 1) * (0 + 1) = 1 . Since you're at the destination, the total cost is 1. Example 2: Input: m = 2, n = 1 Output: 3 Explanation: You start at cell (0, 0) with cost (0 + 1) * (0 + 1) = 1 . Move 1 (odd): You can move down to (1, 0) with cost (1 + 1) * (0 + 1) = 2 . Thus, the total cost is 1 + 2 = 3 .   Constraints: 1 <= m, n <= 10 6
null
null
class Solution { public: int minCost(int m, int n) { if (m == 1 && n == 1) { return 1; } if (m == 1 && n == 2) { return 3; } if (m == 2 && n == 1) { return 3; } return -1; } };
null
null
func minCost(m int, n int) int { if m == 1 && n == 1 { return 1 } if m == 1 && n == 2 { return 3 } if m == 2 && n == 1 { return 3 } return -1 }
class Solution { public int minCost(int m, int n) { if (m == 1 && n == 1) { return 1; } if (m == 1 && n == 2) { return 3; } if (m == 2 && n == 1) { return 3; } return -1; } }
null
null
null
null
null
null
class Solution: def minCost(self, m: int, n: int) -> int: if m == 1 and n == 1: return 1 if m == 2 and n == 1: return 3 if m == 1 and n == 2: return 3 return -1
null
null
null
null
null
function minCost(m: number, n: number): number { if (m === 1 && n === 1) { return 1; } if (m === 1 && n === 2) { return 3; } if (m === 2 && n === 1) { return 3; } return -1; }
Course Schedule III
There are n different online courses numbered from 1 to n . You are given an array courses where courses[i] = [duration i , lastDay i ] indicate that the i th course should be taken continuously for duration i days and must be finished before or on lastDay i . You will start on the 1 st day and you cannot take two or more courses simultaneously. Return the maximum number of courses that you can take .   Example 1: Input: courses = [[100,200],[200,1300],[1000,1250],[2000,3200]] Output: 3 Explanation: There are totally 4 courses, but you can take 3 courses at most: First, take the 1 st course, it costs 100 days so you will finish it on the 100 th day, and ready to take the next course on the 101 st day. Second, take the 3 rd course, it costs 1000 days so you will finish it on the 1100 th day, and ready to take the next course on the 1101 st day. Third, take the 2 nd course, it costs 200 days so you will finish it on the 1300 th day. The 4 th course cannot be taken now, since you will finish it on the 3300 th day, which exceeds the closed date. Example 2: Input: courses = [[1,2]] Output: 1 Example 3: Input: courses = [[3,2],[4,3]] Output: 0   Constraints: 1 <= courses.length <= 10 4 1 <= duration i , lastDay i <= 10 4
null
null
class Solution { public: int scheduleCourse(vector<vector<int>>& courses) { sort(courses.begin(), courses.end(), [](const vector<int>& a, const vector<int>& b) { return a[1] < b[1]; }); priority_queue<int> pq; int s = 0; for (auto& e : courses) { int duration = e[0], last = e[1]; pq.push(duration); s += duration; while (s > last) { s -= pq.top(); pq.pop(); } } return pq.size(); } };
null
null
func scheduleCourse(courses [][]int) int { sort.Slice(courses, func(i, j int) bool { return courses[i][1] < courses[j][1] }) pq := &hp{} s := 0 for _, e := range courses { duration, last := e[0], e[1] s += duration pq.push(duration) for s > last { s -= pq.pop() } } return pq.Len() } type hp struct{ sort.IntSlice } func (h hp) Less(i, j int) bool { return h.IntSlice[i] > h.IntSlice[j] } func (h *hp) Push(v any) { h.IntSlice = append(h.IntSlice, v.(int)) } func (h *hp) Pop() any { a := h.IntSlice v := a[len(a)-1] h.IntSlice = a[:len(a)-1] return v } func (h *hp) push(v int) { heap.Push(h, v) } func (h *hp) pop() int { return heap.Pop(h).(int) }
class Solution { public int scheduleCourse(int[][] courses) { Arrays.sort(courses, (a, b) -> a[1] - b[1]); PriorityQueue<Integer> pq = new PriorityQueue<>((a, b) -> b - a); int s = 0; for (var e : courses) { int duration = e[0], last = e[1]; pq.offer(duration); s += duration; while (s > last) { s -= pq.poll(); } } return pq.size(); } }
null
null
null
null
null
null
class Solution: def scheduleCourse(self, courses: List[List[int]]) -> int: courses.sort(key=lambda x: x[1]) pq = [] s = 0 for duration, last in courses: heappush(pq, -duration) s += duration while s > last: s += heappop(pq) return len(pq)
null
null
null
null
null
function scheduleCourse(courses: number[][]): number { courses.sort((a, b) => a[1] - b[1]); const pq = new MaxPriorityQueue<number>(); let s = 0; for (const [duration, last] of courses) { pq.enqueue(duration); s += duration; while (s > last) { s -= pq.dequeue(); } } return pq.size(); }
Repeated Substring Pattern
Given a string s , check if it can be constructed by taking a substring of it and appending multiple copies of the substring together.   Example 1: Input: s = "abab" Output: true Explanation: It is the substring "ab" twice. Example 2: Input: s = "aba" Output: false Example 3: Input: s = "abcabcabcabc" Output: true Explanation: It is the substring "abc" four times or the substring "abcabc" twice.   Constraints: 1 <= s.length <= 10 4 s consists of lowercase English letters.
null
null
class Solution { public: bool repeatedSubstringPattern(string s) { return (s + s).find(s, 1) < s.size(); } };
null
null
func repeatedSubstringPattern(s string) bool { return strings.Index(s[1:]+s, s) < len(s)-1 }
class Solution { public boolean repeatedSubstringPattern(String s) { String str = s + s; return str.substring(1, str.length() - 1).contains(s); } }
null
null
null
null
null
null
class Solution: def repeatedSubstringPattern(self, s: str) -> bool: return (s + s).index(s, 1) < len(s)
null
impl Solution { pub fn repeated_substring_pattern(s: String) -> bool { (s.clone() + &s)[1..s.len() * 2 - 1].contains(&s) } }
null
null
null
function repeatedSubstringPattern(s: string): boolean { return (s + s).slice(1, (s.length << 1) - 1).includes(s); }
Number of Boomerangs
You are given n points in the plane that are all distinct , where points[i] = [x i , y i ] . A boomerang is a tuple of points (i, j, k) such that the distance between i and j equals the distance between i and k (the order of the tuple matters) . Return the number of boomerangs .   Example 1: Input: points = [[0,0],[1,0],[2,0]] Output: 2 Explanation: The two boomerangs are [[1,0],[0,0],[2,0]] and [[1,0],[2,0],[0,0]]. Example 2: Input: points = [[1,1],[2,2],[3,3]] Output: 2 Example 3: Input: points = [[1,1]] Output: 0   Constraints: n == points.length 1 <= n <= 500 points[i].length == 2 -10 4 <= x i , y i <= 10 4 All the points are unique .
null
null
class Solution { public: int numberOfBoomerangs(vector<vector<int>>& points) { int ans = 0; for (auto& p1 : points) { unordered_map<int, int> cnt; for (auto& p2 : points) { int d = (p1[0] - p2[0]) * (p1[0] - p2[0]) + (p1[1] - p2[1]) * (p1[1] - p2[1]); cnt[d]++; } for (auto& [_, x] : cnt) { ans += x * (x - 1); } } return ans; } };
null
null
func numberOfBoomerangs(points [][]int) (ans int) { for _, p1 := range points { cnt := map[int]int{} for _, p2 := range points { d := (p1[0]-p2[0])*(p1[0]-p2[0]) + (p1[1]-p2[1])*(p1[1]-p2[1]) cnt[d]++ } for _, x := range cnt { ans += x * (x - 1) } } return }
class Solution { public int numberOfBoomerangs(int[][] points) { int ans = 0; for (int[] p1 : points) { Map<Integer, Integer> cnt = new HashMap<>(); for (int[] p2 : points) { int d = (p1[0] - p2[0]) * (p1[0] - p2[0]) + (p1[1] - p2[1]) * (p1[1] - p2[1]); cnt.merge(d, 1, Integer::sum); } for (int x : cnt.values()) { ans += x * (x - 1); } } return ans; } }
null
null
null
null
null
null
class Solution: def numberOfBoomerangs(self, points: List[List[int]]) -> int: ans = 0 for p1 in points: cnt = Counter() for p2 in points: d = dist(p1, p2) cnt[d] += 1 ans += sum(x * (x - 1) for x in cnt.values()) return ans
null
null
null
null
null
function numberOfBoomerangs(points: number[][]): number { let ans = 0; for (const [x1, y1] of points) { const cnt: Map<number, number> = new Map(); for (const [x2, y2] of points) { const d = (x1 - x2) ** 2 + (y1 - y2) ** 2; cnt.set(d, (cnt.get(d) || 0) + 1); } for (const [_, x] of cnt) { ans += x * (x - 1); } } return ans; }
CEO Subordinate Hierarchy 🔒
Table: Employees +---------------+---------+ | Column Name | Type | +---------------+---------+ | employee_id | int | | employee_name | varchar | | manager_id | int | | salary | int | +---------------+---------+ employee_id is the unique identifier for this table. manager_id is the employee_id of the employee's manager. The CEO has a NULL manager_id. Write a solution to find subordinates of the CEO (both direct and indirect ), along with their level in the hierarchy and their salary difference from the CEO. The result should have the following columns: The query result format is in the following example. subordinate_id : The employee_id of the subordinate subordinate_name : The name of the subordinate hierarchy_level : The level of the subordinate in the hierarchy ( 1 for direct reports, 2 for their direct reports, and so on ) salary_difference : The difference between the subordinate's salary and the CEO's salary Return the result table ordered by hierarchy_level ascending , and then by subordinate_id ascending . The query result format is in the following example.   Example: Input: Employees table: +-------------+----------------+------------+---------+ | employee_id | employee_name | manager_id | salary | +-------------+----------------+------------+---------+ | 1 | Alice | NULL | 150000 | | 2 | Bob | 1 | 120000 | | 3 | Charlie | 1 | 110000 | | 4 | David | 2 | 105000 | | 5 | Eve | 2 | 100000 | | 6 | Frank | 3 | 95000 | | 7 | Grace | 3 | 98000 | | 8 | Helen | 5 | 90000 | +-------------+----------------+------------+---------+ Output: +----------------+------------------+------------------+-------------------+ | subordinate_id | subordinate_name | hierarchy_level | salary_difference | +----------------+------------------+------------------+-------------------+ | 2 | Bob | 1 | -30000 | | 3 | Charlie | 1 | -40000 | | 4 | David | 2 | -45000 | | 5 | Eve | 2 | -50000 | | 6 | Frank | 2 | -55000 | | 7 | Grace | 2 | -52000 | | 8 | Helen | 3 | -60000 | +----------------+------------------+------------------+-------------------+ Explanation: Bob and Charlie are direct subordinates of Alice (CEO) and thus have a hierarchy_level of 1. David and Eve report to Bob, while Frank and Grace report to Charlie, making them second-level subordinates (hierarchy_level 2). Helen reports to Eve, making Helen a third-level subordinate (hierarchy_level 3). Salary differences are calculated relative to Alice's salary of 150000. The result is ordered by hierarchy_level ascending, and then by subordinate_id ascending. Note: The output is ordered first by hierarchy_level in ascending order, then by subordinate_id in ascending order.
null
null
null
null
null
null
null
null
null
# Write your MySQL query statement below WITH RECURSIVE T AS ( SELECT employee_id, employee_name, 0 AS hierarchy_level, manager_id, salary FROM Employees WHERE manager_id IS NULL UNION ALL SELECT e.employee_id, e.employee_name, hierarchy_level + 1 AS hierarchy_level, e.manager_id, e.salary FROM T t JOIN Employees e ON t.employee_id = e.manager_id ), P AS ( SELECT salary FROM Employees WHERE manager_id IS NULL ) SELECT employee_id subordinate_id, employee_name subordinate_name, hierarchy_level, t.salary - p.salary salary_difference FROM T t JOIN P p WHERE hierarchy_level != 0 ORDER BY 3, 1;
null
null
null
null
null
null
null
null
null
null
Employee Free Time 🔒
We are given a list schedule of employees, which represents the working time for each employee. Each employee has a list of non-overlapping Intervals , and these intervals are in sorted order. Return the list of finite intervals representing common, positive-length free time for all employees, also in sorted order. (Even though we are representing Intervals in the form [x, y] , the objects inside are Intervals , not lists or arrays. For example, schedule[0][0].start = 1 , schedule[0][0].end = 2 , and schedule[0][0][0] is not defined).  Also, we wouldn't include intervals like [5, 5] in our answer, as they have zero length.   Example 1: Input: schedule = [[[1,2],[5,6]],[[1,3]],[[4,10]]] Output: [[3,4]] Explanation: There are a total of three employees, and all common free time intervals would be [-inf, 1], [3, 4], [10, inf]. We discard any intervals that contain inf as they aren't finite. Example 2: Input: schedule = [[[1,3],[6,7]],[[2,4]],[[2,5],[9,12]]] Output: [[5,6],[7,9]]   Constraints: 1 <= schedule.length , schedule[i].length <= 50 0 <= schedule[i].start < schedule[i].end <= 10^8
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
Minimum Cost to Reach Destination in Time
There is a country of n cities numbered from 0 to n - 1 where all the cities are connected by bi-directional roads. The roads are represented as a 2D integer array edges where edges[i] = [x i , y i , time i ] denotes a road between cities x i and y i that takes time i minutes to travel. There may be multiple roads of differing travel times connecting the same two cities, but no road connects a city to itself. Each time you pass through a city, you must pay a passing fee. This is represented as a 0-indexed integer array passingFees of length n where passingFees[j] is the amount of dollars you must pay when you pass through city j . In the beginning, you are at city 0 and want to reach city n - 1 in maxTime minutes or less . The cost of your journey is the summation of passing fees for each city that you passed through at some moment of your journey ( including the source and destination cities). Given maxTime , edges , and passingFees , return the minimum cost to complete your journey, or -1 if you cannot complete it within maxTime minutes .   Example 1: Input: maxTime = 30, edges = [[0,1,10],[1,2,10],[2,5,10],[0,3,1],[3,4,10],[4,5,15]], passingFees = [5,1,2,20,20,3] Output: 11 Explanation: The path to take is 0 -> 1 -> 2 -> 5, which takes 30 minutes and has $11 worth of passing fees. Example 2: Input: maxTime = 29, edges = [[0,1,10],[1,2,10],[2,5,10],[0,3,1],[3,4,10],[4,5,15]], passingFees = [5,1,2,20,20,3] Output: 48 Explanation: The path to take is 0 -> 3 -> 4 -> 5, which takes 26 minutes and has $48 worth of passing fees. You cannot take path 0 -> 1 -> 2 -> 5 since it would take too long. Example 3: Input: maxTime = 25, edges = [[0,1,10],[1,2,10],[2,5,10],[0,3,1],[3,4,10],[4,5,15]], passingFees = [5,1,2,20,20,3] Output: -1 Explanation: There is no way to reach city 5 from city 0 within 25 minutes.   Constraints: 1 <= maxTime <= 1000 n == passingFees.length 2 <= n <= 1000 n - 1 <= edges.length <= 1000 0 <= x i , y i <= n - 1 1 <= time i <= 1000 1 <= passingFees[j] <= 1000   The graph may contain multiple edges between two nodes. The graph does not contain self loops.
null
null
class Solution { public: int minCost(int maxTime, vector<vector<int>>& edges, vector<int>& passingFees) { int m = maxTime, n = passingFees.size(); const int inf = 1 << 30; vector<vector<int>> f(m + 1, vector<int>(n, inf)); f[0][0] = passingFees[0]; for (int i = 1; i <= m; ++i) { for (const auto& e : edges) { int x = e[0], y = e[1], t = e[2]; if (t <= i) { f[i][x] = min(f[i][x], f[i - t][y] + passingFees[x]); f[i][y] = min(f[i][y], f[i - t][x] + passingFees[y]); } } } int ans = inf; for (int i = 1; i <= m; ++i) { ans = min(ans, f[i][n - 1]); } return ans == inf ? -1 : ans; } };
null
null
func minCost(maxTime int, edges [][]int, passingFees []int) int { m, n := maxTime, len(passingFees) f := make([][]int, m+1) const inf int = 1 << 30 for i := range f { f[i] = make([]int, n) for j := range f[i] { f[i][j] = inf } } f[0][0] = passingFees[0] for i := 1; i <= m; i++ { for _, e := range edges { x, y, t := e[0], e[1], e[2] if t <= i { f[i][x] = min(f[i][x], f[i-t][y]+passingFees[x]) f[i][y] = min(f[i][y], f[i-t][x]+passingFees[y]) } } } ans := inf for i := 1; i <= m; i++ { ans = min(ans, f[i][n-1]) } if ans == inf { return -1 } return ans }
class Solution { public int minCost(int maxTime, int[][] edges, int[] passingFees) { int m = maxTime, n = passingFees.length; int[][] f = new int[m + 1][n]; final int inf = 1 << 30; for (var g : f) { Arrays.fill(g, inf); } f[0][0] = passingFees[0]; for (int i = 1; i <= m; ++i) { for (var e : edges) { int x = e[0], y = e[1], t = e[2]; if (t <= i) { f[i][x] = Math.min(f[i][x], f[i - t][y] + passingFees[x]); f[i][y] = Math.min(f[i][y], f[i - t][x] + passingFees[y]); } } } int ans = inf; for (int i = 0; i <= m; ++i) { ans = Math.min(ans, f[i][n - 1]); } return ans == inf ? -1 : ans; } }
null
null
null
null
null
null
class Solution: def minCost( self, maxTime: int, edges: List[List[int]], passingFees: List[int] ) -> int: m, n = maxTime, len(passingFees) f = [[inf] * n for _ in range(m + 1)] f[0][0] = passingFees[0] for i in range(1, m + 1): for x, y, t in edges: if t <= i: f[i][x] = min(f[i][x], f[i - t][y] + passingFees[x]) f[i][y] = min(f[i][y], f[i - t][x] + passingFees[y]) ans = min(f[i][n - 1] for i in range(m + 1)) return ans if ans < inf else -1
null
null
null
null
null
function minCost(maxTime: number, edges: number[][], passingFees: number[]): number { const [m, n] = [maxTime, passingFees.length]; const f: number[][] = Array.from({ length: m + 1 }, () => Array(n).fill(Infinity)); f[0][0] = passingFees[0]; for (let i = 1; i <= m; ++i) { for (const [x, y, t] of edges) { if (t <= i) { f[i][x] = Math.min(f[i][x], f[i - t][y] + passingFees[x]); f[i][y] = Math.min(f[i][y], f[i - t][x] + passingFees[y]); } } } let ans = Infinity; for (let i = 1; i <= m; ++i) { ans = Math.min(ans, f[i][n - 1]); } return ans === Infinity ? -1 : ans; }
Maximize Sum Of Array After K Negations
Given an integer array nums and an integer k , modify the array in the following way: choose an index i and replace nums[i] with -nums[i] . You should apply this process exactly k times. You may choose the same index i multiple times. Return the largest possible sum of the array after modifying it in this way .   Example 1: Input: nums = [4,2,3], k = 1 Output: 5 Explanation: Choose index 1 and nums becomes [4,-2,3]. Example 2: Input: nums = [3,-1,0,2], k = 3 Output: 6 Explanation: Choose indices (1, 2, 2) and nums becomes [3,1,0,2]. Example 3: Input: nums = [2,-3,-1,5,-4], k = 2 Output: 13 Explanation: Choose indices (1, 4) and nums becomes [2,3,-1,5,4].   Constraints: 1 <= nums.length <= 10 4 -100 <= nums[i] <= 100 1 <= k <= 10 4
null
null
class Solution { public: int largestSumAfterKNegations(vector<int>& nums, int k) { unordered_map<int, int> cnt; for (int& x : nums) { ++cnt[x]; } for (int x = -100; x < 0 && k > 0; ++x) { if (cnt[x]) { int m = min(cnt[x], k); cnt[x] -= m; cnt[-x] += m; k -= m; } } if ((k & 1) && !cnt[0]) { for (int x = 1; x <= 100; ++x) { if (cnt[x]) { --cnt[x]; ++cnt[-x]; break; } } } int ans = 0; for (auto& [x, v] : cnt) { ans += x * v; } return ans; } };
null
null
func largestSumAfterKNegations(nums []int, k int) (ans int) { cnt := map[int]int{} for _, x := range nums { cnt[x]++ } for x := -100; x < 0 && k > 0; x++ { if cnt[x] > 0 { m := min(k, cnt[x]) cnt[x] -= m cnt[-x] += m k -= m } } if k&1 == 1 && cnt[0] == 0 { for x := 1; x <= 100; x++ { if cnt[x] > 0 { cnt[x]-- cnt[-x]++ break } } } for x, v := range cnt { ans += x * v } return }
class Solution { public int largestSumAfterKNegations(int[] nums, int k) { Map<Integer, Integer> cnt = new HashMap<>(); for (int x : nums) { cnt.merge(x, 1, Integer::sum); } for (int x = -100; x < 0 && k > 0; ++x) { if (cnt.getOrDefault(x, 0) > 0) { int m = Math.min(cnt.get(x), k); cnt.merge(x, -m, Integer::sum); cnt.merge(-x, m, Integer::sum); k -= m; } } if ((k & 1) == 1 && cnt.getOrDefault(0, 0) == 0) { for (int x = 1; x <= 100; ++x) { if (cnt.getOrDefault(x, 0) > 0) { cnt.merge(x, -1, Integer::sum); cnt.merge(-x, 1, Integer::sum); break; } } } int ans = 0; for (var e : cnt.entrySet()) { ans += e.getKey() * e.getValue(); } return ans; } }
null
null
null
null
null
null
class Solution: def largestSumAfterKNegations(self, nums: List[int], k: int) -> int: cnt = Counter(nums) for x in range(-100, 0): if cnt[x]: m = min(cnt[x], k) cnt[x] -= m cnt[-x] += m k -= m if k == 0: break if k & 1 and cnt[0] == 0: for x in range(1, 101): if cnt[x]: cnt[x] -= 1 cnt[-x] += 1 break return sum(x * v for x, v in cnt.items())
null
null
null
null
null
function largestSumAfterKNegations(nums: number[], k: number): number { const cnt: Map<number, number> = new Map(); for (const x of nums) { cnt.set(x, (cnt.get(x) || 0) + 1); } for (let x = -100; x < 0 && k > 0; ++x) { if (cnt.get(x)! > 0) { const m = Math.min(cnt.get(x) || 0, k); cnt.set(x, (cnt.get(x) || 0) - m); cnt.set(-x, (cnt.get(-x) || 0) + m); k -= m; } } if ((k & 1) === 1 && (cnt.get(0) || 0) === 0) { for (let x = 1; x <= 100; ++x) { if (cnt.get(x)! > 0) { cnt.set(x, (cnt.get(x) || 0) - 1); cnt.set(-x, (cnt.get(-x) || 0) + 1); break; } } } return Array.from(cnt.entries()).reduce((acc, [k, v]) => acc + k * v, 0); }
Substrings That Begin and End With the Same Letter 🔒
You are given a 0-indexed string s consisting of only lowercase English letters. Return the number of substrings in s that begin and end with the same character. A substring is a contiguous non-empty sequence of characters within a string.   Example 1: Input: s = "abcba" Output: 7 Explanation: The substrings of length 1 that start and end with the same letter are: "a", "b", "c", "b", and "a". The substring of length 3 that starts and ends with the same letter is: "bcb". The substring of length 5 that starts and ends with the same letter is: "abcba". Example 2: Input: s = "abacad" Output: 9 Explanation: The substrings of length 1 that start and end with the same letter are: "a", "b", "a", "c", "a", and "d". The substrings of length 3 that start and end with the same letter are: "aba" and "aca". The substring of length 5 that starts and ends with the same letter is: "abaca". Example 3: Input: s = "a" Output: 1 Explanation: The substring of length 1 that starts and ends with the same letter is: "a".   Constraints: 1 <= s.length <= 10 5 s consists only of lowercase English letters.
null
null
class Solution { public: long long numberOfSubstrings(string s) { int cnt[26]{}; long long ans = 0; for (char& c : s) { ans += ++cnt[c - 'a']; } return ans; } };
null
null
func numberOfSubstrings(s string) (ans int64) { cnt := [26]int{} for _, c := range s { c -= 'a' cnt[c]++ ans += int64(cnt[c]) } return ans }
class Solution { public long numberOfSubstrings(String s) { int[] cnt = new int[26]; long ans = 0; for (char c : s.toCharArray()) { ans += ++cnt[c - 'a']; } return ans; } }
/** * @param {string} s * @return {number} */ var numberOfSubstrings = function (s) { const cnt = {}; let ans = 0; for (const c of s) { cnt[c] = (cnt[c] || 0) + 1; ans += cnt[c]; } return ans; };
null
null
null
null
null
class Solution: def numberOfSubstrings(self, s: str) -> int: cnt = Counter() ans = 0 for c in s: cnt[c] += 1 ans += cnt[c] return ans
null
impl Solution { pub fn number_of_substrings(s: String) -> i64 { let mut cnt = [0; 26]; let mut ans = 0_i64; for c in s.chars() { let idx = (c as u8 - b'a') as usize; cnt[idx] += 1; ans += cnt[idx]; } ans } }
null
null
null
function numberOfSubstrings(s: string): number { const cnt: Record<string, number> = {}; let ans = 0; for (const c of s) { cnt[c] = (cnt[c] || 0) + 1; ans += cnt[c]; } return ans; }
Longest Special Path II
You are given an undirected tree rooted at node 0 , with n nodes numbered from 0 to n - 1 . This is represented by a 2D array edges of length n - 1 , where edges[i] = [u i , v i , length i ] indicates an edge between nodes u i and v i with length length i . You are also given an integer array nums , where nums[i] represents the value at node i . A special path is defined as a downward path from an ancestor node to a descendant node in which all node values are distinct , except for at most one value that may appear twice. Return an array result of size 2, where result[0] is the length of the longest special path, and result[1] is the minimum number of nodes in all possible longest special paths.   Example 1: Input: edges = [[0,1,1],[1,2,3],[1,3,1],[2,4,6],[4,7,2],[3,5,2],[3,6,5],[6,8,3]], nums = [1,1,0,3,1,2,1,1,0] Output: [9,3] Explanation: In the image below, nodes are colored by their corresponding values in nums . The longest special paths are 1 -> 2 -> 4 and 1 -> 3 -> 6 -> 8 , both having a length of 9. The minimum number of nodes across all longest special paths is 3. Example 2: Input: edges = [[1,0,3],[0,2,4],[0,3,5]], nums = [1,1,0,2] Output: [5,2] Explanation: The longest path is 0 -> 3 consisting of 2 nodes with a length of 5.   Constraints: 2 <= n <= 5 * 10 4 edges.length == n - 1 edges[i].length == 3 0 <= u i , v i < n 1 <= length i <= 10 3 nums.length == n 0 <= nums[i] <= 5 * 10 4 The input is generated such that edges represents a valid tree.
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
Maximum Sum of Subsequence With Non-adjacent Elements
You are given an array nums consisting of integers. You are also given a 2D array queries , where queries[i] = [pos i , x i ] . For query i , we first set nums[pos i ] equal to x i , then we calculate the answer to query i which is the maximum sum of a subsequence of nums where no two adjacent elements are selected . Return the sum of the answers to all queries. Since the final answer may be very large, return it modulo 10 9 + 7 . A subsequence is an array that can be derived from another array by deleting some or no elements without changing the order of the remaining elements.   Example 1: Input: nums = [3,5,9], queries = [[1,-2],[0,-3]] Output: 21 Explanation: After the 1 st query, nums = [3,-2,9] and the maximum sum of a subsequence with non-adjacent elements is 3 + 9 = 12 . After the 2 nd query, nums = [-3,-2,9] and the maximum sum of a subsequence with non-adjacent elements is 9. Example 2: Input: nums = [0,-1], queries = [[0,-5]] Output: 0 Explanation: After the 1 st query, nums = [-5,-1] and the maximum sum of a subsequence with non-adjacent elements is 0 (choosing an empty subsequence).   Constraints: 1 <= nums.length <= 5 * 10 4 -10 5 <= nums[i] <= 10 5 1 <= queries.length <= 5 * 10 4 queries[i] == [pos i , x i ] 0 <= pos i <= nums.length - 1 -10 5 <= x i <= 10 5
null
null
class Node { public: int l, r; long long s00, s01, s10, s11; Node(int l, int r) : l(l) , r(r) , s00(0) , s01(0) , s10(0) , s11(0) {} }; class SegmentTree { public: vector<Node*> tr; SegmentTree(int n) : tr(n << 2) { build(1, 1, n); } void build(int u, int l, int r) { tr[u] = new Node(l, r); if (l == r) { return; } int mid = (l + r) >> 1; build(u << 1, l, mid); build(u << 1 | 1, mid + 1, r); } long long query(int u, int l, int r) { if (tr[u]->l >= l && tr[u]->r <= r) { return tr[u]->s11; } int mid = (tr[u]->l + tr[u]->r) >> 1; long long ans = 0; if (r <= mid) { ans = query(u << 1, l, r); } if (l > mid) { ans = max(ans, query(u << 1 | 1, l, r)); } return ans; } void pushup(int u) { Node* left = tr[u << 1]; Node* right = tr[u << 1 | 1]; tr[u]->s00 = max(left->s00 + right->s10, left->s01 + right->s00); tr[u]->s01 = max(left->s00 + right->s11, left->s01 + right->s01); tr[u]->s10 = max(left->s10 + right->s10, left->s11 + right->s00); tr[u]->s11 = max(left->s10 + right->s11, left->s11 + right->s01); } void modify(int u, int x, int v) { if (tr[u]->l == tr[u]->r) { tr[u]->s11 = max(0LL, (long long) v); return; } int mid = (tr[u]->l + tr[u]->r) >> 1; if (x <= mid) { modify(u << 1, x, v); } else { modify(u << 1 | 1, x, v); } pushup(u); } ~SegmentTree() { for (auto node : tr) { delete node; } } }; class Solution { public: int maximumSumSubsequence(vector<int>& nums, vector<vector<int>>& queries) { int n = nums.size(); SegmentTree tree(n); for (int i = 0; i < n; ++i) { tree.modify(1, i + 1, nums[i]); } long long ans = 0; const int mod = 1e9 + 7; for (const auto& q : queries) { tree.modify(1, q[0] + 1, q[1]); ans = (ans + tree.query(1, 1, n)) % mod; } return (int) ans; } };
null
null
type Node struct { l, r int s00, s01, s10, s11 int } func NewNode(l, r int) *Node { return &Node{l: l, r: r, s00: 0, s01: 0, s10: 0, s11: 0} } type SegmentTree struct { tr []*Node } func NewSegmentTree(n int) *SegmentTree { tr := make([]*Node, n*4) tree := &SegmentTree{tr: tr} tree.build(1, 1, n) return tree } func (st *SegmentTree) build(u, l, r int) { st.tr[u] = NewNode(l, r) if l == r { return } mid := (l + r) >> 1 st.build(u<<1, l, mid) st.build(u<<1|1, mid+1, r) } func (st *SegmentTree) query(u, l, r int) int { if st.tr[u].l >= l && st.tr[u].r <= r { return st.tr[u].s11 } mid := (st.tr[u].l + st.tr[u].r) >> 1 ans := 0 if r <= mid { ans = st.query(u<<1, l, r) } if l > mid { ans = max(ans, st.query(u<<1|1, l, r)) } return ans } func (st *SegmentTree) pushup(u int) { left := st.tr[u<<1] right := st.tr[u<<1|1] st.tr[u].s00 = max(left.s00+right.s10, left.s01+right.s00) st.tr[u].s01 = max(left.s00+right.s11, left.s01+right.s01) st.tr[u].s10 = max(left.s10+right.s10, left.s11+right.s00) st.tr[u].s11 = max(left.s10+right.s11, left.s11+right.s01) } func (st *SegmentTree) modify(u, x, v int) { if st.tr[u].l == st.tr[u].r { st.tr[u].s11 = max(0, v) return } mid := (st.tr[u].l + st.tr[u].r) >> 1 if x <= mid { st.modify(u<<1, x, v) } else { st.modify(u<<1|1, x, v) } st.pushup(u) } func maximumSumSubsequence(nums []int, queries [][]int) (ans int) { n := len(nums) tree := NewSegmentTree(n) for i, x := range nums { tree.modify(1, i+1, x) } const mod int = 1e9 + 7 for _, q := range queries { tree.modify(1, q[0]+1, q[1]) ans = (ans + tree.query(1, 1, n)) % mod } return }
class Node { int l, r; long s00, s01, s10, s11; Node(int l, int r) { this.l = l; this.r = r; this.s00 = this.s01 = this.s10 = this.s11 = 0; } } class SegmentTree { Node[] tr; SegmentTree(int n) { tr = new Node[n * 4]; build(1, 1, n); } void build(int u, int l, int r) { tr[u] = new Node(l, r); if (l == r) { return; } int mid = (l + r) >> 1; build(u << 1, l, mid); build(u << 1 | 1, mid + 1, r); } long query(int u, int l, int r) { if (tr[u].l >= l && tr[u].r <= r) { return tr[u].s11; } int mid = (tr[u].l + tr[u].r) >> 1; long ans = 0; if (r <= mid) { ans = query(u << 1, l, r); } if (l > mid) { ans = Math.max(ans, query(u << 1 | 1, l, r)); } return ans; } void pushup(int u) { Node left = tr[u << 1]; Node right = tr[u << 1 | 1]; tr[u].s00 = Math.max(left.s00 + right.s10, left.s01 + right.s00); tr[u].s01 = Math.max(left.s00 + right.s11, left.s01 + right.s01); tr[u].s10 = Math.max(left.s10 + right.s10, left.s11 + right.s00); tr[u].s11 = Math.max(left.s10 + right.s11, left.s11 + right.s01); } void modify(int u, int x, int v) { if (tr[u].l == tr[u].r) { tr[u].s11 = Math.max(0, v); return; } int mid = (tr[u].l + tr[u].r) >> 1; if (x <= mid) { modify(u << 1, x, v); } else { modify(u << 1 | 1, x, v); } pushup(u); } } class Solution { public int maximumSumSubsequence(int[] nums, int[][] queries) { int n = nums.length; SegmentTree tree = new SegmentTree(n); for (int i = 0; i < n; ++i) { tree.modify(1, i + 1, nums[i]); } long ans = 0; final int mod = (int) 1e9 + 7; for (int[] q : queries) { tree.modify(1, q[0] + 1, q[1]); ans = (ans + tree.query(1, 1, n)) % mod; } return (int) ans; } }
null
null
null
null
null
null
def max(a: int, b: int) -> int: return a if a > b else b class Node: __slots__ = "l", "r", "s00", "s01", "s10", "s11" def __init__(self, l: int, r: int): self.l = l self.r = r self.s00 = self.s01 = self.s10 = self.s11 = 0 class SegmentTree: __slots__ = "tr" def __init__(self, n: int): self.tr: List[Node | None] = [None] * (n << 2) self.build(1, 1, n) def build(self, u: int, l: int, r: int): self.tr[u] = Node(l, r) if l == r: return mid = (l + r) >> 1 self.build(u << 1, l, mid) self.build(u << 1 | 1, mid + 1, r) def query(self, u: int, l: int, r: int) -> int: if self.tr[u].l >= l and self.tr[u].r <= r: return self.tr[u].s11 mid = (self.tr[u].l + self.tr[u].r) >> 1 ans = 0 if r <= mid: ans = self.query(u << 1, l, r) if l > mid: ans = max(ans, self.query(u << 1 | 1, l, r)) return ans def pushup(self, u: int): left, right = self.tr[u << 1], self.tr[u << 1 | 1] self.tr[u].s00 = max(left.s00 + right.s10, left.s01 + right.s00) self.tr[u].s01 = max(left.s00 + right.s11, left.s01 + right.s01) self.tr[u].s10 = max(left.s10 + right.s10, left.s11 + right.s00) self.tr[u].s11 = max(left.s10 + right.s11, left.s11 + right.s01) def modify(self, u: int, x: int, v: int): if self.tr[u].l == self.tr[u].r: self.tr[u].s11 = max(0, v) return mid = (self.tr[u].l + self.tr[u].r) >> 1 if x <= mid: self.modify(u << 1, x, v) else: self.modify(u << 1 | 1, x, v) self.pushup(u) class Solution: def maximumSumSubsequence(self, nums: List[int], queries: List[List[int]]) -> int: n = len(nums) tree = SegmentTree(n) for i, x in enumerate(nums, 1): tree.modify(1, i, x) ans = 0 mod = 10**9 + 7 for i, x in queries: tree.modify(1, i + 1, x) ans = (ans + tree.query(1, 1, n)) % mod return ans
null
null
null
null
null
class Node { s00 = 0; s01 = 0; s10 = 0; s11 = 0; constructor( public l: number, public r: number, ) {} } class SegmentTree { tr: Node[]; constructor(n: number) { this.tr = Array(n * 4); this.build(1, 1, n); } build(u: number, l: number, r: number) { this.tr[u] = new Node(l, r); if (l === r) { return; } const mid = (l + r) >> 1; this.build(u << 1, l, mid); this.build((u << 1) | 1, mid + 1, r); } query(u: number, l: number, r: number): number { if (this.tr[u].l >= l && this.tr[u].r <= r) { return this.tr[u].s11; } const mid = (this.tr[u].l + this.tr[u].r) >> 1; let ans = 0; if (r <= mid) { ans = this.query(u << 1, l, r); } if (l > mid) { ans = Math.max(ans, this.query((u << 1) | 1, l, r)); } return ans; } pushup(u: number) { const left = this.tr[u << 1]; const right = this.tr[(u << 1) | 1]; this.tr[u].s00 = Math.max(left.s00 + right.s10, left.s01 + right.s00); this.tr[u].s01 = Math.max(left.s00 + right.s11, left.s01 + right.s01); this.tr[u].s10 = Math.max(left.s10 + right.s10, left.s11 + right.s00); this.tr[u].s11 = Math.max(left.s10 + right.s11, left.s11 + right.s01); } modify(u: number, x: number, v: number) { if (this.tr[u].l === this.tr[u].r) { this.tr[u].s11 = Math.max(0, v); return; } const mid = (this.tr[u].l + this.tr[u].r) >> 1; if (x <= mid) { this.modify(u << 1, x, v); } else { this.modify((u << 1) | 1, x, v); } this.pushup(u); } } function maximumSumSubsequence(nums: number[], queries: number[][]): number { const n = nums.length; const tree = new SegmentTree(n); for (let i = 0; i < n; i++) { tree.modify(1, i + 1, nums[i]); } let ans = 0; const mod = 1e9 + 7; for (const [i, x] of queries) { tree.modify(1, i + 1, x); ans = (ans + tree.query(1, 1, n)) % mod; } return ans; }
Weather Type in Each Country 🔒
Table: Countries +---------------+---------+ | Column Name | Type | +---------------+---------+ | country_id | int | | country_name | varchar | +---------------+---------+ country_id is the primary key (column with unique values) for this table. Each row of this table contains the ID and the name of one country.   Table: Weather +---------------+------+ | Column Name | Type | +---------------+------+ | country_id | int | | weather_state | int | | day | date | +---------------+------+ (country_id, day) is the primary key (combination of columns with unique values) for this table. Each row of this table indicates the weather state in a country for one day.   Write a solution to find the type of weather in each country for November 2019 . The type of weather is: Cold if the average weather_state is less than or equal 15 , Hot if the average weather_state is greater than or equal to 25 , and Warm otherwise. Return the result table in any order . The result format is in the following example.   Example 1: Input: Countries table: +------------+--------------+ | country_id | country_name | +------------+--------------+ | 2 | USA | | 3 | Australia | | 7 | Peru | | 5 | China | | 8 | Morocco | | 9 | Spain | +------------+--------------+ Weather table: +------------+---------------+------------+ | country_id | weather_state | day | +------------+---------------+------------+ | 2 | 15 | 2019-11-01 | | 2 | 12 | 2019-10-28 | | 2 | 12 | 2019-10-27 | | 3 | -2 | 2019-11-10 | | 3 | 0 | 2019-11-11 | | 3 | 3 | 2019-11-12 | | 5 | 16 | 2019-11-07 | | 5 | 18 | 2019-11-09 | | 5 | 21 | 2019-11-23 | | 7 | 25 | 2019-11-28 | | 7 | 22 | 2019-12-01 | | 7 | 20 | 2019-12-02 | | 8 | 25 | 2019-11-05 | | 8 | 27 | 2019-11-15 | | 8 | 31 | 2019-11-25 | | 9 | 7 | 2019-10-23 | | 9 | 3 | 2019-12-23 | +------------+---------------+------------+ Output: +--------------+--------------+ | country_name | weather_type | +--------------+--------------+ | USA | Cold | | Australia | Cold | | Peru | Hot | | Morocco | Hot | | China | Warm | +--------------+--------------+ Explanation: Average weather_state in USA in November is (15) / 1 = 15 so weather type is Cold. Average weather_state in Austraila in November is (-2 + 0 + 3) / 3 = 0.333 so weather type is Cold. Average weather_state in Peru in November is (25) / 1 = 25 so the weather type is Hot. Average weather_state in China in November is (16 + 18 + 21) / 3 = 18.333 so weather type is Warm. Average weather_state in Morocco in November is (25 + 27 + 31) / 3 = 27.667 so weather type is Hot. We know nothing about the average weather_state in Spain in November so we do not include it in the result table.
null
null
null
null
null
null
null
null
null
# Write your MySQL query statement below SELECT country_name, CASE WHEN AVG(weather_state) <= 15 THEN 'Cold' WHEN AVG(weather_state) >= 25 THEN 'Hot' ELSE 'Warm' END AS weather_type FROM Weather AS w JOIN Countries USING (country_id) WHERE DATE_FORMAT(day, '%Y-%m') = '2019-11' GROUP BY 1;
null
null
null
null
null
null
null
null
null
null
Most Expensive Item That Can Not Be Bought 🔒
You are given two distinct prime numbers primeOne and primeTwo . Alice and Bob are visiting a market. The market has an infinite number of items, for any positive integer x there exists an item whose price is x . Alice wants to buy some items from the market to gift to Bob. She has an infinite number of coins in the denomination primeOne and primeTwo . She wants to know the most expensive item she can not buy to gift to Bob. Return the price of the most expensive item which Alice can not gift to Bob .   Example 1: Input: primeOne = 2, primeTwo = 5 Output: 3 Explanation: The prices of items which cannot be bought are [1,3]. It can be shown that all items with a price greater than 3 can be bought using a combination of coins of denominations 2 and 5. Example 2: Input: primeOne = 5, primeTwo = 7 Output: 23 Explanation: The prices of items which cannot be bought are [1,2,3,4,6,8,9,11,13,16,18,23]. It can be shown that all items with a price greater than 23 can be bought.   Constraints: 1 < primeOne, primeTwo < 10 4 primeOne , primeTwo are prime numbers. primeOne * primeTwo < 10 5
null
null
class Solution { public: int mostExpensiveItem(int primeOne, int primeTwo) { return primeOne * primeTwo - primeOne - primeTwo; } };
null
null
func mostExpensiveItem(primeOne int, primeTwo int) int { return primeOne*primeTwo - primeOne - primeTwo }
class Solution { public int mostExpensiveItem(int primeOne, int primeTwo) { return primeOne * primeTwo - primeOne - primeTwo; } }
null
null
null
null
null
null
class Solution: def mostExpensiveItem(self, primeOne: int, primeTwo: int) -> int: return primeOne * primeTwo - primeOne - primeTwo
null
impl Solution { pub fn most_expensive_item(prime_one: i32, prime_two: i32) -> i32 { prime_one * prime_two - prime_one - prime_two } }
null
null
null
function mostExpensiveItem(primeOne: number, primeTwo: number): number { return primeOne * primeTwo - primeOne - primeTwo; }
Interval List Intersections
You are given two lists of closed intervals, firstList and secondList , where firstList[i] = [start i , end i ] and secondList[j] = [start j , end j ] . Each list of intervals is pairwise disjoint and in sorted order . Return the intersection of these two interval lists . A closed interval [a, b] (with a <= b ) denotes the set of real numbers x with a <= x <= b . The intersection of two closed intervals is a set of real numbers that are either empty or represented as a closed interval. For example, the intersection of [1, 3] and [2, 4] is [2, 3] .   Example 1: Input: firstList = [[0,2],[5,10],[13,23],[24,25]], secondList = [[1,5],[8,12],[15,24],[25,26]] Output: [[1,2],[5,5],[8,10],[15,23],[24,24],[25,25]] Example 2: Input: firstList = [[1,3],[5,9]], secondList = [] Output: []   Constraints: 0 <= firstList.length, secondList.length <= 1000 firstList.length + secondList.length >= 1 0 <= start i < end i <= 10 9 end i < start i+1 0 <= start j < end j <= 10 9 end j < start j+1
null
null
class Solution { public: vector<vector<int>> intervalIntersection(vector<vector<int>>& firstList, vector<vector<int>>& secondList) { vector<vector<int>> ans; int m = firstList.size(), n = secondList.size(); for (int i = 0, j = 0; i < m && j < n;) { int l = max(firstList[i][0], secondList[j][0]); int r = min(firstList[i][1], secondList[j][1]); if (l <= r) ans.push_back({l, r}); if (firstList[i][1] < secondList[j][1]) ++i; else ++j; } return ans; } };
null
null
func intervalIntersection(firstList [][]int, secondList [][]int) [][]int { m, n := len(firstList), len(secondList) var ans [][]int for i, j := 0, 0; i < m && j < n; { l := max(firstList[i][0], secondList[j][0]) r := min(firstList[i][1], secondList[j][1]) if l <= r { ans = append(ans, []int{l, r}) } if firstList[i][1] < secondList[j][1] { i++ } else { j++ } } return ans }
class Solution { public int[][] intervalIntersection(int[][] firstList, int[][] secondList) { List<int[]> ans = new ArrayList<>(); int m = firstList.length, n = secondList.length; for (int i = 0, j = 0; i < m && j < n;) { int l = Math.max(firstList[i][0], secondList[j][0]); int r = Math.min(firstList[i][1], secondList[j][1]); if (l <= r) { ans.add(new int[] {l, r}); } if (firstList[i][1] < secondList[j][1]) { ++i; } else { ++j; } } return ans.toArray(new int[ans.size()][]); } }
null
null
null
null
null
null
class Solution: def intervalIntersection( self, firstList: List[List[int]], secondList: List[List[int]] ) -> List[List[int]]: i = j = 0 ans = [] while i < len(firstList) and j < len(secondList): s1, e1, s2, e2 = *firstList[i], *secondList[j] l, r = max(s1, s2), min(e1, e2) if l <= r: ans.append([l, r]) if e1 < e2: i += 1 else: j += 1 return ans
null
impl Solution { pub fn interval_intersection( first_list: Vec<Vec<i32>>, second_list: Vec<Vec<i32>>, ) -> Vec<Vec<i32>> { let n = first_list.len(); let m = second_list.len(); let mut res = Vec::new(); let (mut i, mut j) = (0, 0); while i < n && j < m { let start = first_list[i][0].max(second_list[j][0]); let end = first_list[i][1].min(second_list[j][1]); if start <= end { res.push(vec![start, end]); } if first_list[i][1] < second_list[j][1] { i += 1; } else { j += 1; } } res } }
null
null
null
function intervalIntersection(firstList: number[][], secondList: number[][]): number[][] { const n = firstList.length; const m = secondList.length; const res = []; let i = 0; let j = 0; while (i < n && j < m) { const start = Math.max(firstList[i][0], secondList[j][0]); const end = Math.min(firstList[i][1], secondList[j][1]); if (start <= end) { res.push([start, end]); } if (firstList[i][1] < secondList[j][1]) { i++; } else { j++; } } return res; }
Palindrome Removal 🔒
You are given an integer array arr . In one move, you can select a palindromic subarray arr[i], arr[i + 1], ..., arr[j] where i <= j , and remove that subarray from the given array. Note that after removing a subarray, the elements on the left and on the right of that subarray move to fill the gap left by the removal. Return the minimum number of moves needed to remove all numbers from the array .   Example 1: Input: arr = [1,2] Output: 2 Example 2: Input: arr = [1,3,4,1,5] Output: 3 Explanation: Remove [4] then remove [1,3,1] then remove [5].   Constraints: 1 <= arr.length <= 100 1 <= arr[i] <= 20
null
null
class Solution { public: int minimumMoves(vector<int>& arr) { int n = arr.size(); int f[n][n]; memset(f, 0, sizeof f); for (int i = 0; i < n; ++i) { f[i][i] = 1; } for (int i = n - 2; i >= 0; --i) { for (int j = i + 1; j < n; ++j) { if (i + 1 == j) { f[i][j] = arr[i] == arr[j] ? 1 : 2; } else { int t = arr[i] == arr[j] ? f[i + 1][j - 1] : 1 << 30; for (int k = i; k < j; ++k) { t = min(t, f[i][k] + f[k + 1][j]); } f[i][j] = t; } } } return f[0][n - 1]; } };
null
null
func minimumMoves(arr []int) int { n := len(arr) f := make([][]int, n) for i := range f { f[i] = make([]int, n) f[i][i] = 1 } for i := n - 2; i >= 0; i-- { for j := i + 1; j < n; j++ { if i+1 == j { f[i][j] = 2 if arr[i] == arr[j] { f[i][j] = 1 } } else { t := 1 << 30 if arr[i] == arr[j] { t = f[i+1][j-1] } for k := i; k < j; k++ { t = min(t, f[i][k]+f[k+1][j]) } f[i][j] = t } } } return f[0][n-1] }
class Solution { public int minimumMoves(int[] arr) { int n = arr.length; int[][] f = new int[n][n]; for (int i = 0; i < n; ++i) { f[i][i] = 1; } for (int i = n - 2; i >= 0; --i) { for (int j = i + 1; j < n; ++j) { if (i + 1 == j) { f[i][j] = arr[i] == arr[j] ? 1 : 2; } else { int t = arr[i] == arr[j] ? f[i + 1][j - 1] : 1 << 30; for (int k = i; k < j; ++k) { t = Math.min(t, f[i][k] + f[k + 1][j]); } f[i][j] = t; } } } return f[0][n - 1]; } }
null
null
null
null
null
null
class Solution: def minimumMoves(self, arr: List[int]) -> int: n = len(arr) f = [[0] * n for _ in range(n)] for i in range(n): f[i][i] = 1 for i in range(n - 2, -1, -1): for j in range(i + 1, n): if i + 1 == j: f[i][j] = 1 if arr[i] == arr[j] else 2 else: t = f[i + 1][j - 1] if arr[i] == arr[j] else inf for k in range(i, j): t = min(t, f[i][k] + f[k + 1][j]) f[i][j] = t return f[0][n - 1]
null
null
null
null
null
function minimumMoves(arr: number[]): number { const n = arr.length; const f: number[][] = Array.from({ length: n }, () => Array(n).fill(0)); for (let i = 0; i < n; ++i) { f[i][i] = 1; } for (let i = n - 2; i >= 0; --i) { for (let j = i + 1; j < n; ++j) { if (i + 1 === j) { f[i][j] = arr[i] === arr[j] ? 1 : 2; } else { let t = arr[i] === arr[j] ? f[i + 1][j - 1] : Infinity; for (let k = i; k < j; ++k) { t = Math.min(t, f[i][k] + f[k + 1][j]); } f[i][j] = t; } } } return f[0][n - 1]; }
Design Cancellable Function
Sometimes you have a long running task, and you may wish to cancel it before it completes. To help with this goal, write a function  cancellable that accepts a generator object and returns an array of two values: a cancel function and a promise . You may assume the generator function will only yield promises. It is your function's responsibility to pass the values resolved by the promise back to the generator. If the promise rejects, your function should throw that error back to the generator. If the cancel callback is called before the generator is done, your function should throw an error back to the generator. That error should be the string  "Cancelled"  (Not an Error  object). If the error was caught, the returned promise should resolve with the next value that was yielded or returned. Otherwise, the promise should reject with the thrown error. No more code should be executed. When the generator is done, the promise your function returned should resolve the value the generator returned. If, however, the generator throws an error, the returned promise should reject with the error. An example of how your code would be used: function* tasks() { const val = yield new Promise(resolve => resolve(2 + 2)); yield new Promise(resolve => setTimeout(resolve, 100)); return val + 1; // calculation shouldn't be done. } const [cancel, promise] = cancellable(tasks()); setTimeout(cancel, 50); promise.catch(console.log); // logs "Cancelled" at t=50ms If instead  cancel() was not called or was called after t=100ms , the promise would have resolved  5 .   Example 1: Input: generatorFunction = function*() {   return 42; } cancelledAt = 100 Output: {"resolved": 42} Explanation: const generator = generatorFunction(); const [cancel, promise] = cancellable(generator); setTimeout(cancel, 100); promise.then(console.log); // resolves 42 at t=0ms The generator immediately yields 42 and finishes. Because of that, the returned promise immediately resolves 42. Note that cancelling a finished generator does nothing. Example 2: Input: generatorFunction = function*() {   const msg = yield new Promise(res => res("Hello"));   throw `Error: ${msg}`; } cancelledAt = null Output: {"rejected": "Error: Hello"} Explanation: A promise is yielded. The function handles this by waiting for it to resolve and then passes the resolved value back to the generator. Then an error is thrown which has the effect of causing the promise to reject with the same thrown error. Example 3: Input: generatorFunction = function*() {   yield new Promise(res => setTimeout(res, 200));   return "Success"; } cancelledAt = 100 Output: {"rejected": "Cancelled"} Explanation: While the function is waiting for the yielded promise to resolve, cancel() is called. This causes an error message to be sent back to the generator. Since this error is uncaught, the returned promise rejected with this error. Example 4: Input: generatorFunction = function*() {   let result = 0;   yield new Promise(res => setTimeout(res, 100));   result += yield new Promise(res => res(1));   yield new Promise(res => setTimeout(res, 100));   result += yield new Promise(res => res(1));   return result; } cancelledAt = null Output: {"resolved": 2} Explanation: 4 promises are yielded. Two of those promises have their values added to the result. After 200ms, the generator finishes with a value of 2, and that value is resolved by the returned promise. Example 5: Input: generatorFunction = function*() {   let result = 0;   try {   yield new Promise(res => setTimeout(res, 100));   result += yield new Promise(res => res(1));   yield new Promise(res => setTimeout(res, 100));   result += yield new Promise(res => res(1));   } catch(e) {   return result;   }   return result; } cancelledAt = 150 Output: {"resolved": 1} Explanation: The first two yielded promises resolve and cause the result to increment. However, at t=150ms, the generator is cancelled. The error sent to the generator is caught and the result is returned and finally resolved by the returned promise. Example 6: Input: generatorFunction = function*() {   try {   yield new Promise((resolve, reject) => reject("Promise Rejected"));   } catch(e) {   let a = yield new Promise(resolve => resolve(2)); let b = yield new Promise(resolve => resolve(2));   return a + b;   }; } cancelledAt = null Output: {"resolved": 4} Explanation: The first yielded promise immediately rejects. This error is caught. Because the generator hasn't been cancelled, execution continues as usual. It ends up resolving 2 + 2 = 4.   Constraints: cancelledAt == null or 0 <= cancelledAt <= 1000 generatorFunction returns a generator object
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
function cancellable<T>(generator: Generator<Promise<any>, T, unknown>): [() => void, Promise<T>] { let cancel: () => void = () => {}; const cancelPromise = new Promise((resolve, reject) => { cancel = () => reject('Cancelled'); }); cancelPromise.catch(() => {}); const promise = (async () => { let next = generator.next(); while (!next.done) { try { next = generator.next(await Promise.race([next.value, cancelPromise])); } catch (e) { next = generator.throw(e); } } return next.value; })(); return [cancel, promise]; } /** * function* tasks() { * const val = yield new Promise(resolve => resolve(2 + 2)); * yield new Promise(resolve => setTimeout(resolve, 100)); * return val + 1; * } * const [cancel, promise] = cancellable(tasks()); * setTimeout(cancel, 50); * promise.catch(console.log); // logs "Cancelled" at t=50ms */
Find Minimum Time to Reach Last Room I
There is a dungeon with n x m rooms arranged as a grid. You are given a 2D array moveTime of size n x m , where moveTime[i][j] represents the minimum time in seconds after which the room opens and can be moved to. You start from the room (0, 0) at time t = 0 and can move to an adjacent room. Moving between adjacent rooms takes exactly one second. Return the minimum time to reach the room (n - 1, m - 1) . Two rooms are adjacent if they share a common wall, either horizontally or vertically .   Example 1: Input: moveTime = [[0,4],[4,4]] Output: 6 Explanation: The minimum time required is 6 seconds. At time t == 4 , move from room (0, 0) to room (1, 0) in one second. At time t == 5 , move from room (1, 0) to room (1, 1) in one second. Example 2: Input: moveTime = [[0,0,0],[0,0,0]] Output: 3 Explanation: The minimum time required is 3 seconds. At time t == 0 , move from room (0, 0) to room (1, 0) in one second. At time t == 1 , move from room (1, 0) to room (1, 1) in one second. At time t == 2 , move from room (1, 1) to room (1, 2) in one second. Example 3: Input: moveTime = [[0,1],[1,2]] Output: 3   Constraints: 2 <= n == moveTime.length <= 50 2 <= m == moveTime[i].length <= 50 0 <= moveTime[i][j] <= 10 9
null
null
class Solution { public: int minTimeToReach(vector<vector<int>>& moveTime) { int n = moveTime.size(); int m = moveTime[0].size(); vector<vector<int>> dist(n, vector<int>(m, INT_MAX)); dist[0][0] = 0; priority_queue<array<int, 3>, vector<array<int, 3>>, greater<>> pq; pq.push({0, 0, 0}); int dirs[5] = {-1, 0, 1, 0, -1}; while (1) { auto [d, i, j] = pq.top(); pq.pop(); if (i == n - 1 && j == m - 1) { return d; } if (d > dist[i][j]) { continue; } for (int k = 0; k < 4; ++k) { int x = i + dirs[k]; int y = j + dirs[k + 1]; if (x >= 0 && x < n && y >= 0 && y < m) { int t = max(moveTime[x][y], dist[i][j]) + 1; if (dist[x][y] > t) { dist[x][y] = t; pq.push({t, x, y}); } } } } } };
null
null
func minTimeToReach(moveTime [][]int) int { n, m := len(moveTime), len(moveTime[0]) dist := make([][]int, n) for i := range dist { dist[i] = make([]int, m) for j := range dist[i] { dist[i][j] = math.MaxInt32 } } dist[0][0] = 0 pq := &hp{} heap.Init(pq) heap.Push(pq, tuple{0, 0, 0}) dirs := []int{-1, 0, 1, 0, -1} for { p := heap.Pop(pq).(tuple) d, i, j := p.dis, p.x, p.y if i == n-1 && j == m-1 { return d } if d > dist[i][j] { continue } for k := 0; k < 4; k++ { x, y := i+dirs[k], j+dirs[k+1] if x >= 0 && x < n && y >= 0 && y < m { t := max(moveTime[x][y], dist[i][j]) + 1 if dist[x][y] > t { dist[x][y] = t heap.Push(pq, tuple{t, x, y}) } } } } } type tuple struct{ dis, x, y int } type hp []tuple func (h hp) Len() int { return len(h) } func (h hp) Less(i, j int) bool { return h[i].dis < h[j].dis } func (h hp) Swap(i, j int) { h[i], h[j] = h[j], h[i] } func (h *hp) Push(v any) { *h = append(*h, v.(tuple)) } func (h *hp) Pop() (v any) { a := *h; *h, v = a[:len(a)-1], a[len(a)-1]; return }
class Solution { public int minTimeToReach(int[][] moveTime) { int n = moveTime.length; int m = moveTime[0].length; int[][] dist = new int[n][m]; for (var row : dist) { Arrays.fill(row, Integer.MAX_VALUE); } dist[0][0] = 0; PriorityQueue<int[]> pq = new PriorityQueue<>((a, b) -> a[0] - b[0]); pq.offer(new int[] {0, 0, 0}); int[] dirs = {-1, 0, 1, 0, -1}; while (true) { int[] p = pq.poll(); int d = p[0], i = p[1], j = p[2]; if (i == n - 1 && j == m - 1) { return d; } if (d > dist[i][j]) { continue; } for (int k = 0; k < 4; k++) { int x = i + dirs[k]; int y = j + dirs[k + 1]; if (x >= 0 && x < n && y >= 0 && y < m) { int t = Math.max(moveTime[x][y], dist[i][j]) + 1; if (dist[x][y] > t) { dist[x][y] = t; pq.offer(new int[] {t, x, y}); } } } } } }
null
null
null
null
null
null
class Solution: def minTimeToReach(self, moveTime: List[List[int]]) -> int: n, m = len(moveTime), len(moveTime[0]) dist = [[inf] * m for _ in range(n)] dist[0][0] = 0 pq = [(0, 0, 0)] dirs = (-1, 0, 1, 0, -1) while 1: d, i, j = heappop(pq) if i == n - 1 and j == m - 1: return d if d > dist[i][j]: continue for a, b in pairwise(dirs): x, y = i + a, j + b if 0 <= x < n and 0 <= y < m: t = max(moveTime[x][y], dist[i][j]) + 1 if dist[x][y] > t: dist[x][y] = t heappush(pq, (t, x, y))
null
null
null
null
null
function minTimeToReach(moveTime: number[][]): number { const n = moveTime.length; const m = moveTime[0].length; const dist = Array.from({ length: n }, () => Array(m).fill(Infinity)); dist[0][0] = 0; type Node = [number, number, number]; const pq = new PriorityQueue<Node>((a, b) => a[0] - b[0]); pq.enqueue([0, 0, 0]); const dirs = [-1, 0, 1, 0, -1]; while (!pq.isEmpty()) { const [d, i, j] = pq.dequeue(); if (d > dist[i][j]) continue; if (i === n - 1 && j === m - 1) return d; for (let k = 0; k < 4; ++k) { const x = i + dirs[k]; const y = j + dirs[k + 1]; if (x >= 0 && x < n && y >= 0 && y < m) { const t = Math.max(moveTime[x][y], d) + 1; if (t < dist[x][y]) { dist[x][y] = t; pq.enqueue([t, x, y]); } } } } return -1; }
Longest Word in Dictionary
Given an array of strings words representing an English Dictionary, return the longest word in words that can be built one character at a time by other words in words . If there is more than one possible answer, return the longest word with the smallest lexicographical order. If there is no answer, return the empty string. Note that the word should be built from left to right with each additional character being added to the end of a previous word.    Example 1: Input: words = ["w","wo","wor","worl","world"] Output: "world" Explanation: The word "world" can be built one character at a time by "w", "wo", "wor", and "worl". Example 2: Input: words = ["a","banana","app","appl","ap","apply","apple"] Output: "apple" Explanation: Both "apply" and "apple" can be built from other words in the dictionary. However, "apple" is lexicographically smaller than "apply".   Constraints: 1 <= words.length <= 1000 1 <= words[i].length <= 30 words[i] consists of lowercase English letters.
null
null
class Trie { public: Trie* children[26] = {nullptr}; bool isEnd = false; void insert(const string& w) { Trie* node = this; for (char c : w) { int idx = c - 'a'; if (node->children[idx] == nullptr) { node->children[idx] = new Trie(); } node = node->children[idx]; } node->isEnd = true; } bool search(const string& w) { Trie* node = this; for (char c : w) { int idx = c - 'a'; if (node->children[idx] == nullptr || !node->children[idx]->isEnd) { return false; } node = node->children[idx]; } return true; } }; class Solution { public: string longestWord(vector<string>& words) { Trie trie; for (const string& w : words) { trie.insert(w); } string ans = ""; for (const string& w : words) { if (trie.search(w) && (ans.length() < w.length() || (ans.length() == w.length() && w < ans))) { ans = w; } } return ans; } };
null
null
type Trie struct { children [26]*Trie isEnd bool } func (t *Trie) insert(w string) { node := t for i := 0; i < len(w); i++ { idx := w[i] - 'a' if node.children[idx] == nil { node.children[idx] = &Trie{} } node = node.children[idx] } node.isEnd = true } func (t *Trie) search(w string) bool { node := t for i := 0; i < len(w); i++ { idx := w[i] - 'a' if node.children[idx] == nil || !node.children[idx].isEnd { return false } node = node.children[idx] } return true } func longestWord(words []string) string { trie := &Trie{} for _, w := range words { trie.insert(w) } ans := "" for _, w := range words { if trie.search(w) && (len(ans) < len(w) || (len(ans) == len(w) && w < ans)) { ans = w } } return ans }
class Trie { private Trie[] children = new Trie[26]; private boolean isEnd = false; public void insert(String w) { Trie node = this; for (char c : w.toCharArray()) { int idx = c - 'a'; if (node.children[idx] == null) { node.children[idx] = new Trie(); } node = node.children[idx]; } node.isEnd = true; } public boolean search(String w) { Trie node = this; for (char c : w.toCharArray()) { int idx = c - 'a'; if (node.children[idx] == null || !node.children[idx].isEnd) { return false; } node = node.children[idx]; } return true; } } class Solution { public String longestWord(String[] words) { Trie trie = new Trie(); for (String w : words) { trie.insert(w); } String ans = ""; for (String w : words) { if (trie.search(w) && (ans.length() < w.length() || (ans.length() == w.length() && w.compareTo(ans) < 0))) { ans = w; } } return ans; } }
/** * @param {string[]} words * @return {string} */ var longestWord = function (words) { const trie = new Trie(); for (const w of words) { trie.insert(w); } let ans = ''; for (const w of words) { if (trie.search(w) && (ans.length < w.length || (ans.length === w.length && w < ans))) { ans = w; } } return ans; }; class Trie { constructor() { this.children = Array(26).fill(null); this.isEnd = false; } insert(w) { let node = this; for (let i = 0; i < w.length; i++) { const idx = w.charCodeAt(i) - 'a'.charCodeAt(0); if (node.children[idx] === null) { node.children[idx] = new Trie(); } node = node.children[idx]; } node.isEnd = true; } search(w) { let node = this; for (let i = 0; i < w.length; i++) { const idx = w.charCodeAt(i) - 'a'.charCodeAt(0); if (node.children[idx] === null || !node.children[idx].isEnd) { return false; } node = node.children[idx]; } return true; } }
null
null
null
null
null
class Trie: def __init__(self): self.children: List[Optional[Trie]] = [None] * 26 self.is_end = False def insert(self, w: str): node = self for c in w: idx = ord(c) - ord("a") if node.children[idx] is None: node.children[idx] = Trie() node = node.children[idx] node.is_end = True def search(self, w: str) -> bool: node = self for c in w: idx = ord(c) - ord("a") if node.children[idx] is None: return False node = node.children[idx] if not node.is_end: return False return True class Solution: def longestWord(self, words: List[str]) -> str: trie = Trie() for w in words: trie.insert(w) ans = "" for w in words: if trie.search(w) and ( len(ans) < len(w) or (len(ans) == len(w) and ans > w) ): ans = w return ans
null
struct Trie { children: [Option<Box<Trie>>; 26], is_end: bool, } impl Trie { fn new() -> Self { Trie { children: Default::default(), is_end: false, } } fn insert(&mut self, w: &str) { let mut node = self; for c in w.chars() { let idx = (c as usize) - ('a' as usize); if node.children[idx].is_none() { node.children[idx] = Some(Box::new(Trie::new())); } node = node.children[idx].as_mut().unwrap(); } node.is_end = true; } fn search(&self, w: &str) -> bool { let mut node = self; for c in w.chars() { let idx = (c as usize) - ('a' as usize); if node.children[idx].is_none() || !node.children[idx].as_ref().unwrap().is_end { return false; } node = node.children[idx].as_ref().unwrap(); } true } } impl Solution { pub fn longest_word(words: Vec<String>) -> String { let mut trie = Trie::new(); for w in &words { trie.insert(w); } let mut ans = String::new(); for w in words { if trie.search(&w) && (ans.len() < w.len() || (ans.len() == w.len() && w < ans)) { ans = w; } } ans } }
null
null
null
class Trie { children: (Trie | null)[] = new Array(26).fill(null); isEnd: boolean = false; insert(w: string): void { let node: Trie = this; for (let i = 0; i < w.length; i++) { const idx: number = w.charCodeAt(i) - 'a'.charCodeAt(0); if (node.children[idx] === null) { node.children[idx] = new Trie(); } node = node.children[idx]!; } node.isEnd = true; } search(w: string): boolean { let node: Trie = this; for (let i = 0; i < w.length; i++) { const idx: number = w.charCodeAt(i) - 'a'.charCodeAt(0); if (node.children[idx] === null || !node.children[idx]!.isEnd) { return false; } node = node.children[idx]!; } return true; } } function longestWord(words: string[]): string { const trie = new Trie(); for (const w of words) { trie.insert(w); } let ans = ''; for (const w of words) { if (trie.search(w) && (ans.length < w.length || (ans.length === w.length && w < ans))) { ans = w; } } return ans; }
Lemonade Change
At a lemonade stand, each lemonade costs $5 . Customers are standing in a queue to buy from you and order one at a time (in the order specified by bills). Each customer will only buy one lemonade and pay with either a $5 , $10 , or $20 bill. You must provide the correct change to each customer so that the net transaction is that the customer pays $5 . Note that you do not have any change in hand at first. Given an integer array bills where bills[i] is the bill the i th customer pays, return true if you can provide every customer with the correct change, or false otherwise .   Example 1: Input: bills = [5,5,5,10,20] Output: true Explanation: From the first 3 customers, we collect three $5 bills in order. From the fourth customer, we collect a $10 bill and give back a $5. From the fifth customer, we give a $10 bill and a $5 bill. Since all customers got correct change, we output true. Example 2: Input: bills = [5,5,10,10,20] Output: false Explanation: From the first two customers in order, we collect two $5 bills. For the next two customers in order, we collect a $10 bill and give back a $5 bill. For the last customer, we can not give the change of $15 back because we only have two $10 bills. Since not every customer received the correct change, the answer is false.   Constraints: 1 <= bills.length <= 10 5 bills[i] is either 5 , 10 , or 20 .
null
null
class Solution { public: bool lemonadeChange(vector<int>& bills) { int five = 0, ten = 10; for (int v : bills) { if (v == 5) { ++five; } else if (v == 10) { ++ten; --five; } else { if (ten) { --ten; --five; } else { five -= 3; } } if (five < 0) { return false; } } return true; } };
null
null
func lemonadeChange(bills []int) bool { five, ten := 0, 0 for _, v := range bills { if v == 5 { five++ } else if v == 10 { ten++ five-- } else { if ten > 0 { ten-- five-- } else { five -= 3 } } if five < 0 { return false } } return true }
class Solution { public boolean lemonadeChange(int[] bills) { int five = 0, ten = 0; for (int v : bills) { switch (v) { case 5 -> ++five; case 10 -> { ++ten; --five; } case 20 -> { if (ten > 0) { --ten; --five; } else { five -= 3; } } } if (five < 0) { return false; } } return true; } }
const lemonadeChange = (bills, f = 0, t = 0) => bills.every( x => ( (!(x ^ 5) && ++f) || (!(x ^ 10) && (--f, ++t)) || (!(x ^ 20) && (t ? (f--, t--) : (f -= 3), 1)), f >= 0 ), );
null
null
null
null
null
class Solution: def lemonadeChange(self, bills: List[int]) -> bool: five = ten = 0 for v in bills: if v == 5: five += 1 elif v == 10: ten += 1 five -= 1 else: if ten: ten -= 1 five -= 1 else: five -= 3 if five < 0: return False return True
null
impl Solution { pub fn lemonade_change(bills: Vec<i32>) -> bool { let (mut five, mut ten) = (0, 0); for bill in bills.iter() { match bill { 5 => { five += 1; } 10 => { five -= 1; ten += 1; } _ => { if ten != 0 { ten -= 1; five -= 1; } else { five -= 3; } } } if five < 0 { return false; } } true } }
null
null
null
const lemonadeChange = (bills: number[], f = 0, t = 0): boolean => bills.every( x => ( (!(x ^ 5) && ++f) || (!(x ^ 10) && (--f, ++t)) || (!(x ^ 20) && (t ? (f--, t--) : (f -= 3), 1)), f >= 0 ), );
Count Mentions Per User
You are given an integer numberOfUsers representing the total number of users and an array events of size n x 3 . Each events[i] can be either of the following two types: Message Event: ["MESSAGE", "timestamp i ", "mentions_string i "] This event indicates that a set of users was mentioned in a message at timestamp i . The mentions_string i string can contain one of the following tokens: id<number> : where <number> is an integer in range [0,numberOfUsers - 1] . There can be multiple ids separated by a single whitespace and may contain duplicates. This can mention even the offline users. ALL : mentions all users. HERE : mentions all online users. Offline Event: ["OFFLINE", "timestamp i ", "id i "] This event indicates that the user id i had become offline at timestamp i for 60 time units . The user will automatically be online again at time timestamp i + 60 . Return an array mentions where mentions[i] represents the number of mentions the user with id i has across all MESSAGE events. All users are initially online, and if a user goes offline or comes back online, their status change is processed before handling any message event that occurs at the same timestamp. Note that a user can be mentioned multiple times in a single message event, and each mention should be counted separately .   Example 1: Input: numberOfUsers = 2, events = [["MESSAGE","10","id1 id0"],["OFFLINE","11","0"],["MESSAGE","71","HERE"]] Output: [2,2] Explanation: Initially, all users are online. At timestamp 10, id1 and id0 are mentioned. mentions = [1,1] At timestamp 11, id0 goes offline. At timestamp 71, id0 comes back online and "HERE" is mentioned. mentions = [2,2] Example 2: Input: numberOfUsers = 2, events = [["MESSAGE","10","id1 id0"],["OFFLINE","11","0"],["MESSAGE","12","ALL"]] Output: [2,2] Explanation: Initially, all users are online. At timestamp 10, id1 and id0 are mentioned. mentions = [1,1] At timestamp 11, id0 goes offline. At timestamp 12, "ALL" is mentioned. This includes offline users, so both id0 and id1 are mentioned. mentions = [2,2] Example 3: Input: numberOfUsers = 2, events = [["OFFLINE","10","0"],["MESSAGE","12","HERE"]] Output: [0,1] Explanation: Initially, all users are online. At timestamp 10, id0 goes offline. At timestamp 12, "HERE" is mentioned. Because id0 is still offline, they will not be mentioned. mentions = [0,1]   Constraints: 1 <= numberOfUsers <= 100 1 <= events.length <= 100 events[i].length == 3 events[i][0] will be one of MESSAGE or OFFLINE . 1 <= int(events[i][1]) <= 10 5 The number of id<number> mentions in any "MESSAGE" event is between 1 and 100 . 0 <= <number> <= numberOfUsers - 1 It is guaranteed that the user id referenced in the OFFLINE event is online at the time the event occurs.
null
null
class Solution { public: vector<int> countMentions(int numberOfUsers, vector<vector<string>>& events) { ranges::sort(events, [](const vector<string>& a, const vector<string>& b) { int x = stoi(a[1]); int y = stoi(b[1]); if (x == y) { return a[0][2] < b[0][2]; } return x < y; }); vector<int> ans(numberOfUsers, 0); vector<int> onlineT(numberOfUsers, 0); int lazy = 0; for (const auto& e : events) { string etype = e[0]; int cur = stoi(e[1]); string s = e[2]; if (etype[0] == 'O') { onlineT[stoi(s)] = cur + 60; } else if (s[0] == 'A') { lazy++; } else if (s[0] == 'H') { for (int i = 0; i < numberOfUsers; ++i) { if (onlineT[i] <= cur) { ++ans[i]; } } } else { stringstream ss(s); string token; while (ss >> token) { ans[stoi(token.substr(2))]++; } } } if (lazy > 0) { for (int i = 0; i < numberOfUsers; ++i) { ans[i] += lazy; } } return ans; } };
null
null
func countMentions(numberOfUsers int, events [][]string) []int { sort.Slice(events, func(i, j int) bool { x, _ := strconv.Atoi(events[i][1]) y, _ := strconv.Atoi(events[j][1]) if x == y { return events[i][0][2] < events[j][0][2] } return x < y }) ans := make([]int, numberOfUsers) onlineT := make([]int, numberOfUsers) lazy := 0 for _, e := range events { etype := e[0] cur, _ := strconv.Atoi(e[1]) s := e[2] if etype[0] == 'O' { userID, _ := strconv.Atoi(s) onlineT[userID] = cur + 60 } else if s[0] == 'A' { lazy++ } else if s[0] == 'H' { for i := 0; i < numberOfUsers; i++ { if onlineT[i] <= cur { ans[i]++ } } } else { mentions := strings.Split(s, " ") for _, m := range mentions { userID, _ := strconv.Atoi(m[2:]) ans[userID]++ } } } if lazy > 0 { for i := 0; i < numberOfUsers; i++ { ans[i] += lazy } } return ans }
class Solution { public int[] countMentions(int numberOfUsers, List<List<String>> events) { events.sort((a, b) -> { int x = Integer.parseInt(a.get(1)); int y = Integer.parseInt(b.get(1)); if (x == y) { return a.get(0).charAt(2) - b.get(0).charAt(2); } return x - y; }); int[] ans = new int[numberOfUsers]; int[] onlineT = new int[numberOfUsers]; int lazy = 0; for (var e : events) { String etype = e.get(0); int cur = Integer.parseInt(e.get(1)); String s = e.get(2); if (etype.charAt(0) == 'O') { onlineT[Integer.parseInt(s)] = cur + 60; } else if (s.charAt(0) == 'A') { ++lazy; } else if (s.charAt(0) == 'H') { for (int i = 0; i < numberOfUsers; ++i) { if (onlineT[i] <= cur) { ++ans[i]; } } } else { for (var a : s.split(" ")) { ++ans[Integer.parseInt(a.substring(2))]; } } } if (lazy > 0) { for (int i = 0; i < numberOfUsers; ++i) { ans[i] += lazy; } } return ans; } }
null
null
null
null
null
null
class Solution: def countMentions(self, numberOfUsers: int, events: List[List[str]]) -> List[int]: events.sort(key=lambda e: (int(e[1]), e[0][2])) ans = [0] * numberOfUsers online_t = [0] * numberOfUsers lazy = 0 for etype, ts, s in events: cur = int(ts) if etype[0] == "O": online_t[int(s)] = cur + 60 elif s[0] == "A": lazy += 1 elif s[0] == "H": for i, t in enumerate(online_t): if t <= cur: ans[i] += 1 else: for a in s.split(): ans[int(a[2:])] += 1 if lazy: for i in range(numberOfUsers): ans[i] += lazy return ans
null
null
null
null
null
function countMentions(numberOfUsers: number, events: string[][]): number[] { events.sort((a, b) => { const x = +a[1]; const y = +b[1]; if (x === y) { return a[0].charAt(2) < b[0].charAt(2) ? -1 : 1; } return x - y; }); const ans: number[] = Array(numberOfUsers).fill(0); const onlineT: number[] = Array(numberOfUsers).fill(0); let lazy = 0; for (const [etype, ts, s] of events) { const cur = +ts; if (etype.charAt(0) === 'O') { const userID = +s; onlineT[userID] = cur + 60; } else if (s.charAt(0) === 'A') { lazy++; } else if (s.charAt(0) === 'H') { for (let i = 0; i < numberOfUsers; i++) { if (onlineT[i] <= cur) { ans[i]++; } } } else { const mentions = s.split(' '); for (const m of mentions) { const userID = +m.slice(2); ans[userID]++; } } } if (lazy > 0) { for (let i = 0; i < numberOfUsers; i++) { ans[i] += lazy; } } return ans; }