task_id
stringlengths
5
7
prompt
stringlengths
133
1.35k
declaration
stringlengths
111
515
canonical_solution
stringlengths
18
1.4k
test
stringlengths
148
1.76k
example_test
stringlengths
0
679
CPP/0
/* Check if in given vector of numbers, are any two numbers closer to each other than given threshold. >>> has_close_elements({1.0, 2.0, 3.0}, 0.5) false >>> has_close_elements({1.0, 2.8, 3.0, 4.0, 5.0, 2.0}, 0.3) true */ #include<stdio.h> #include<vector> #include<math.h> using namespace std; bool has_close_elements(vector<float> numbers, float threshold){
#include<stdio.h> #include<vector> #include<math.h> using namespace std; #include<algorithm> #include<stdlib.h> bool has_close_elements(vector<float> numbers, float threshold){
int i,j; for (i=0;i<numbers.size();i++) for (j=i+1;j<numbers.size();j++) if (abs(numbers[i]-numbers[j])<threshold) return true; return false; }
#undef NDEBUG #include<assert.h> int main(){ vector<float> a={1.0, 2.0, 3.9, 4.0, 5.0, 2.2}; assert (has_close_elements(a, 0.3)==true); assert (has_close_elements(a, 0.05) == false); assert (has_close_elements({1.0, 2.0, 5.9, 4.0, 5.0}, 0.95) == true); assert (has_close_elements({1.0, 2.0, 5.9, 4.0, 5.0}, 0.8) ==false); assert (has_close_elements({1.0, 2.0, 3.0, 4.0, 5.0}, 2.0) == true); assert (has_close_elements({1.1, 2.2, 3.1, 4.1, 5.1}, 1.0) == true); assert (has_close_elements({1.1, 2.2, 3.1, 4.1, 5.1}, 0.5) == false); }
#undef NDEBUG #include<assert.h> int main(){ assert (has_close_elements({1.0, 2.0, 3.0}, 0.5) == false && "failure 1"); assert (has_close_elements({1.0, 2.8, 3.0, 4.0, 5.0, 2.0}, 0.3) && "failure 2") ; }
CPP/1
/* Input to this function is a string containing multiple groups of nested parentheses. Your goal is to separate those group into separate strings and return the vector of those. Separate groups are balanced (each open brace is properly closed) and not nested within each other Ignore any spaces in the input string. >>> separate_paren_groups("( ) (( )) (( )( ))") {"()", "(())", "(()())"} */ #include<stdio.h> #include<vector> #include<string> using namespace std; vector<string> separate_paren_groups(string paren_string){
#include<stdio.h> #include<vector> #include<string> using namespace std; #include<algorithm> #include<math.h> #include<stdlib.h> vector<string> separate_paren_groups(string paren_string){
vector<string> all_parens; string current_paren; int level=0; char chr; int i; for (i=0;i<paren_string.length();i++) { chr=paren_string[i]; if (chr=='(') { level+=1; current_paren+=chr; } if (chr==')') { level-=1; current_paren+=chr; if (level==0){ all_parens.push_back(current_paren); current_paren=""; } } } return all_parens; }
#undef NDEBUG #include<assert.h> bool issame(vector<string> a,vector<string>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(separate_paren_groups("(()()) ((())) () ((())()())"),{"(()())", "((()))", "()", "((())()())"})); assert (issame(separate_paren_groups("() (()) ((())) (((())))"), {"()", "(())", "((()))", "(((())))" })); assert (issame(separate_paren_groups("(()(())((())))") ,{ "(()(())((())))" })); assert (issame(separate_paren_groups("( ) (( )) (( )( ))") ,{"()", "(())", "(()())"})); }
#undef NDEBUG #include<assert.h> bool issame(vector<string> a,vector<string>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(separate_paren_groups("( ) (( )) (( )( ))") ,{"()", "(())", "(()())"})); }
CPP/2
/* Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return the decimal part of the number. >>> truncate_number(3.5) 0.5 */ #include<stdio.h> #include<math.h> using namespace std; float truncate_number(float number){
#include<stdio.h> #include<math.h> using namespace std; #include<algorithm> #include<stdlib.h> float truncate_number(float number){
return number-int(number); }
#undef NDEBUG #include<assert.h> int main(){ assert (truncate_number(3.5) == 0.5); assert (abs(truncate_number(1.33) - 0.33) < 1e-4); assert (abs(truncate_number(123.456) - 0.456) < 1e-4); }
#undef NDEBUG #include<assert.h> int main(){ assert (truncate_number(3.5) == 0.5); }
CPP/3
/* You"re given a vector of deposit and withdrawal operations on a bank account that starts with zero balance. Your task is to detect if at any point the balance of account falls below zero, and at that point function should return true. Otherwise it should return false. >>> below_zero({1, 2, 3}) false >>> below_zero({1, 2, -4, 5}) true */ #include<stdio.h> #include<vector> using namespace std; bool below_zero(vector<int> operations){
#include<stdio.h> #include<vector> using namespace std; #include<algorithm> #include<math.h> #include<stdlib.h> bool below_zero(vector<int> operations){
int num=0; for (int i=0;i<operations.size();i++) { num+=operations[i]; if (num<0) return true; } return false; }
#undef NDEBUG #include<assert.h> int main(){ assert (below_zero({}) == false); assert (below_zero({1, 2, -3, 1, 2, -3}) == false); assert (below_zero({1, 2, -4, 5, 6}) == true); assert (below_zero({1, -1, 2, -2, 5, -5, 4, -4}) == false); assert (below_zero({1, -1, 2, -2, 5, -5, 4, -5}) == true); assert (below_zero({1, -2, 2, -2, 5, -5, 4, -4}) == true); }
#undef NDEBUG #include<assert.h> int main(){ assert (below_zero({1, 2, 3}) == false); assert (below_zero({1, 2, -4, 5}) == true); }
CPP/4
/* For a given vector of input numbers, calculate Mean Absolute Deviation around the mean of this dataset. Mean Absolute Deviation is the average absolute difference between each element and a centerpoint (mean in this case): MAD = average | x - x_mean | >>> mean_absolute_deviation({1.0, 2.0, 3.0, 4.0}) 1.0 */ #include<stdio.h> #include<math.h> #include<vector> using namespace std; float mean_absolute_deviation(vector<float> numbers){
#include<stdio.h> #include<math.h> #include<vector> using namespace std; #include<algorithm> #include<stdlib.h> float mean_absolute_deviation(vector<float> numbers){
float sum=0; float avg,msum,mavg; int i=0; for (i=0;i<numbers.size();i++) sum+=numbers[i]; avg=sum/numbers.size(); msum=0; for (i=0;i<numbers.size();i++) msum+=abs(numbers[i]-avg); return msum/numbers.size(); }
#undef NDEBUG #include<assert.h> int main(){ assert (abs(mean_absolute_deviation({1.0, 2.0, 3.0}) - 2.0/3.0) < 1e-4); assert (abs(mean_absolute_deviation({1.0, 2.0, 3.0, 4.0}) - 1.0) < 1e-4); assert (abs(mean_absolute_deviation({1.0, 2.0, 3.0, 4.0, 5.0}) - 6.0/5.0) < 1e-4); }
#undef NDEBUG #include<assert.h> int main(){ assert (abs(mean_absolute_deviation({1.0, 2.0, 3.0, 4.0}) - 1.0) < 1e-4); }
CPP/5
/* Insert a number "delimeter" between every two consecutive elements of input vector `numbers" >>> intersperse({}, 4) {} >>> intersperse({1, 2, 3}, 4) {1, 4, 2, 4, 3} */ #include<stdio.h> #include<vector> using namespace std; vector<int> intersperse(vector<int> numbers, int delimeter){
#include<stdio.h> #include<vector> using namespace std; #include<algorithm> #include<math.h> #include<stdlib.h> vector<int> intersperse(vector<int> numbers, int delimeter){
vector<int> out={}; if (numbers.size()>0) out.push_back(numbers[0]); for (int i=1;i<numbers.size();i++) { out.push_back(delimeter); out.push_back(numbers[i]); } return out; }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(intersperse({}, 7), {})); assert (issame(intersperse({5, 6, 3, 2}, 8),{5, 8, 6, 8, 3, 8, 2})); assert (issame(intersperse({2, 2, 2}, 2),{2, 2, 2, 2, 2})); }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(intersperse({}, 4), {})); assert (issame(intersperse({1, 2, 3}, 4),{1, 4, 2, 4, 3})); }
CPP/6
/* Input to this function is a string represented multiple groups for nested parentheses separated by spaces. For each of the group, output the deepest level of nesting of parentheses. E.g. (()()) has maximum two levels of nesting while ((())) has three. >>> parse_nested_parens("(()()) ((())) () ((())()())") {2, 3, 1, 3} */ #include<stdio.h> #include<vector> #include<string> using namespace std; vector<int> parse_nested_parens(string paren_string){
#include<stdio.h> #include<vector> #include<string> using namespace std; #include<algorithm> #include<math.h> #include<stdlib.h> vector<int> parse_nested_parens(string paren_string){
vector<int> all_levels; string current_paren; int level=0,max_level=0; char chr; int i; for (i=0;i<paren_string.length();i++) { chr=paren_string[i]; if (chr=='(') { level+=1; if (level>max_level) max_level=level; current_paren+=chr; } if (chr==')') { level-=1; current_paren+=chr; if (level==0){ all_levels.push_back(max_level); current_paren=""; max_level=0; } } } return all_levels; }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(parse_nested_parens("(()()) ((())) () ((())()())"),{2, 3, 1, 3})); assert (issame(parse_nested_parens("() (()) ((())) (((())))") , {1, 2, 3, 4})); assert (issame(parse_nested_parens("(()(())((())))") ,{4})); }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(parse_nested_parens("(()()) ((())) () ((())()())"),{2, 3, 1, 3})); }
CPP/7
/* Filter an input vector of strings only for ones that contain given substring >>> filter_by_substring({}, "a") {} >>> filter_by_substring({"abc", "bacd", "cde", "vector"}, "a") {"abc", "bacd", "vector"} */ #include<stdio.h> #include<vector> #include<string> using namespace std; vector<string> filter_by_substring(vector<string> strings, string substring){
#include<stdio.h> #include<vector> #include<string> using namespace std; #include<algorithm> #include<math.h> #include<stdlib.h> vector<string> filter_by_substring(vector<string> strings, string substring){
vector<string> out; for (int i=0;i<strings.size();i++) { if (strings[i].find(substring)!=strings[i].npos) out.push_back(strings[i]); } return out; }
#undef NDEBUG #include<assert.h> bool issame(vector<string> a,vector<string>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(filter_by_substring({}, "john"),{})); assert (issame(filter_by_substring({"xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"}, "xxx"), {"xxx", "xxxAAA", "xxx"})); assert (issame(filter_by_substring({"xxx", "asd", "aaaxxy", "john doe", "xxxAAA", "xxx"}, "xx"),{"xxx", "aaaxxy", "xxxAAA", "xxx"})); assert (issame(filter_by_substring({"grunt", "trumpet", "prune", "gruesome"}, "run") ,{"grunt", "prune"})); }
#undef NDEBUG #include<assert.h> bool issame(vector<string> a,vector<string>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(filter_by_substring({}, "a"),{})); assert (issame(filter_by_substring({"abc", "bacd", "cde", "array"}, "a"), {"abc", "bacd", "array"})); }
CPP/8
/* For a given vector of integers, return a vector consisting of a sum and a product of all the integers in a vector. Empty sum should be equal to 0 and empty product should be equal to 1. >>> sum_product({}) (0, 1) >>> sum_product({1, 2, 3, 4}) (10, 24) */ #include<stdio.h> #include<vector> using namespace std; vector<int> sum_product(vector<int> numbers){
#include<stdio.h> #include<vector> using namespace std; #include<algorithm> #include<math.h> #include<stdlib.h> vector<int> sum_product(vector<int> numbers){
int sum=0,product=1; for (int i=0;i<numbers.size();i++) { sum+=numbers[i]; product*=numbers[i]; } return {sum,product}; }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(sum_product({}) ,{0, 1})); assert (issame(sum_product({1, 1, 1}), {3, 1})); assert (issame(sum_product({100, 0}),{100, 0})); assert (issame(sum_product({3, 5, 7}) , {3 + 5 + 7, 3 * 5 * 7})); assert (issame(sum_product({10}) ,{10, 10})); }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(sum_product({}) ,{0, 1})); assert (issame(sum_product({1, 2, 3,4}), {10, 24})); }
CPP/9
/* From a given vector of integers, generate a vector of rolling maximum element found until given moment in the sequence. >>> rolling_max({1, 2, 3, 2, 3, 4, 2}) {1, 2, 3, 3, 3, 4, 4} */ #include<stdio.h> #include<vector> using namespace std; vector<int> rolling_max(vector<int> numbers){
#include<stdio.h> #include<vector> using namespace std; #include<algorithm> #include<math.h> #include<stdlib.h> vector<int> rolling_max(vector<int> numbers){
vector<int> out; int max=0; for (int i=0;i<numbers.size();i++) { if (numbers[i]>max) max=numbers[i]; out.push_back(max); } return out; }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(rolling_max({}),{})); assert (issame(rolling_max({1, 2, 3, 4}) , {1, 2, 3, 4})); assert (issame(rolling_max({4, 3, 2, 1}),{4, 4, 4, 4})); assert (issame(rolling_max({3, 2, 3, 100, 3}) ,{3, 3, 3, 100, 100})); }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(rolling_max({1, 2, 3, 2, 3, 4, 2}),{1, 2, 3, 3, 3, 4, 4})); }
CPP/10
#include<stdio.h> #include<string> using namespace std; bool is_palindrome(string str){ //Test if given string is a palindrome string s(str.rbegin(),str.rend()); return s==str; } string make_palindrome(string str){ /* Find the shortest palindrome that begins with a supplied string. Algorithm idea is simple: - Find the longest postfix of supplied string that is a palindrome. - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix. >>> make_palindrome("") "" >>> make_palindrome("cat") "catac" >>> make_palindrome("cata") "catac" */
#include<stdio.h> #include<string> using namespace std; #include<algorithm> #include<math.h> #include<stdlib.h> bool is_palindrome(string str){ string s(str.rbegin(),str.rend()); return s==str; } string make_palindrome(string str){
int i; for (i=0;i<str.length();i++) { string rstr=str.substr(i); if (is_palindrome(rstr)) { string nstr; nstr=str.substr(0,i); string n2str(nstr.rbegin(),nstr.rend()); return str+n2str; } } string n2str(str.rbegin(),str.rend()); return str+n2str; }
#undef NDEBUG #include<assert.h> int main(){ assert (make_palindrome("") == ""); assert (make_palindrome("x") == "x"); assert (make_palindrome("xyz") == "xyzyx"); assert (make_palindrome("xyx") == "xyx") ; assert (make_palindrome("jerry") == "jerryrrej"); }
#undef NDEBUG #include<assert.h> int main(){ assert (make_palindrome("") == ""); assert (make_palindrome("cat") == "catac"); assert (make_palindrome("cata") == "catac"); }
CPP/11
/* Input are two strings a and b consisting only of 1s and 0s. Perform binary XOR on these inputs and return result also as a string. >>> string_xor("010", "110") "100" */ #include<stdio.h> #include<string> using namespace std; string string_xor(string a,string b){
#include<stdio.h> #include<string> using namespace std; #include<algorithm> #include<math.h> #include<stdlib.h> string string_xor(string a,string b){
string output=""; for (int i=0;(i<a.length() and i<b.length());i++) { if (i<a.length() and i<b.length()) { if (a[i]== b[i]) { output+='0'; } else output+='1'; } else { if (i>=a.length()) { output+=b[i]; } else output+=a[i]; } } return output; }
#undef NDEBUG #include<assert.h> int main(){ assert (string_xor("111000", "101010") == "010010"); assert (string_xor("1", "1") == "0"); assert (string_xor("0101", "0000") == "0101"); }
#undef NDEBUG #include<assert.h> int main(){ assert (string_xor("010", "110") == "100"); }
CPP/12
/* Out of vector of strings, return the longest one. Return the first one in case of multiple strings of the same length. Return None in case the input vector is empty. >>> longest({}) >>> longest({"a", "b", "c"}) "a" >>> longest({"a", "bb", "ccc"}) "ccc" */ #include<stdio.h> #include<vector> #include<string> using namespace std; string longest(vector<string> strings){
#include<stdio.h> #include<vector> #include<string> using namespace std; #include<algorithm> #include<math.h> #include<stdlib.h> string longest(vector<string> strings){
string out; for (int i=0;i<strings.size();i++) { if (strings[i].length()>out.length()) out=strings[i]; } return out; }
#undef NDEBUG #include<assert.h> int main(){ assert (longest({}) == ""); assert (longest({"x", "y", "z"}) == "x"); assert (longest({"x", "yyy", "zzzz", "www", "kkkk", "abc"}) == "zzzz"); }
#undef NDEBUG #include<assert.h> int main(){ assert (longest({}) == ""); assert (longest({"a", "b", "c"}) == "a"); assert (longest({"a", "bb", "ccc"}) == "ccc"); }
CPP/13
/* Return a greatest common divisor of two integers a and b >>> greatest_common_divisor(3, 5) 1 >>> greatest_common_divisor(25, 15) 5 */ #include<stdio.h> using namespace std; int greatest_common_divisor(int a, int b){
#include<stdio.h> using namespace std; #include<algorithm> #include<math.h> #include<stdlib.h> int greatest_common_divisor(int a, int b){
int out,m; while (true){ if (a<b) { m=a;a=b;b=m; } a=a%b; if (a==0) return b; } }
#undef NDEBUG #include<assert.h> int main(){ assert (greatest_common_divisor(3, 7) == 1); assert (greatest_common_divisor(10, 15) == 5); assert (greatest_common_divisor(49, 14) == 7); assert (greatest_common_divisor(144, 60) == 12); }
#undef NDEBUG #include<assert.h> int main(){ assert (greatest_common_divisor(3, 5) == 1); assert (greatest_common_divisor(25, 15) == 5); }
CPP/14
/* Return vector of all prefixes from shortest to longest of the input string >>> all_prefixes("abc") {"a", "ab", "abc"} */ #include<stdio.h> #include<vector> #include<string> using namespace std; vector<string> all_prefixes(string str){
#include<stdio.h> #include<vector> #include<string> using namespace std; #include<algorithm> #include<math.h> #include<stdlib.h> vector<string> all_prefixes(string str){
vector<string> out; string current=""; for (int i=0;i<str.length();i++) { current=current+str[i]; out.push_back(current); } return out; }
#undef NDEBUG #include<assert.h> bool issame(vector<string> a,vector<string>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(all_prefixes(""),{})); assert (issame(all_prefixes("asdfgh") ,{"a", "as", "asd", "asdf", "asdfg", "asdfgh"})); assert (issame(all_prefixes("WWW") ,{"W", "WW", "WWW"})); }
#undef NDEBUG #include<assert.h> bool issame(vector<string> a,vector<string>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(all_prefixes("abc"),{"a","ab","abc"})); }
CPP/15
/* Return a string containing space-delimited numbers starting from 0 upto n inclusive. >>> string_sequence(0) "0" >>> string_sequence(5) "0 1 2 3 4 5" */ #include<stdio.h> #include<string> using namespace std; string string_sequence(int n){
#include<stdio.h> #include<math.h> #include<string> using namespace std; #include<algorithm> #include<stdlib.h> string string_sequence(int n){
string out="0"; for (int i=1;i<=n;i++) out=out+" "+to_string(i); return out; }
#undef NDEBUG #include<assert.h> int main(){ assert (string_sequence(0) == "0"); assert (string_sequence(3) == "0 1 2 3"); assert (string_sequence(10) == "0 1 2 3 4 5 6 7 8 9 10"); }
#undef NDEBUG #include<assert.h> int main(){ assert (string_sequence(0) == "0"); assert (string_sequence(5) == "0 1 2 3 4 5"); }
CPP/16
/* Given a string, find out how many distinct characters (regardless of case) does it consist of >>> count_distinct_characters("xyzXYZ") 3 >>> count_distinct_characters("Jerry") 4 */ #include<stdio.h> #include<vector> #include<string> #include<algorithm> using namespace std; int count_distinct_characters(string str){
#include<stdio.h> #include<math.h> #include<vector> #include<string> #include<algorithm> using namespace std; #include<stdlib.h> int count_distinct_characters(string str){
vector<char> distinct={}; transform(str.begin(),str.end(),str.begin(),::tolower); for (int i=0;i<str.size();i++) { bool isin=false; for (int j=0;j<distinct.size();j++) if (distinct[j]==str[i]) isin=true; if (isin==false) distinct.push_back(str[i]); } return distinct.size(); }
#undef NDEBUG #include<assert.h> int main(){ assert (count_distinct_characters("") == 0); assert (count_distinct_characters("abcde") == 5); assert (count_distinct_characters("abcdecadeCADE") == 5); assert (count_distinct_characters("aaaaAAAAaaaa") == 1); assert (count_distinct_characters("Jerry jERRY JeRRRY") == 5); }
#undef NDEBUG #include<assert.h> int main(){ assert (count_distinct_characters("xyzXYZ") == 3); assert (count_distinct_characters("Jerry") == 4); }
CPP/17
/* Input to this function is a string representing musical notes in a special ASCII format. Your task is to parse this string and return vector of integers corresponding to how many beats does each not last. Here is a legend: "o" - whole note, lasts four beats "o|" - half note, lasts two beats ".|" - quater note, lasts one beat >>> parse_music("o o| .| o| o| .| .| .| .| o o") {4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4} */ #include<stdio.h> #include<vector> #include<string> using namespace std; vector<int> parse_music(string music_string){
#include<stdio.h> #include<math.h> #include<vector> #include<string> using namespace std; #include<algorithm> #include<stdlib.h> vector<int> parse_music(string music_string){
string current=""; vector<int> out={}; if (music_string.length()>0) music_string=music_string+' '; for (int i=0;i<music_string.length();i++) { if (music_string[i]==' ') { if (current=="o") out.push_back(4); if (current=="o|") out.push_back(2); if (current==".|") out.push_back(1); current=""; } else current+=music_string[i]; } return out; }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(parse_music("") , {})); assert (issame(parse_music("o o o o") ,{4, 4, 4, 4})); assert (issame(parse_music(".| .| .| .|") , {1, 1, 1, 1})); assert (issame(parse_music("o| o| .| .| o o o o") , {2, 2, 1, 1, 4, 4, 4, 4})); assert (issame(parse_music("o| .| o| .| o o| o o|") , {2, 1, 2, 1, 4, 2, 4, 2})); }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(parse_music("o o| .| o| o| .| .| .| .| o o") , {4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4})); }
CPP/18
/* Find how many times a given substring can be found in the original string. Count overlaping cases. >>> how_many_times("", "a") 0 >>> how_many_times("aaa", "a") 3 >>> how_many_times("aaaa", "aa") 3 */ #include<stdio.h> #include<string> using namespace std; int how_many_times(string str,string substring){
#include<stdio.h> #include<math.h> #include<string> using namespace std; #include<algorithm> #include<stdlib.h> int how_many_times(string str,string substring){
int out=0; if (str.length()==0) return 0; for (int i=0;i<=str.length()-substring.length();i++) if (str.substr(i,substring.length())==substring) out+=1; return out; }
#undef NDEBUG #include<assert.h> int main(){ assert (how_many_times("", "x") == 0); assert (how_many_times("xyxyxyx", "x") == 4); assert (how_many_times("cacacacac", "cac") == 4); assert (how_many_times("john doe", "john") == 1); }
#undef NDEBUG #include<assert.h> int main(){ assert (how_many_times("", "a") == 0); assert (how_many_times("aaa", "a") == 3); assert (how_many_times("aaaa", "aa") == 3); }
CPP/19
/* Input is a space-delimited string of numberals from "zero" to "nine". Valid choices are "zero", "one", 'two", 'three", "four", "five", 'six", 'seven", "eight" and "nine". Return the string with numbers sorted from smallest to largest >>> sort_numbers('three one five") "one three five" */ #include<stdio.h> #include<string> #include<map> using namespace std; string sort_numbers(string numbers){
#include<stdio.h> #include<math.h> #include<string> #include<map> using namespace std; #include<algorithm> #include<stdlib.h> string sort_numbers(string numbers){
map<string,int> tonum={{"zero",0},{"one",1},{"two",2},{"three",3},{"four",4},{"five",5},{"six",6},{"seven",7},{"eight",8},{"nine",9}}; map<int,string> numto={{0,"zero"},{1,"one"},{2,"two"},{3,"three"},{4,"four"},{5,"five"},{6,"six"},{7,"seven"},{8,"eight"},{9,"nine"}}; int count[10]; for (int i=0;i<10;i++) count[i]=0; string out="",current=""; if (numbers.length()>0) numbers=numbers+' '; for (int i=0;i<numbers.length();i++) if (numbers[i]==' ') { count[tonum[current]]+=1; current=""; } else current+=numbers[i]; for (int i=0;i<10;i++) for (int j=0;j<count[i];j++) out=out+numto[i]+' '; if (out.length()>0) out.pop_back(); return out; }
#undef NDEBUG #include<assert.h> int main(){ assert (sort_numbers("") == ""); assert (sort_numbers("three") == "three"); assert (sort_numbers("three five nine") == "three five nine"); assert (sort_numbers("five zero four seven nine eight") == "zero four five seven eight nine"); assert (sort_numbers("six five four three two one zero") == "zero one two three four five six"); }
#undef NDEBUG #include<assert.h> int main(){ assert (sort_numbers("three one five") == "one three five"); }
CPP/20
/* From a supplied vector of numbers (of length at least two) select and return two that are the closest to each other and return them in order (smaller number, larger number). >>> find_closest_elements({1.0, 2.0, 3.0, 4.0, 5.0, 2.2}) (2.0, 2.2) >>> find_closest_elements({1.0, 2.0, 3.0, 4.0, 5.0, 2.0}) (2.0, 2.0) */ #include<stdio.h> #include<math.h> #include<vector> using namespace std; vector<float> find_closest_elements(vector<float> numbers){
#include<stdio.h> #include<math.h> #include<vector> using namespace std; #include<algorithm> #include<stdlib.h> vector<float> find_closest_elements(vector<float> numbers){
vector<float> out={}; for (int i=0;i<numbers.size();i++) for (int j=i+1;j<numbers.size();j++) if (out.size()==0 or abs(numbers[i]-numbers[j])<abs(out[0]-out[1])) out={numbers[i],numbers[j]}; if (out[0]>out[1]) out={out[1],out[0]}; return out; }
#undef NDEBUG #include<assert.h> bool issame(vector<float> a,vector<float>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (abs(a[i]-b[i])>1e-4) return false; } return true; } int main(){ assert (issame(find_closest_elements({1.0, 2.0, 3.9, 4.0, 5.0, 2.2}) , {3.9, 4.0})); assert (issame(find_closest_elements({1.0, 2.0, 5.9, 4.0, 5.0}) , {5.0, 5.9} )); assert (issame(find_closest_elements({1.0, 2.0, 3.0, 4.0, 5.0, 2.2}) ,{2.0, 2.2})); assert (issame(find_closest_elements({1.0, 2.0, 3.0, 4.0, 5.0, 2.0}) ,{2.0, 2.0})); assert (issame(find_closest_elements({1.1, 2.2, 3.1, 4.1, 5.1}) , {2.2, 3.1})); }
#undef NDEBUG #include<assert.h> bool issame(vector<float> a,vector<float>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (abs(a[i]-b[i])>1e-4) return false; } return true; } int main(){ assert (issame(find_closest_elements({1.0, 2.0, 3.0, 4.0, 5.0, 2.2}) ,{2.0, 2.2})); assert (issame(find_closest_elements({1.0, 2.0, 3.0, 4.0, 5.0, 2.0}) ,{2.0, 2.0})); }
CPP/21
/* Given vector of numbers (of at least two elements), apply a linear transform to that vector, such that the smallest number will become 0 and the largest will become 1 >>> rescale_to_unit({1.0, 2.0, 3.0, 4.0, 5.0}) {0.0, 0.25, 0.5, 0.75, 1.0} */ #include<stdio.h> #include<math.h> #include<vector> using namespace std; vector<float> rescale_to_unit(vector<float> numbers){
#include<stdio.h> #include<math.h> #include<vector> using namespace std; #include<algorithm> #include<stdlib.h> vector<float> rescale_to_unit(vector<float> numbers){
float min=100000,max=-100000; for (int i=0;i<numbers.size();i++) { if (numbers[i]<min) min=numbers[i]; if (numbers[i]>max) max=numbers[i]; } for (int i=0;i<numbers.size();i++) numbers[i]=(numbers[i]-min)/(max-min); return numbers; }
#undef NDEBUG #include<assert.h> bool issame(vector<float> a,vector<float>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (abs(a[i]-b[i])>1e-4) return false; } return true; } int main(){ assert (issame(rescale_to_unit({2.0, 49.9}) , {0.0, 1.0})); assert (issame(rescale_to_unit({100.0, 49.9}) ,{1.0, 0.0})); assert (issame(rescale_to_unit({1.0, 2.0, 3.0, 4.0, 5.0}) , {0.0, 0.25, 0.5, 0.75, 1.0})); assert (issame(rescale_to_unit({2.0, 1.0, 5.0, 3.0, 4.0}) , {0.25, 0.0, 1.0, 0.5, 0.75})); assert (issame(rescale_to_unit({12.0, 11.0, 15.0, 13.0, 14.0}) ,{0.25, 0.0, 1.0, 0.5, 0.75})); }
#undef NDEBUG #include<assert.h> bool issame(vector<float> a,vector<float>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (abs(a[i]-b[i])>1e-4) return false; } return true; } int main(){ assert (issame(rescale_to_unit({1.0, 2.0, 3.0, 4.0, 5.0}) , {0.0, 0.25, 0.5, 0.75, 1.0})); }
CPP/22
/* Filter given vector of any python values only for integers >>> filter_integers({"a", 3.14, 5}) {5} >>> filter_integers({1, 2, 3, "abc", {}, {}}) {1, 2, 3} */ #include<stdio.h> #include<vector> #include<string> #include<boost/any.hpp> #include<list> typedef std::list<boost::any> list_any; using namespace std; vector<int> filter_integers(list_any values){
#include<stdio.h> #include<math.h> #include<vector> #include<string> #include<boost/any.hpp> #include<list> typedef std::list<boost::any> list_any; using namespace std; #include<algorithm> #include<stdlib.h> vector<int> filter_integers(list_any values){
list_any::iterator it; boost::any anyone; vector<int> out; for (it=values.begin();it!=values.end();it++) { anyone=*it; if( anyone.type() == typeid(int) ) out.push_back(boost::any_cast<int>(*it)); } return out; }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(filter_integers({}),{})); assert (issame(filter_integers({4, {},23.2, 9, string("adasd")}) ,{4, 9})); assert (issame(filter_integers({3, 'c', 3, 3, 'a', 'b'}) ,{3, 3, 3})); }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(filter_integers({string("a"), 3.14, 5}),{5})); assert (issame(filter_integers({1, 2, 3, string("abc"), {}, {}}),{1,2,3})); }
CPP/23
/* Return length of given string >>> strlen("") 0 >>> strlen("abc") 3 */ #include<stdio.h> #include<string> using namespace std; int strlen(string str){
#include<stdio.h> #include<math.h> #include<string> using namespace std; #include<algorithm> #include<stdlib.h> int strlen(string str){
return str.length(); }
#undef NDEBUG #include<assert.h> int main(){ assert (strlen("") == 0); assert (strlen("x") == 1); assert (strlen("asdasnakj") == 9); }
#undef NDEBUG #include<assert.h> int main(){ assert (strlen("") == 0); assert (strlen("abc") == 3); }
CPP/24
/* For a given number n, find the largest number that divides n evenly, smaller than n >>> largest_divisor(15) 5 */ #include<stdio.h> using namespace std; int largest_divisor(int n){
#include<stdio.h> #include<math.h> using namespace std; #include<algorithm> #include<stdlib.h> int largest_divisor(int n){
for (int i=2;i*i<=n;i++) if (n%i==0) return n/i; return 1; }
#undef NDEBUG #include<assert.h> int main(){ assert (largest_divisor(3) == 1); assert (largest_divisor(7) == 1); assert (largest_divisor(10) == 5); assert (largest_divisor(100) == 50); assert (largest_divisor(49) == 7); }
#undef NDEBUG #include<assert.h> int main(){ assert (largest_divisor(15) == 5); }
CPP/25
/* Return vector of prime factors of given integer in the order from smallest to largest. Each of the factors should be vectored number of times corresponding to how many times it appeares in factorization. Input number should be equal to the product of all factors >>> factorize(8) {2, 2, 2} >>> factorize(25) {5, 5} >>> factorize(70) {2, 5, 7} */ #include<stdio.h> #include<vector> using namespace std; vector<int> factorize(int n){
#include<stdio.h> #include<math.h> #include<vector> using namespace std; #include<algorithm> #include<stdlib.h> vector<int> factorize(int n){
vector<int> out={}; for (int i=2;i*i<=n;i++) if (n%i==0) { n=n/i; out.push_back(i); i-=1; } out.push_back(n); return out; }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(factorize(2) , {2})); assert (issame(factorize(4) , {2, 2})); assert (issame(factorize(8) , {2, 2, 2})); assert (issame(factorize(3 * 19) , {3, 19})); assert (issame(factorize(3 * 19 * 3 * 19) , {3, 3, 19, 19})); assert (issame(factorize(3 * 19 * 3 * 19 * 3 * 19) , {3, 3, 3, 19, 19, 19})); assert (issame(factorize(3 * 19 * 19 * 19) , {3, 19, 19, 19})); assert (issame(factorize(3 * 2 * 3) , {2, 3, 3})); }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(factorize(8) , {2, 2, 2})); assert (issame(factorize(25) , {5,5})); assert (issame(factorize(70) , {2,5,7})); }
CPP/26
/* From a vector of integers, remove all elements that occur more than once. Keep order of elements left the same as in the input. >>> remove_duplicates({1, 2, 3, 2, 4}) {1, 3, 4} */ #include<stdio.h> #include<vector> #include<algorithm> using namespace std; vector<int> remove_duplicates(vector<int> numbers){
#include<stdio.h> #include<math.h> #include<vector> #include<algorithm> using namespace std; #include<stdlib.h> vector<int> remove_duplicates(vector<int> numbers){
vector<int> out={}; vector<int> has1={}; vector<int> has2={}; for (int i=0;i<numbers.size();i++) { if (find(has2.begin(),has2.end(),numbers[i])!=has2.end()) continue; if (find(has1.begin(),has1.end(),numbers[i])!=has1.end()) { has2.push_back(numbers[i]); } else has1.push_back(numbers[i]); } for (int i=0;i<numbers.size();i++) if (find(has2.begin(),has2.end(),numbers[i])==has2.end()) out.push_back(numbers[i]); return out; }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(remove_duplicates({}) , {})); assert (issame(remove_duplicates({1, 2, 3, 4}) , {1, 2, 3, 4})); assert (issame(remove_duplicates({1, 2, 3, 2, 4, 3, 5}) , {1, 4, 5})); }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(remove_duplicates({1, 2, 3, 2,4}) , {1, 3, 4})); }
CPP/27
/* For a given string, flip lowercase characters to uppercase and uppercase to lowercase. >>> flip_case("Hello") "hELLO" */ #include<stdio.h> #include<string> using namespace std; string filp_case(string str){
#include<stdio.h> #include<math.h> #include<string> using namespace std; #include<algorithm> #include<stdlib.h> string filp_case(string str){
string out=""; for (int i=0;i<str.length();i++) { char w=str[i]; if (w>=97 and w<=122) {w-=32;} else if (w>=65 and w<=90){ w+=32;} out=out+w; } return out; }
#undef NDEBUG #include<assert.h> int main(){ assert (filp_case("") == ""); assert (filp_case("Hello!") == "hELLO!"); assert (filp_case("These violent delights have violent ends") == "tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS"); }
#undef NDEBUG #include<assert.h> int main(){ assert (filp_case("Hello") == "hELLO"); }
CPP/28
/* Concatenate vector of strings into a single string >>> concatenate({}) "" >>> concatenate({"a", "b", "c"}) "abc" */ #include<stdio.h> #include<vector> #include<string> using namespace std; string concatenate(vector<string> strings){
#include<stdio.h> #include<math.h> #include<vector> #include<string> using namespace std; #include<algorithm> #include<stdlib.h> string concatenate(vector<string> strings){
string out=""; for (int i=0;i<strings.size();i++) out=out+strings[i]; return out; }
#undef NDEBUG #include<assert.h> int main(){ assert (concatenate({}) == ""); assert (concatenate({"x", "y", "z"}) == "xyz"); assert (concatenate({"x", "y", "z", "w", "k"}) == "xyzwk"); }
#undef NDEBUG #include<assert.h> int main(){ assert (concatenate({}) == ""); assert (concatenate({"a", "b", "c"}) == "abc"); }
CPP/29
/* Filter an input vector of strings only for ones that start with a given prefix. >>> filter_by_prefix({}, "a") {} >>> filter_by_prefix({"abc", "bcd", "cde", "vector"}, "a") {"abc", "vector"} */ #include<stdio.h> #include<vector> #include<string> using namespace std; vector<string> filter_by_prefix(vector<string> strings, string prefix){
#include<stdio.h> #include<math.h> #include<vector> #include<string> using namespace std; #include<algorithm> #include<stdlib.h> vector<string> filter_by_prefix(vector<string> strings, string prefix){
vector<string> out={}; for (int i=0;i<strings.size();i++) if (strings[i].substr(0,prefix.length())==prefix) out.push_back(strings[i]); return out; }
#undef NDEBUG #include<assert.h> bool issame(vector<string> a,vector<string>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(filter_by_prefix({}, "john") , {})); assert (issame(filter_by_prefix({"xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"}, "xxx") , {"xxx", "xxxAAA", "xxx"})); }
#undef NDEBUG #include<assert.h> bool issame(vector<string> a,vector<string>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(filter_by_prefix({}, "a") , {})); assert (issame(filter_by_prefix({"abc", "bcd", "cde", "array"}, "a") , {"abc", "array"})); }
CPP/30
/* Return only positive numbers in the vector. >>> get_positive({-1, 2, -4, 5, 6}) {2, 5, 6} >>> get_positive({5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10}) {5, 3, 2, 3, 9, 123, 1} */ #include<stdio.h> #include<math.h> #include<vector> using namespace std; vector<float> get_positive(vector<float> l){
#include<stdio.h> #include<math.h> #include<vector> using namespace std; #include<algorithm> #include<stdlib.h> vector<float> get_positive(vector<float> l){
vector<float> out={}; for (int i=0;i<l.size();i++) if (l[i]>0) out.push_back(l[i]); return out; }
#undef NDEBUG #include<assert.h> bool issame(vector<float> a,vector<float>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (abs(a[i]-b[i])>1e-4) return false; } return true; } int main(){ assert (issame(get_positive({-1, -2, 4, 5, 6}) , {4, 5, 6} )); assert (issame(get_positive({5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10}) , {5, 3, 2, 3, 3, 9, 123, 1})); assert (issame(get_positive({-1, -2}) , {} )); assert (issame(get_positive({}) , {})); }
#undef NDEBUG #include<assert.h> bool issame(vector<float> a,vector<float>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (abs(a[i]-b[i])>1e-4) return false; } return true; } int main(){ assert (issame(get_positive({-1, 2, -4, 5, 6}) , {2, 5, 6} )); assert (issame(get_positive({5, 3, -5, 2, -3,3, 9, 0, 123, 1, -10}) , {5, 3, 2, 3, 9, 123, 1})); }
CPP/31
/* Return true if a given number is prime, and false otherwise. >>> is_prime(6) false >>> is_prime(101) true >>> is_prime(11) true >>> is_prime(13441) true >>> is_prime(61) true >>> is_prime(4) false >>> is_prime(1) false */ #include<stdio.h> using namespace std; bool is_prime(long long n){
#include<stdio.h> #include<math.h> using namespace std; #include<algorithm> #include<stdlib.h> bool is_prime(long long n){
if (n<2) return false; for (long long i=2;i*i<=n;i++) if (n%i==0) return false; return true; }
#undef NDEBUG #include<assert.h> int main(){ assert (is_prime(6) == false); assert (is_prime(101) == true); assert (is_prime(11) == true); assert (is_prime(13441) == true); assert (is_prime(61) == true); assert (is_prime(4) == false); assert (is_prime(1) == false); assert (is_prime(5) == true); assert (is_prime(11) == true); assert (is_prime(17) == true); assert (is_prime(5 * 17) == false); assert (is_prime(11 * 7) == false); assert (is_prime(13441 * 19) == false); }
#undef NDEBUG #include<assert.h> int main(){ assert (is_prime(6) == false); assert (is_prime(101) == true); assert (is_prime(11) == true); assert (is_prime(13441) == true); assert (is_prime(61) == true); assert (is_prime(4) == false); assert (is_prime(1) == false); }
CPP/32
#include<stdio.h> #include<math.h> #include<vector> using namespace std; double poly(vector<double> xs, double x){ /* Evaluates polynomial with coefficients xs at point x. return xs[0] + xs[1] * x + xs[1] * x^2 + .... xs[n] * x^n */ double sum=0; int i; for (i=0;i<xs.size();i++) { sum+=xs[i]*pow(x,i); } return sum; } double find_zero(vector<double> xs){ /* xs are coefficients of a polynomial. find_zero find x such that poly(x) = 0. find_zero returns only only zero point, even if there are many. Moreover, find_zero only takes list xs having even number of coefficients and largest non zero coefficient as it guarantees a solution. >>> round(find_zero([1, 2]), 2) #f(x) = 1 + 2x -0.5 >>> round(find_zero([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3) = -6 + 11x - 6x^2 + x^3 1.0 */
#include<stdio.h> #include<math.h> #include<vector> using namespace std; #include<algorithm> #include<stdlib.h> double poly(vector<double> xs, double x){ double sum=0; int i; for (i=0;i<xs.size();i++) { sum+=xs[i]*pow(x,i); } return sum; } double find_zero(vector<double> xs){
double ans=0; double value; value=poly(xs,ans); while (abs(value)>1e-6) { double driv=0; for (int i=1;i<xs.size();i++) { driv+=xs[i]*pow(ans,i-1)*i; } ans=ans-value/driv; value=poly(xs,ans); } return ans; }
#undef NDEBUG #include<assert.h> int main(){ double solution; int ncoeff; for (int i=0;i<100;i++) { ncoeff = 2 * (1+rand()%4); vector<double> coeffs = {}; for (int j=0;j<ncoeff;j++) { double coeff = -10+rand()%21; if (coeff == 0) coeff = 1; coeffs.push_back(coeff); } solution = find_zero(coeffs); assert (abs(poly(coeffs, solution))< 1e-3); } }
#undef NDEBUG #include<assert.h> int main(){ assert (find_zero({1,2})+0.5<1e-4); assert (find_zero({-6,11,-6,1})-1<1e-4); }
CPP/33
/* This function takes a vector l and returns a vector l' such that l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal to the values of the corresponding indicies of l, but sorted. >>> sort_third({1, 2, 3}) {1, 2, 3} >>> sort_third({5, 6, 3, 4, 8, 9, 2}) {2, 6, 3, 4, 8, 9, 5} */ #include<stdio.h> #include<vector> #include<algorithm> using namespace std; vector<int> sort_third(vector<int> l){
#include<stdio.h> #include<math.h> #include<vector> #include<algorithm> using namespace std; #include<stdlib.h> vector<int> sort_third(vector<int> l){
vector<int> third={}; int i; for (i=0;i*3<l.size();i++) third.push_back(l[i*3]); sort(third.begin(),third.end()); vector<int> out={}; for (i=0;i<l.size();i++) { if (i%3==0) {out.push_back(third[i/3]);} else out.push_back(l[i]); } return out; }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(sort_third({1, 2, 3}) , sort_third({1, 2, 3}))); assert (issame(sort_third({5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10}) , sort_third({5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10}))); assert (issame(sort_third({5, 8, -12, 4, 23, 2, 3, 11, 12, -10}) , sort_third({5, 8, -12, 4, 23, 2, 3, 11, 12, -10}))); assert (issame(sort_third({5, 6, 3, 4, 8, 9, 2}) , {2, 6, 3, 4, 8, 9, 5})); assert (issame(sort_third({5, 8, 3, 4, 6, 9, 2}) , {2, 8, 3, 4, 6, 9, 5})); assert (issame(sort_third({5, 6, 9, 4, 8, 3, 2}) , {2, 6, 9, 4, 8, 3, 5})); assert (issame(sort_third({5, 6, 3, 4, 8, 9, 2, 1}) , {2, 6, 3, 4, 8, 9, 5, 1})); }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(sort_third({1, 2, 3}) , {1, 2, 3})); assert (issame(sort_third({5, 6, 3, 4, 8, 9, 2}) , {2, 6, 3, 4, 8, 9, 5})); }
CPP/34
/* Return sorted unique elements in a vector >>> unique({5, 3, 5, 2, 3, 3, 9, 0, 123}) {0, 2, 3, 5, 9, 123} */ #include<stdio.h> #include<vector> #include<algorithm> using namespace std; vector<int> unique(vector<int> l){
#include<stdio.h> #include<math.h> #include<vector> #include<algorithm> using namespace std; #include<stdlib.h> vector<int> unique(vector<int> l){
vector<int> out={}; for (int i=0;i<l.size();i++) if (find(out.begin(),out.end(),l[i])==out.end()) out.push_back(l[i]); sort(out.begin(),out.end()); return out; }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(unique({5, 3, 5, 2, 3, 3, 9, 0, 123}) , {0, 2, 3, 5, 9, 123})); }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(unique({5, 3, 5, 2, 3, 3, 9, 0, 123}) , {0, 2, 3, 5, 9, 123})); }
CPP/35
/* Return maximum element in the vector. >>> max_element({1, 2, 3}) 3 >>> max_element({5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10}) 123 */ #include<stdio.h> #include<math.h> #include<vector> using namespace std; float max_element(vector<float> l){
#include<stdio.h> #include<math.h> #include<vector> #include<algorithm> using namespace std; #include<stdlib.h> float max_element(vector<float> l){
float max=-10000; for (int i=0;i<l.size();i++) if (max<l[i]) max=l[i]; return max; }
#undef NDEBUG #include<assert.h> int main(){ assert (abs(max_element({1, 2, 3})- 3)<1e-4); assert (abs(max_element({5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10})- 124)<1e-4); }
#undef NDEBUG #include<assert.h> int main(){ assert (abs(max_element({1, 2, 3})- 3)<1e-4); assert (abs(max_element({5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10})- 123)<1e-4); }
CPP/36
/* Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13. >>> fizz_buzz(50) 0 >>> fizz_buzz(78) 2 >>> fizz_buzz(79) 3 */ #include<stdio.h> using namespace std; int fizz_buzz(int n){
#include<stdio.h> #include<math.h> using namespace std; #include<algorithm> #include<stdlib.h> int fizz_buzz(int n){
int count=0; for (int i=0;i<n;i++) if (i%11==0 or i%13==0) { int q=i; while (q>0) { if (q%10==7) count+=1; q=q/10; } } return count; }
#undef NDEBUG #include<assert.h> int main(){ assert (fizz_buzz(50) == 0); assert (fizz_buzz(78) == 2); assert (fizz_buzz(79) == 3); assert (fizz_buzz(100) == 3); assert (fizz_buzz(200) == 6); assert (fizz_buzz(4000) == 192); assert (fizz_buzz(10000) == 639); assert (fizz_buzz(100000) == 8026); }
#undef NDEBUG #include<assert.h> int main(){ assert (fizz_buzz(50) == 0); assert (fizz_buzz(78) == 2); assert (fizz_buzz(79) == 3); }
CPP/37
/* This function takes a vector l and returns a vector l' such that l' is identical to l in the odd indicies, while its values at the even indicies are equal to the values of the even indicies of l, but sorted. >>> sort_even({1, 2, 3}) {1, 2, 3} >>> sort_even({5, 6, 3, 4}) {3, 6, 5, 4} */ #include<stdio.h> #include<math.h> #include<vector> #include<algorithm> using namespace std; vector<float> sort_even(vector<float> l){
#include<stdio.h> #include<math.h> #include<vector> #include<algorithm> using namespace std; #include<stdlib.h> vector<float> sort_even(vector<float> l){
vector<float> out={}; vector<float> even={}; for (int i=0;i*2<l.size();i++) even.push_back(l[i*2]); sort(even.begin(),even.end()); for (int i=0;i<l.size();i++) { if (i%2==0) out.push_back(even[i/2]); if (i%2==1) out.push_back(l[i]); } return out; }
#undef NDEBUG #include<assert.h> bool issame(vector<float> a,vector<float>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (abs(a[i]-b[i])>1e-4) return false; } return true; } int main(){ assert (issame(sort_even({1, 2, 3}), {1, 2, 3})); assert (issame(sort_even({5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10}) , {-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123})); assert (issame(sort_even({5, 8, -12, 4, 23, 2, 3, 11, 12, -10}) , {-12, 8, 3, 4, 5, 2, 12, 11, 23, -10})); }
#undef NDEBUG #include<assert.h> bool issame(vector<float> a,vector<float>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (abs(a[i]-b[i])>1e-4) return false; } return true; } int main(){ assert (issame(sort_even({1, 2, 3}), {1, 2, 3})); assert (issame(sort_even({5, 6,3,4}) , {3,6,5,4})); }
CPP/38
#include<stdio.h> #include<string> using namespace std; string encode_cyclic(string s){ // returns encoded string by cycling groups of three characters. // split string to groups. Each of length 3. int l=s.length(); int num=(l+2)/3; string x,output; int i; for (i=0;i*3<l;i++) { //cycle elements in each group. Unless group has fewer elements than 3. x=s.substr(i*3,3); if (x.length()==3) x=x.substr(1)+x[0]; output=output+x; } return output; } string decode_cyclic(string s){ /* takes as input string encoded with encode_cyclic function. Returns decoded string. */
#include<stdio.h> #include<math.h> #include<string> using namespace std; #include<algorithm> #include<stdlib.h> string encode_cyclic(string s){ int l=s.length(); int num=(l+2)/3; string x,output; int i; for (i=0;i*3<l;i++) { x=s.substr(i*3,3); if (x.length()==3) x=x.substr(1)+x[0]; output=output+x; } return output; } string decode_cyclic(string s){ int l=s.length(); int num=(l+2)/3; string x,output; int i; for (i=0;i*3<l;i++) {
int l=s.length(); int num=(l+2)/3; string x,output; int i; for (i=0;i*3<l;i++) { x=s.substr(i*3,3); if (x.length()==3) x=x[2]+x.substr(0,2); output=output+x; } return output; }
#undef NDEBUG #include<assert.h> int main(){ for (int i=0;i<100;i++) { int l=10+rand()%11; string str=""; for (int j=0;j<l;j++) { char chr=97+rand()%26; str+=chr; } string encoded_str = encode_cyclic(str); assert (decode_cyclic(encoded_str) == str); } }
CPP/39
/* prime_fib returns n-th number that is a Fibonacci number and it's also prime. >>> prime_fib(1) 2 >>> prime_fib(2) 3 >>> prime_fib(3) 5 >>> prime_fib(4) 13 >>> prime_fib(5) 89 */ #include<stdio.h> using namespace std; int prime_fib(int n){
#include<stdio.h> #include<math.h> using namespace std; #include<algorithm> #include<stdlib.h> int prime_fib(int n){
int f1,f2,m; f1=1;f2=2; int count=0; while (count<n) { f1=f1+f2; m=f1;f1=f2;f2=m; bool isprime=true; for (int w=2;w*w<=f1;w++) if (f1%w==0) { isprime=false; break; } if (isprime) count+=1; if (count==n) return f1; } }
#undef NDEBUG #include<assert.h> int main(){ assert (prime_fib(1) == 2); assert (prime_fib(2) == 3); assert (prime_fib(3) == 5); assert (prime_fib(4) == 13); assert (prime_fib(5) == 89); assert (prime_fib(6) == 233); assert (prime_fib(7) == 1597); assert (prime_fib(8) == 28657); assert (prime_fib(9) == 514229); assert (prime_fib(10) == 433494437); }
#undef NDEBUG #include<assert.h> int main(){ assert (prime_fib(1) == 2); assert (prime_fib(2) == 3); assert (prime_fib(3) == 5); assert (prime_fib(4) == 13); assert (prime_fib(5) == 89); }
CPP/40
/* triples_sum_to_zero takes a vector of integers as an input. it returns true if there are three distinct elements in the vector that sum to zero, and false otherwise. >>> triples_sum_to_zero({1, 3, 5, 0}) false >>> triples_sum_to_zero({1, 3, -2, 1}) true >>> triples_sum_to_zero({1, 2, 3, 7}) false >>> triples_sum_to_zero({2, 4, -5, 3, 9, 7}) true >>> triples_sum_to_zero({1}) false */ #include<stdio.h> #include<vector> using namespace std; bool triples_sum_to_zero(vector<int> l){
#include<stdio.h> #include<math.h> #include<vector> #include<algorithm> using namespace std; #include<stdlib.h> bool triples_sum_to_zero(vector<int> l){
for (int i=0;i<l.size();i++) for (int j=i+1;j<l.size();j++) for (int k=j+1;k<l.size();k++) if (l[i]+l[j]+l[k]==0) return true; return false; }
#undef NDEBUG #include<assert.h> int main(){ assert (triples_sum_to_zero({1, 3, 5, 0}) == false); assert (triples_sum_to_zero({1, 3, 5, -1}) == false); assert (triples_sum_to_zero({1, 3, -2, 1}) == true); assert (triples_sum_to_zero({1, 2, 3, 7}) == false); assert (triples_sum_to_zero({1, 2, 5, 7}) == false); assert (triples_sum_to_zero({2, 4, -5, 3, 9, 7}) == true); assert (triples_sum_to_zero({1}) == false); assert (triples_sum_to_zero({1, 3, 5, -100}) == false); assert (triples_sum_to_zero({100, 3, 5, -100}) == false); }
#undef NDEBUG #include<assert.h> int main(){ assert (triples_sum_to_zero({1, 3, 5, 0}) == false); assert (triples_sum_to_zero({1, 3, -2, 1}) == true); assert (triples_sum_to_zero({1, 2, 3, 7}) == false); assert (triples_sum_to_zero({2, 4, -5, 3, 9, 7}) == true); }
CPP/41
/* Imagine a road that's a perfectly straight infinitely long line. n cars are driving left to right; simultaneously, a different set of n cars are driving right to left. The two sets of cars start out being very far from each other. All cars move in the same speed. Two cars are said to collide when a car that's moving left to right hits a car that's moving right to left. However, the cars are infinitely sturdy and strong; as a result, they continue moving in their trajectory as if they did not collide. This function outputs the number of such collisions. */ #include<stdio.h> using namespace std; int car_race_collision(int n){
#include<stdio.h> #include<math.h> using namespace std; #include<algorithm> #include<stdlib.h> int car_race_collision(int n){
return n*n; }
#undef NDEBUG #include<assert.h> int main(){ assert (car_race_collision(2) == 4); assert (car_race_collision(3) == 9); assert (car_race_collision(4) == 16); assert (car_race_collision(8) == 64); assert (car_race_collision(10) == 100); }
CPP/42
/* Return vector with elements incremented by 1. >>> incr_vector({1, 2, 3}) {2, 3, 4} >>> incr_vector({5, 3, 5, 2, 3, 3, 9, 0, 123}) {6, 4, 6, 3, 4, 4, 10, 1, 124} */ #include<stdio.h> #include<vector> using namespace std; vector<int> incr_list(vector<int> l){
#include<stdio.h> #include<math.h> #include<vector> using namespace std; #include<algorithm> #include<stdlib.h> vector<int> incr_list(vector<int> l){
for (int i=0;i<l.size();i++) l[i]+=1; return l; }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(incr_list({}) , {})); assert (issame(incr_list({3, 2, 1}) , {4, 3, 2})); assert (issame(incr_list({5, 2, 5, 2, 3, 3, 9, 0, 123}) , {6, 3, 6, 3, 4, 4, 10, 1, 124})); }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(incr_list({1, 2, 3}) , {2, 3, 4})); assert (issame(incr_list({5, 2, 5, 2, 3, 3, 9, 0, 123}) , {6, 3, 6, 3, 4, 4, 10, 1, 124})); }
CPP/43
/* pairs_sum_to_zero takes a vector of integers as an input. it returns true if there are two distinct elements in the vector that sum to zero, and false otherwise. >>> pairs_sum_to_zero({1, 3, 5, 0}) false >>> pairs_sum_to_zero({1, 3, -2, 1}) false >>> pairs_sum_to_zero({1, 2, 3, 7}) false >>> pairs_sum_to_zero({2, 4, -5, 3, 5, 7}) true >>> pairs_sum_to_zero({1}) false */ #include<stdio.h> #include<vector> using namespace std; bool pairs_sum_to_zero(vector<int> l){
#include<stdio.h> #include<math.h> #include<vector> using namespace std; #include<algorithm> #include<stdlib.h> bool pairs_sum_to_zero(vector<int> l){
for (int i=0;i<l.size();i++) for (int j=i+1;j<l.size();j++) if (l[i]+l[j]==0) return true; return false; }
#undef NDEBUG #include<assert.h> int main(){ assert (pairs_sum_to_zero({1, 3, 5, 0}) == false); assert (pairs_sum_to_zero({1, 3, -2, 1}) == false); assert (pairs_sum_to_zero({1, 2, 3, 7}) == false); assert (pairs_sum_to_zero({2, 4, -5, 3, 5, 7}) == true); assert (pairs_sum_to_zero({1}) == false); assert (pairs_sum_to_zero({-3, 9, -1, 3, 2, 30}) == true); assert (pairs_sum_to_zero({-3, 9, -1, 3, 2, 31}) == true); assert (pairs_sum_to_zero({-3, 9, -1, 4, 2, 30}) == false); assert (pairs_sum_to_zero({-3, 9, -1, 4, 2, 31}) == false); }
#undef NDEBUG #include<assert.h> int main(){ assert (pairs_sum_to_zero({1, 3, 5, 0}) == false); assert (pairs_sum_to_zero({1, 3, -2, 1}) == false); assert (pairs_sum_to_zero({1, 2, 3, 7}) == false); assert (pairs_sum_to_zero({2, 4, -5, 3, 5, 7}) == true); }
CPP/44
/* Change numerical base of input number x to base. return string representation after the conversion. base numbers are less than 10. >>> change_base(8, 3) "22" >>> change_base(8, 2) "1000" >>> change_base(7, 2) "111" */ #include<stdio.h> #include<string> using namespace std; string change_base(int x,int base){
#include<stdio.h> #include<math.h> #include<string> using namespace std; #include<algorithm> #include<stdlib.h> string change_base(int x,int base){
string out=""; while (x>0) { out=to_string(x%base)+out; x=x/base; } return out; }
#undef NDEBUG #include<assert.h> int main(){ assert (change_base(8, 3) == "22"); assert (change_base(9, 3) == "100"); assert (change_base(234, 2) == "11101010"); assert (change_base(16, 2) == "10000"); assert (change_base(8, 2) == "1000"); assert (change_base(7, 2) == "111"); for (int x=2;x<8;x++) assert (change_base(x, x + 1) == to_string(x)); }
#undef NDEBUG #include<assert.h> int main(){ assert (change_base(8, 3) == "22"); assert (change_base(8, 2) == "1000"); assert (change_base(7, 2) == "111"); }
CPP/45
/* Given length of a side and high return area for a triangle. >>> triangle_area(5, 3) 7.5 */ #include<stdio.h> #include<math.h> using namespace std; float triangle_area(float a,float h){
#include<stdio.h> #include<math.h> using namespace std; #include<algorithm> #include<stdlib.h> float triangle_area(float a,float h){
return (a*h)*0.5; }
#undef NDEBUG #include<assert.h> int main(){ assert (abs(triangle_area(5, 3) - 7.5)<1e-4); assert (abs(triangle_area(2, 2) - 2.0)<1e-4); assert (abs(triangle_area(10, 8) - 40.0)<1e-4); }
#undef NDEBUG #include<assert.h> int main(){ assert (abs(triangle_area(5, 3) - 7.5)<1e-4); }
CPP/46
/* The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: fib4(0) -> 0 fib4(1) -> 0 fib4(2) -> 2 fib4(3) -> 0 fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4). Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion. >>> fib4(5) 4 >>> fib4(6) 8 >>> fib4(7) 14 */ #include<stdio.h> using namespace std; int fib4(int n){
#include<stdio.h> #include<math.h> using namespace std; #include<algorithm> #include<stdlib.h> int fib4(int n){
int f[100]; f[0]=0; f[1]=0; f[2]=2; f[3]=0; for (int i=4;i<=n;i++) { f[i]=f[i-1]+f[i-2]+f[i-3]+f[i-4]; } return f[n]; }
#undef NDEBUG #include<assert.h> int main(){ assert (fib4(5) == 4); assert (fib4(8) == 28); assert (fib4(10) == 104); assert (fib4(12) == 386); }
#undef NDEBUG #include<assert.h> int main(){ assert (fib4(5) == 4); assert (fib4(6) == 8); assert (fib4(7) == 14); }
CPP/47
/* Return median of elements in the vector l. >>> median({3, 1, 2, 4, 5}) 3 >>> median({-10, 4, 6, 1000, 10, 20}) 15.0 */ #include<stdio.h> #include<math.h> #include<vector> #include<algorithm> using namespace std; float median(vector<float> l){
#include<stdio.h> #include<math.h> #include<vector> #include<algorithm> using namespace std; #include<stdlib.h> float median(vector<float> l){
sort(l.begin(),l.end()); if (l.size()%2==1) return l[l.size()/2]; return 0.5*(l[l.size()/2]+l[l.size()/2-1]); }
#undef NDEBUG #include<assert.h> int main(){ assert (abs(median({3, 1, 2, 4, 5}) - 3)<1e-4); assert (abs(median({-10, 4, 6, 1000, 10, 20}) -8.0)<1e-4); assert (abs(median({5}) - 5)<1e-4); assert (abs(median({6, 5}) - 5.5)<1e-4); assert (abs(median({8, 1, 3, 9, 9, 2, 7}) - 7)<1e-4 ); }
#undef NDEBUG #include<assert.h> int main(){ assert (abs(median({3, 1, 2, 4, 5}) - 3)<1e-4); assert (abs(median({-10, 4, 6, 1000, 10, 20}) -8.0)<1e-4); }
CPP/48
/* Checks if given string is a palindrome >>> is_palindrome("") true >>> is_palindrome("aba") true >>> is_palindrome("aaaaa") true >>> is_palindrome("zbcd") false */ #include<stdio.h> #include<string> using namespace std; bool is_palindrome(string text){
#include<stdio.h> #include<math.h> #include<string> using namespace std; #include<algorithm> #include<stdlib.h> bool is_palindrome(string text){
string pr(text.rbegin(),text.rend()); return pr==text; }
#undef NDEBUG #include<assert.h> int main(){ assert (is_palindrome("") == true); assert (is_palindrome("aba") == true); assert (is_palindrome("aaaaa") == true); assert (is_palindrome("zbcd") == false); assert (is_palindrome("xywyx") == true); assert (is_palindrome("xywyz") == false); assert (is_palindrome("xywzx") == false); }
#undef NDEBUG #include<assert.h> int main(){ assert (is_palindrome("") == true); assert (is_palindrome("aba") == true); assert (is_palindrome("aaaaa") == true); assert (is_palindrome("zbcd") == false); }
CPP/49
/* Return 2^n modulo p (be aware of numerics). >>> modp(3, 5) 3 >>> modp(1101, 101) 2 >>> modp(0, 101) 1 >>> modp(3, 11) 8 >>> modp(100, 101) 1 */ #include<stdio.h> using namespace std; int modp(int n,int p){
#include<stdio.h> #include<math.h> using namespace std; #include<algorithm> #include<stdlib.h> int modp(int n,int p){
int out=1; for (int i=0;i<n;i++) out=(out*2)%p; return out; }
#undef NDEBUG #include<assert.h> int main(){ assert (modp(3, 5) == 3); assert (modp(1101, 101) == 2); assert (modp(0, 101) == 1); assert (modp(3, 11) == 8); assert (modp(100, 101) == 1); assert (modp(30, 5) == 4); assert (modp(31, 5) == 3); }
#undef NDEBUG #include<assert.h> int main(){ assert (modp(3, 5) == 3); assert (modp(1101, 101) == 2); assert (modp(0, 101) == 1); assert (modp(3, 11) == 8); assert (modp(100, 101) == 1); }
CPP/50
#include<stdio.h> #include<string> using namespace std; string encode_shift(string s){ // returns encoded string by shifting every character by 5 in the alphabet. string out; int i; for (i=0;i<s.length();i++) { int w=((int)s[i]+5-(int)'a')%26+(int)'a'; out=out+(char)w; } return out; } string decode_shift(string s){ // takes as input string encoded with encode_shift function. Returns decoded string.
#include<stdio.h> #include<math.h> #include<string> using namespace std; #include<algorithm> #include<stdlib.h> string encode_shift(string s){ string out; int i; for (i=0;i<s.length();i++) { int w=((int)s[i]+5-(int)'a')%26+(int)'a'; out=out+(char)w; } return out; } string decode_shift(string s){
string out; int i; for (i=0;i<s.length();i++) { int w=((int)s[i]+21-(int)'a')%26+(int)'a'; out=out+(char)w; } return out; }
#undef NDEBUG #include<assert.h> int main(){ for (int i=0;i<100;i++) { int l=10+rand()%11; string str=""; for (int j=0;j<l;j++) { char chr=97+rand()%26; str+=chr; } string encoded_str = encode_shift(str); assert (decode_shift(encoded_str) == str); } }
CPP/51
/* remove_vowels is a function that takes string and returns string without vowels. >>> remove_vowels("") "" >>> remove_vowels("abcdef\nghijklm") "bcdf\nghjklm" >>> remove_vowels("abcdef") "bcdf" >>> remove_vowels("aaaaa") "" >>> remove_vowels("aaBAA") "B" >>> remove_vowels("zbcd") "zbcd" */ #include<stdio.h> #include<string> #include<algorithm> using namespace std; string remove_vowels(string text){
#include<stdio.h> #include<math.h> #include<string> #include<algorithm> using namespace std; #include<stdlib.h> string remove_vowels(string text){
string out=""; string vowels="AEIOUaeiou"; for (int i=0;i<text.length();i++) if (find(vowels.begin(),vowels.end(),text[i])==vowels.end()) out=out+text[i]; return out; }
#undef NDEBUG #include<assert.h> int main(){ assert (remove_vowels("") == ""); assert (remove_vowels("abcdef\nghijklm") == "bcdf\nghjklm"); assert (remove_vowels("fedcba") == "fdcb"); assert (remove_vowels("eeeee") == ""); assert (remove_vowels("acBAA") == "cB"); assert (remove_vowels("EcBOO") == "cB"); assert (remove_vowels("ybcd") == "ybcd"); }
#undef NDEBUG #include<assert.h> int main(){ assert (remove_vowels("") == ""); assert (remove_vowels("abcdef\nghijklm") == "bcdf\nghjklm"); assert (remove_vowels("abcdef") == "bcdf"); assert (remove_vowels("aaaaa") == ""); assert (remove_vowels("aaBAA") == "B"); assert (remove_vowels("zbcd") == "zbcd"); }
CPP/52
/* Return true if all numbers in the vector l are below threshold t. >>> below_threshold({1, 2, 4, 10}, 100) true >>> below_threshold({1, 20, 4, 10}, 5) false */ #include<stdio.h> #include<vector> using namespace std; bool below_threshold(vector<int>l, int t){
#include<stdio.h> #include<math.h> #include<vector> using namespace std; #include<algorithm> #include<stdlib.h> bool below_threshold(vector<int>l, int t){
for (int i=0;i<l.size();i++) if (l[i]>=t) return false; return true; }
#undef NDEBUG #include<assert.h> int main(){ assert (below_threshold({1, 2, 4, 10}, 100)); assert (not(below_threshold({1, 20, 4, 10}, 5))); assert (below_threshold({1, 20, 4, 10}, 21)); assert (below_threshold({1, 20, 4, 10}, 22)); assert (below_threshold({1, 8, 4, 10}, 11)); assert (not(below_threshold({1, 8, 4, 10}, 10))); }
#undef NDEBUG #include<assert.h> int main(){ assert (below_threshold({1, 2, 4, 10}, 100)); assert (not(below_threshold({1, 20, 4, 10}, 5))); }
CPP/53
/* Add two numbers x and y >>> add(2, 3) 5 >>> add(5, 7) 12 */ #include<stdio.h> #include<stdlib.h> using namespace std; int add(int x,int y){
#include<stdio.h> #include<stdlib.h> using namespace std; #include<algorithm> #include<math.h> int add(int x,int y){
return x+y; }
#undef NDEBUG #include<assert.h> int main(){ assert (add(0, 1) == 1); assert (add(1, 0) == 1); assert (add(2, 3) == 5); assert (add(5, 7) == 12); assert (add(7, 5) == 12); for (int i=0;i<100;i+=1) { int x=rand()%1000; int y=rand()%1000; assert (add(x, y) == x + y); } }
#undef NDEBUG #include<assert.h> int main(){ assert (add(2, 3) == 5); assert (add(5, 7) == 12); }
CPP/54
/* Check if two words have the same characters. >>> same_chars("eabcdzzzz", "dddzzzzzzzddeddabc") true >>> same_chars("abcd", "dddddddabc") true >>> same_chars("dddddddabc", "abcd") true >>> same_chars("eabcd", "dddddddabc") false >>> same_chars("abcd", "dddddddabce") false >>> same_chars("eabcdzzzz", "dddzzzzzzzddddabc") false */ #include<stdio.h> #include<string> #include<algorithm> using namespace std; bool same_chars(string s0,string s1){
#include<stdio.h> #include<math.h> #include<string> #include<algorithm> using namespace std; #include<stdlib.h> bool same_chars(string s0,string s1){
for (int i=0;i<s0.length();i++) if (find(s1.begin(),s1.end(),s0[i])==s1.end()) return false; for (int i=0;i<s1.length();i++) if (find(s0.begin(),s0.end(),s1[i])==s0.end()) return false; return true; }
#undef NDEBUG #include<assert.h> int main(){ assert (same_chars("eabcdzzzz", "dddzzzzzzzddeddabc") == true); assert (same_chars("abcd", "dddddddabc") == true); assert (same_chars("dddddddabc", "abcd") == true); assert (same_chars("eabcd", "dddddddabc") == false); assert (same_chars("abcd", "dddddddabcf") == false); assert (same_chars("eabcdzzzz", "dddzzzzzzzddddabc") == false); assert (same_chars("aabb", "aaccc") == false); }
#undef NDEBUG #include<assert.h> int main(){ assert (same_chars("eabcdzzzz", "dddzzzzzzzddeddabc") == true); assert (same_chars("abcd", "dddddddabc") == true); assert (same_chars("dddddddabc", "abcd") == true); assert (same_chars("eabcd", "dddddddabc") == false); assert (same_chars("abcd", "dddddddabcf") == false); assert (same_chars("eabcdzzzz", "dddzzzzzzzddddabc") == false); }
CPP/55
/* Return n-th Fibonacci number. >>> fib(10) 55 >>> fib(1) 1 >>> fib(8) 21 */ #include<stdio.h> using namespace std; int fib(int n){
#include<stdio.h> #include<math.h> using namespace std; #include<algorithm> #include<stdlib.h> int fib(int n){
int f[1000]; f[0]=0;f[1]=1; for (int i=2;i<=n; i++) f[i]=f[i-1]+f[i-2]; return f[n]; }
#undef NDEBUG #include<assert.h> int main(){ assert (fib(10) == 55); assert (fib(1) == 1); assert (fib(8) == 21); assert (fib(11) == 89); assert (fib(12) == 144); }
#undef NDEBUG #include<assert.h> int main(){ assert (fib(10) == 55); assert (fib(1) == 1); assert (fib(8) == 21); }
CPP/56
/* brackets is a string of '<' and '>'. return true if every opening bracket has a corresponding closing bracket. >>> correct_bracketing("<") false >>> correct_bracketing("<>") true >>> correct_bracketing("<<><>>") true >>> correct_bracketing("><<>") false */ #include<stdio.h> #include<string> using namespace std; bool correct_bracketing(string brackets){
#include<stdio.h> #include<math.h> #include<string> using namespace std; #include<algorithm> #include<stdlib.h> bool correct_bracketing(string brackets){
int level=0; for (int i=0;i<brackets.length();i++) { if (brackets[i]=='<') level+=1; if (brackets[i]=='>') level-=1; if (level<0) return false; } if (level!=0) return false; return true; }
#undef NDEBUG #include<assert.h> int main(){ assert (correct_bracketing("<>")); assert (correct_bracketing("<<><>>")); assert (correct_bracketing("<><><<><>><>")); assert (correct_bracketing("<><><<<><><>><>><<><><<>>>")); assert (not (correct_bracketing("<<<><>>>>"))); assert (not (correct_bracketing("><<>"))); assert (not (correct_bracketing("<"))); assert (not (correct_bracketing("<<<<"))); assert (not (correct_bracketing(">"))); assert (not (correct_bracketing("<<>"))); assert (not (correct_bracketing("<><><<><>><>><<>"))); assert (not (correct_bracketing("<><><<><>><>>><>"))); }
#undef NDEBUG #include<assert.h> int main(){ assert (correct_bracketing("<>")); assert (correct_bracketing("<<><>>")); assert (not (correct_bracketing("><<>"))); assert (not (correct_bracketing("<"))); }
CPP/57
/* Return true is vector elements are monotonically increasing or decreasing. >>> monotonic({1, 2, 4, 20}) true >>> monotonic({1, 20, 4, 10}) false >>> monotonic({4, 1, 0, -10}) true */ #include<stdio.h> #include<vector> using namespace std; bool monotonic(vector<float> l){
#include<stdio.h> #include<math.h> #include<vector> using namespace std; #include<algorithm> #include<stdlib.h> bool monotonic(vector<float> l){
int incr,decr; incr=0;decr=0; for (int i=1;i<l.size();i++) { if (l[i]>l[i-1]) incr=1; if (l[i]<l[i-1]) decr=1; } if (incr+decr==2) return false; return true; }
#undef NDEBUG #include<assert.h> int main(){ assert (monotonic({1, 2, 4, 10}) == true); assert (monotonic({1, 2, 4, 20}) == true); assert (monotonic({1, 20, 4, 10}) == false); assert (monotonic({4, 1, 0, -10}) == true); assert (monotonic({4, 1, 1, 0}) == true); assert (monotonic({1, 2, 3, 2, 5, 60}) == false); assert (monotonic({1, 2, 3, 4, 5, 60}) == true); assert (monotonic({9, 9, 9, 9}) == true); }
#undef NDEBUG #include<assert.h> int main(){ assert (monotonic({1, 2, 4, 10}) == true); assert (monotonic({1, 20, 4, 10}) == false); assert (monotonic({4, 1, 0, -10}) == true); }
CPP/58
/* Return sorted unique common elements for two vectors. >>> common({1, 4, 3, 34, 653, 2, 5}, {5, 7, 1, 5, 9, 653, 121}) {1, 5, 653} >>> common({5, 3, 2, 8}, {3, 2}) {2, 3} */ #include<stdio.h> #include<vector> #include<algorithm> using namespace std; vector<int> common(vector<int> l1,vector<int> l2){
#include<stdio.h> #include<math.h> #include<vector> #include<algorithm> using namespace std; #include<stdlib.h> vector<int> common(vector<int> l1,vector<int> l2){
vector<int> out={}; for (int i=0;i<l1.size();i++) if (find(out.begin(),out.end(),l1[i])==out.end()) if (find(l2.begin(),l2.end(),l1[i])!=l2.end()) out.push_back(l1[i]); sort(out.begin(),out.end()); return out; }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(common({1, 4, 3, 34, 653, 2, 5}, {5, 7, 1, 5, 9, 653, 121}) , {1, 5, 653})); assert (issame(common({5, 3, 2, 8}, {3, 2}) , {2, 3})); assert (issame(common({4, 3, 2, 8}, {3, 2, 4}) , {2, 3, 4})); assert (issame(common({4, 3, 2, 8}, {}) , {})); }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(common({1, 4, 3, 34, 653, 2, 5}, {5, 7, 1, 5, 9, 653, 121}) , {1, 5, 653})); assert (issame(common({5, 3, 2, 8}, {3, 2}) , {2, 3})); }
CPP/59
/* Return the largest prime factor of n. Assume n > 1 and is not a prime. >>> largest_prime_factor(13195) 29 >>> largest_prime_factor(2048) 2 */ #include<stdio.h> using namespace std; int largest_prime_factor(int n){
#include<stdio.h> #include<math.h> using namespace std; #include<algorithm> #include<stdlib.h> int largest_prime_factor(int n){
for (int i=2;i*i<=n;i++) while (n%i==0 and n>i) n=n/i; return n; }
#undef NDEBUG #include<assert.h> int main(){ assert (largest_prime_factor(15) == 5); assert (largest_prime_factor(27) == 3); assert (largest_prime_factor(63) == 7); assert (largest_prime_factor(330) == 11); assert (largest_prime_factor(13195) == 29); }
#undef NDEBUG #include<assert.h> int main(){ assert (largest_prime_factor(2048) == 2); assert (largest_prime_factor(13195) == 29); }
CPP/60
/* sum_to_n is a function that sums numbers from 1 to n. >>> sum_to_n(30) 465 >>> sum_to_n(100) 5050 >>> sum_to_n(5) 15 >>> sum_to_n(10) 55 >>> sum_to_n(1) 1 */ #include<stdio.h> using namespace std; int sum_to_n(int n){
#include<stdio.h> #include<math.h> using namespace std; #include<algorithm> #include<stdlib.h> int sum_to_n(int n){
return n*(n+1)/2; }
#undef NDEBUG #include<assert.h> int main(){ assert (sum_to_n(1) == 1); assert (sum_to_n(6) == 21); assert (sum_to_n(11) == 66); assert (sum_to_n(30) == 465); assert (sum_to_n(100) == 5050); }
#undef NDEBUG #include<assert.h> int main(){ assert (sum_to_n(1) == 1); assert (sum_to_n(5) == 15); assert (sum_to_n(10) == 55); assert (sum_to_n(30) == 465); assert (sum_to_n(100) == 5050); }
CPP/61
/* brackets is a string of '(' and ')'. return true if every opening bracket has a corresponding closing bracket. >>> correct_bracketing("(") false >>> correct_bracketing("()") true >>> correct_bracketing("(()())") true >>> correct_bracketing(")(()") false */ #include<stdio.h> #include<string> using namespace std; bool correct_bracketing(string brackets){
#include<stdio.h> #include<math.h> #include<string> using namespace std; #include<algorithm> #include<stdlib.h> bool correct_bracketing(string brackets){
int level=0; for (int i=0;i<brackets.length();i++) { if (brackets[i]=='(') level+=1; if (brackets[i]==')') level-=1; if (level<0) return false; } if (level!=0) return false; return true; }
#undef NDEBUG #include<assert.h> int main(){ assert (correct_bracketing("()")); assert (correct_bracketing("(()())")); assert (correct_bracketing("()()(()())()")); assert (correct_bracketing("()()((()()())())(()()(()))")); assert (not (correct_bracketing("((()())))"))); assert (not (correct_bracketing(")(()"))); assert (not (correct_bracketing("("))); assert (not (correct_bracketing("(((("))); assert (not (correct_bracketing(")"))); assert (not (correct_bracketing("(()"))); assert (not (correct_bracketing("()()(()())())(()"))); assert (not (correct_bracketing("()()(()())()))()"))); }
#undef NDEBUG #include<assert.h> int main(){ assert (correct_bracketing("()")); assert (correct_bracketing("(()())")); assert (not (correct_bracketing(")(()"))); assert (not (correct_bracketing("("))); }
CPP/62
/* xs represent coefficients of a polynomial. xs{0} + xs{1} * x + xs{2} * x^2 + .... Return derivative of this polynomial in the same form. >>> derivative({3, 1, 2, 4, 5}) {1, 4, 12, 20} >>> derivative({1, 2, 3}) {2, 6} */ #include<stdio.h> #include<math.h> #include<vector> using namespace std; vector<float> derivative(vector<float> xs){
#include<stdio.h> #include<math.h> #include<vector> using namespace std; #include<algorithm> #include<stdlib.h> vector<float> derivative(vector<float> xs){
vector<float> out={}; for (int i=1;i<xs.size();i++) out.push_back(i*xs[i]); return out; }
#undef NDEBUG #include<assert.h> bool issame(vector<float> a,vector<float>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (abs(a[i]-b[i])>1e-4) return false; } return true; } int main(){ assert (issame(derivative({3, 1, 2, 4, 5}) , {1, 4, 12, 20})); assert (issame(derivative({1, 2, 3}) , {2, 6})); assert (issame(derivative({3, 2, 1}) , {2, 2})); assert (issame(derivative({3, 2, 1, 0, 4}) , {2, 2, 0, 16})); assert (issame(derivative({1}) , {})); }
#undef NDEBUG #include<assert.h> bool issame(vector<float> a,vector<float>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (abs(a[i]-b[i])>1e-4) return false; } return true; } int main(){ assert (issame(derivative({3, 1, 2, 4, 5}) , {1, 4, 12, 20})); assert (issame(derivative({1, 2, 3}) , {2, 6})); }
CPP/63
/* The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: fibfib(0) == 0 fibfib(1) == 0 fibfib(2) == 1 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3). Please write a function to efficiently compute the n-th element of the fibfib number sequence. >>> fibfib(1) 0 >>> fibfib(5) 4 >>> fibfib(8) 24 */ #include<stdio.h> using namespace std; int fibfib(int n){
#include<stdio.h> #include<math.h> using namespace std; #include<algorithm> #include<stdlib.h> int fibfib(int n){
int ff[100]; ff[0]=0; ff[1]=0; ff[2]=1; for (int i=3;i<=n;i++) ff[i]=ff[i-1]+ff[i-2]+ff[i-3]; return ff[n]; }
#undef NDEBUG #include<assert.h> int main(){ assert (fibfib(2) == 1); assert (fibfib(1) == 0); assert (fibfib(5) == 4); assert (fibfib(8) == 24); assert (fibfib(10) == 81); assert (fibfib(12) == 274); assert (fibfib(14) == 927); }
#undef NDEBUG #include<assert.h> int main(){ assert (fibfib(1) == 0); assert (fibfib(5) == 4); assert (fibfib(8) == 24); }
CPP/64
/* Write a function vowels_count which takes a string representing a word as input and returns the number of vowels in the string. Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a vowel, but only when it is at the end of the given word. Example: >>> vowels_count("abcde") 2 >>> vowels_count("ACEDY") 3 */ #include<stdio.h> #include<string> #include<algorithm> using namespace std; int vowels_count(string s){
#include<stdio.h> #include<math.h> #include<string> #include<algorithm> using namespace std; #include<stdlib.h> int vowels_count(string s){
string vowels="aeiouAEIOU"; int count=0; for (int i=0;i<s.length();i++) if (find(vowels.begin(),vowels.end(),s[i])!=vowels.end()) count+=1; if (s[s.length()-1]=='y' or s[s.length()-1]=='Y') count+=1; return count; }
#undef NDEBUG #include<assert.h> int main(){ assert (vowels_count("abcde") == 2); assert (vowels_count("Alone") == 3); assert (vowels_count("key") == 2); assert (vowels_count("bye") == 1); assert (vowels_count("keY") == 2); assert (vowels_count("bYe") == 1); assert (vowels_count("ACEDY") == 3); }
#undef NDEBUG #include<assert.h> int main(){ assert (vowels_count("abcde") == 2); assert (vowels_count("ACEDY") == 3); }
CPP/65
/* Circular shift the digits of the integer x, shift the digits right by shift and return the result as a string. If shift > number of digits, return digits reversed. >>> circular_shift(12, 1) "21" >>> circular_shift(12, 2) "12" */ #include<stdio.h> #include<string> using namespace std; string circular_shift(int x,int shift){
#include<stdio.h> #include<math.h> #include<string> using namespace std; #include<algorithm> #include<stdlib.h> string circular_shift(int x,int shift){
string xs; xs=to_string(x); if (xs.length()<shift) { string s(xs.rbegin(),xs.rend()); return s; } xs=xs.substr(xs.length()-shift)+xs.substr(0,xs.length()-shift); return xs; }
#undef NDEBUG #include<assert.h> int main(){ assert (circular_shift(100, 2) == "001"); assert (circular_shift(12, 2) == "12"); assert (circular_shift(97, 8) == "79"); assert (circular_shift(12, 1) == "21"); assert (circular_shift(11, 101) == "11"); }
#undef NDEBUG #include<assert.h> int main(){ assert (circular_shift(12, 2) == "12"); assert (circular_shift(12, 1) == "21"); }
CPP/66
/* Task Write a function that takes a string as input and returns the sum of the upper characters only's ASCII codes. Examples: digitSum("") => 0 digitSum("abAB") => 131 digitSum("abcCd") => 67 digitSum("helloE") => 69 digitSum("woArBld") => 131 digitSum("aAaaaXa") => 153 */ #include<stdio.h> #include<string> using namespace std; int digitSum(string s){
#include<stdio.h> #include<math.h> #include<string> using namespace std; #include<algorithm> #include<stdlib.h> int digitSum(string s){
int sum=0; for (int i=0;i<s.length();i++) if (s[i]>=65 and s[i]<=90) sum+=s[i]; return sum; }
#undef NDEBUG #include<assert.h> int main(){ assert (digitSum("") == 0); assert (digitSum("abAB") == 131); assert (digitSum("abcCd") == 67); assert (digitSum("helloE") == 69); assert (digitSum("woArBld") == 131); assert (digitSum("aAaaaXa") == 153); assert (digitSum(" How are yOu?") == 151); assert (digitSum("You arE Very Smart") == 327); }
#undef NDEBUG #include<assert.h> int main(){ assert (digitSum("") == 0); assert (digitSum("abAB") == 131); assert (digitSum("abcCd") == 67); assert (digitSum("helloE") == 69); assert (digitSum("woArBld") == 131); assert (digitSum("aAaaaXa") == 153); }
CPP/67
/* In this task, you will be given a string that represents a number of apples and oranges that are distributed in a basket of fruit this basket contains apples, oranges, and mango fruits. Given the string that represents the total number of the oranges and apples and an integer that represent the total number of the fruits in the basket return the number of the mango fruits in the basket. for example: fruit_distribution("5 apples and 6 oranges", 19) ->19 - 5 - 6 = 8 fruit_distribution("0 apples and 1 oranges",3) -> 3 - 0 - 1 = 2 fruit_distribution("2 apples and 3 oranges", 100) -> 100 - 2 - 3 = 95 fruit_distribution("100 apples and 1 oranges",120) -> 120 - 100 - 1 = 19 */ #include<stdio.h> #include<string> using namespace std; int fruit_distribution(string s,int n){
#include<stdio.h> #include<math.h> #include<string> using namespace std; #include<algorithm> #include<stdlib.h> int fruit_distribution(string s,int n){
string num1="",num2=""; int is12; is12=0; for (int i=0;i<s.size();i++) if (s[i]>=48 and s[i]<=57) { if (is12==0) num1=num1+s[i]; if (is12==1) num2=num2+s[i]; } else if (is12==0 and num1.length()>0) is12=1; return n-atoi(num1.c_str())-atoi(num2.c_str()); }
#undef NDEBUG #include<assert.h> int main(){ assert (fruit_distribution("5 apples and 6 oranges",19) == 8); assert (fruit_distribution("5 apples and 6 oranges",21) == 10); assert (fruit_distribution("0 apples and 1 oranges",3) == 2); assert (fruit_distribution("1 apples and 0 oranges",3) == 2); assert (fruit_distribution("2 apples and 3 oranges",100) == 95); assert (fruit_distribution("2 apples and 3 oranges",5) == 0); assert (fruit_distribution("1 apples and 100 oranges",120) == 19); }
#undef NDEBUG #include<assert.h> int main(){ assert (fruit_distribution("5 apples and 6 oranges",19) == 8); assert (fruit_distribution("0 apples and 1 oranges",3) == 2); assert (fruit_distribution("2 apples and 3 oranges",100) == 95); assert (fruit_distribution("1 apples and 100 oranges",120) == 19); }
CPP/68
/* Given a vector representing a branch of a tree that has non-negative integer nodes your task is to pluck one of the nodes and return it. The plucked node should be the node with the smallest even value. If multiple nodes with the same smallest even value are found return the node that has smallest index. The plucked node should be returned in a vector, { smalest_value, its index }, If there are no even values or the given vector is empty, return {}. Example 1: Input: {4,2,3} Output: {2, 1} Explanation: 2 has the smallest even value, and 2 has the smallest index. Example 2: Input: {1,2,3} Output: {2, 1} Explanation: 2 has the smallest even value, and 2 has the smallest index. Example 3: Input: {} Output: {} Example 4: Input: {5, 0, 3, 0, 4, 2} Output: {0, 1} Explanation: 0 is the smallest value, but there are two zeros, so we will choose the first zero, which has the smallest index. Constraints: * 1 <= nodes.length <= 10000 * 0 <= node.value */ #include<stdio.h> #include<vector> using namespace std; vector<int> pluck(vector<int> arr){
#include<stdio.h> #include<math.h> #include<vector> using namespace std; #include<algorithm> #include<stdlib.h> vector<int> pluck(vector<int> arr){
vector<int> out={}; for (int i=0;i<arr.size();i++) if (arr[i]%2==0 and (out.size()==0 or arr[i]<out[0])) out={arr[i],i}; return out; }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(pluck({4,2,3}) , {2, 1})); assert (issame(pluck({1,2,3}) , {2, 1})); assert (issame(pluck({}) , {})); assert (issame(pluck({5, 0, 3, 0, 4, 2}) , {0, 1})); assert (issame(pluck({1, 2, 3, 0, 5, 3}) , {0, 3})); assert (issame(pluck({5, 4, 8, 4 ,8}) , {4, 1})); assert (issame(pluck({7, 6, 7, 1}) , {6, 1})); assert (issame(pluck({7, 9, 7, 1}) , {})); }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(pluck({4,2,3}) , {2, 1})); assert (issame(pluck({1,2,3}) , {2, 1})); assert (issame(pluck({}) , {})); assert (issame(pluck({5, 0, 3, 0, 4, 2}) , {0, 1})); }
CPP/69
/* You are given a non-empty vector of positive integers. Return the greatest integer that is greater than zero, and has a frequency greater than or equal to the value of the integer itself. The frequency of an integer is the number of times it appears in the vector. If no such a value exist, return -1. Examples: search({4, 1, 2, 2, 3, 1}) == 2 search({1, 2, 2, 3, 3, 3, 4, 4, 4}) == 3 search({5, 5, 4, 4, 4}) == -1 */ #include<stdio.h> #include<vector> using namespace std; int search(vector<int> lst){
#include<stdio.h> #include<math.h> #include<vector> using namespace std; #include<algorithm> #include<stdlib.h> int search(vector<int> lst){
vector<vector<int>> freq={}; int max=-1; for (int i=0;i<lst.size();i++) { bool has=false; for (int j=0;j<freq.size();j++) if (lst[i]==freq[j][0]) { freq[j][1]+=1; has=true; if (freq[j][1]>=freq[j][0] and freq[j][0]>max) max=freq[j][0]; } if (not(has)) { freq.push_back({lst[i],1}); if (max==-1 and lst[i]==1) max=1; } } return max; }
#undef NDEBUG #include<assert.h> int main(){ assert (search({5, 5, 5, 5, 1}) == 1); assert (search({4, 1, 4, 1, 4, 4}) == 4); assert (search({3, 3}) == -1); assert (search({8, 8, 8, 8, 8, 8, 8, 8}) == 8); assert (search({2, 3, 3, 2, 2}) == 2); assert (search({2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1}) == 1); assert (search({3, 2, 8, 2}) == 2); assert (search({6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10}) == 1); assert (search({8, 8, 3, 6, 5, 6, 4}) == -1); assert (search({6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9}) == 1); assert (search({1, 9, 10, 1, 3}) == 1); assert (search({6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10}) == 5); assert (search({1}) == 1); assert (search({8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5}) == 4); assert (search({2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10}) == 2); assert (search({1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3}) == 1); assert (search({9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4}) == 4); assert (search({2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7}) == 4); assert (search({9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1}) == 2); assert (search({5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8}) == -1); assert (search({10}) == -1); assert (search({9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2}) == 2); assert (search({5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8}) == 1); assert (search({7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6}) == 1); assert (search({3, 10, 10, 9, 2}) == -1); }
#undef NDEBUG #include<assert.h> int main(){ assert (search({4, 1, 2, 2, 3, 1}) == 2); assert (search({1, 2, 2, 3, 3, 3, 4, 4, 4}) == 3); assert (search({5, 5, 4, 4, 4}) == -1); }
CPP/70
/* Given vector of integers, return vector in strange order. Strange sorting, is when you start with the minimum value, then maximum of the remaining integers, then minimum and so on. Examples: strange_sort_vector({1, 2, 3, 4}) == {1, 4, 2, 3} strange_sort_vector({5, 5, 5, 5}) == {5, 5, 5, 5} strange_sort_vector({}) == {} */ #include<stdio.h> #include<vector> #include<algorithm> using namespace std; vector<int> strange_sort_list(vector<int> lst){
#include<stdio.h> #include<math.h> #include<vector> #include<algorithm> using namespace std; #include<stdlib.h> vector<int> strange_sort_list(vector<int> lst){
vector<int> out={}; sort(lst.begin(),lst.end()); int l=0,r=lst.size()-1; while (l<r) { out.push_back(lst[l]); l+=1; out.push_back(lst[r]); r-=1; } if (l==r) out.push_back(lst[l]); return out; }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(strange_sort_list({1, 2, 3, 4}) , {1, 4, 2, 3})); assert (issame(strange_sort_list({5, 6, 7, 8, 9}) , {5, 9, 6, 8, 7})); assert (issame(strange_sort_list({1, 2, 3, 4, 5}) , {1, 5, 2, 4, 3})); assert (issame(strange_sort_list({5, 6, 7, 8, 9, 1}) , {1, 9, 5, 8, 6, 7})); assert (issame(strange_sort_list({5, 5, 5, 5}) , {5, 5, 5, 5})); assert (issame(strange_sort_list({}) , {})); assert (issame(strange_sort_list({1,2,3,4,5,6,7,8}) , {1, 8, 2, 7, 3, 6, 4, 5})); assert (issame(strange_sort_list({0,2,2,2,5,5,-5,-5}) , {-5, 5, -5, 5, 0, 2, 2, 2})); assert (issame(strange_sort_list({111111}) , {111111})); }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(strange_sort_list({1, 2, 3, 4}) , {1, 4, 2, 3})); assert (issame(strange_sort_list({5, 5, 5, 5}) , {5, 5, 5, 5})); assert (issame(strange_sort_list({}) , {})); }
CPP/71
/* Given the lengths of the three sides of a triangle. Return the area of the triangle rounded to 2 decimal points if the three sides form a valid triangle. Otherwise return -1 Three sides make a valid triangle when the sum of any two sides is greater than the third side. Example: triangle_area(3, 4, 5) == 6.00 triangle_area(1, 2, 10) == -1 */ #include<stdio.h> #include<math.h> using namespace std; float triangle_area(float a,float b,float c){
#include<stdio.h> #include<math.h> using namespace std; #include<algorithm> #include<stdlib.h> float triangle_area(float a,float b,float c){
if (a+b<=c or a+c<=b or b+c<=a) return -1; float h=(a+b+c)/2; float area; area=pow(h*(h-a)*(h-b)*(h-c),0.5); return area; }
#undef NDEBUG #include<assert.h> int main(){ assert (abs(triangle_area(3, 4, 5)-6.00)<0.01); assert (abs(triangle_area(1, 2, 10) +1)<0.01); assert (abs(triangle_area(4, 8, 5) -8.18)<0.01); assert (abs(triangle_area(2, 2, 2) -1.73)<0.01); assert (abs(triangle_area(1, 2, 3) +1)<0.01); assert (abs(triangle_area(10, 5, 7) - 16.25)<0.01); assert (abs(triangle_area(2, 6, 3) +1)<0.01); assert (abs(triangle_area(1, 1, 1) -0.43)<0.01); assert (abs(triangle_area(2, 2, 10) +1)<0.01); }
#undef NDEBUG #include<assert.h> int main(){ assert (abs(triangle_area(3, 4, 5)-6.00)<0.01); assert (abs(triangle_area(1, 2, 10) +1)<0.01); }
CPP/72
/* Write a function that returns true if the object q will fly, and false otherwise. The object q will fly if it's balanced (it is a palindromic vector) and the sum of its elements is less than or equal the maximum possible weight w. Example: will_it_fly({1, 2}, 5) โžž false // 1+2 is less than the maximum possible weight, but it's unbalanced. will_it_fly({3, 2, 3}, 1) โžž false // it's balanced, but 3+2+3 is more than the maximum possible weight. will_it_fly({3, 2, 3}, 9) โžž true // 3+2+3 is less than the maximum possible weight, and it's balanced. will_it_fly({3}, 5) โžž true // 3 is less than the maximum possible weight, and it's balanced. */ #include<stdio.h> #include<vector> using namespace std; bool will_it_fly(vector<int> q,int w){
#include<stdio.h> #include<math.h> #include<vector> using namespace std; #include<algorithm> #include<stdlib.h> bool will_it_fly(vector<int> q,int w){
int sum=0; for (int i=0;i<q.size();i++) { if (q[i]!=q[q.size()-1-i]) return false; sum+=q[i]; } if (sum>w) return false; return true; }
#undef NDEBUG #include<assert.h> int main(){ assert (will_it_fly({3, 2, 3}, 9)==true); assert (will_it_fly({1, 2}, 5) == false); assert (will_it_fly({3}, 5) == true); assert (will_it_fly({3, 2, 3}, 1) == false); assert (will_it_fly({1, 2, 3}, 6) ==false); assert (will_it_fly({5}, 5) == true); }
#undef NDEBUG #include<assert.h> int main(){ assert (will_it_fly({3, 2, 3}, 9)==true); assert (will_it_fly({1, 2}, 5) == false); assert (will_it_fly({3}, 5) == true); assert (will_it_fly({3, 2, 3}, 1) == false); }
CPP/73
/* Given a vector arr of integers, find the minimum number of elements that need to be changed to make the vector palindromic. A palindromic vector is a vector that is read the same backwards and forwards. In one change, you can change one element to any other element. For example: smallest_change({1,2,3,5,4,7,9,6}) == 4 smallest_change({1, 2, 3, 4, 3, 2, 2}) == 1 smallest_change({1, 2, 3, 2, 1}) == 0 */ #include<stdio.h> #include<vector> using namespace std; int smallest_change(vector<int> arr){
#include<stdio.h> #include<math.h> #include<vector> using namespace std; #include<algorithm> #include<stdlib.h> int smallest_change(vector<int> arr){
int out=0; for (int i=0;i<arr.size()-1-i;i++) if (arr[i]!=arr[arr.size()-1-i]) out+=1; return out; }
#undef NDEBUG #include<assert.h> int main(){ assert (smallest_change({1,2,3,5,4,7,9,6}) == 4); assert (smallest_change({1, 2, 3, 4, 3, 2, 2}) == 1); assert (smallest_change({1, 4, 2}) == 1); assert (smallest_change({1, 4, 4, 2}) == 1); assert (smallest_change({1, 2, 3, 2, 1}) == 0); assert (smallest_change({3, 1, 1, 3}) == 0); assert (smallest_change({1}) == 0); assert (smallest_change({0, 1}) == 1); }
#undef NDEBUG #include<assert.h> int main(){ assert (smallest_change({1,2,3,5,4,7,9,6}) == 4); assert (smallest_change({1, 2, 3, 4, 3, 2, 2}) == 1); assert (smallest_change({1, 2, 3, 2, 1}) == 0); assert (smallest_change({3, 1, 1, 3}) == 0); }
CPP/74
/* Write a function that accepts two vectors of strings and returns the vector that has total number of chars in the all strings of the vector less than the other vector. if the two vectors have the same number of chars, return the first vector. Examples total_match({}, {}) โžž {} total_match({"hi", "admin"}, {"hI", "Hi"}) โžž {"hI", "Hi"} total_match({"hi", "admin"}, {"hi", "hi", "admin", "project"}) โžž {"hi", "admin"} total_match({"hi", "admin"}, {"hI", "hi", "hi"}) โžž {"hI", "hi", "hi"} total_match({"4"}, {"1", "2", "3", "4", "5"}) โžž {"4"} */ #include<stdio.h> #include<vector> #include<string> using namespace std; vector<string> total_match(vector<string> lst1,vector<string> lst2){
#include<stdio.h> #include<math.h> #include<vector> #include<string> #include<algorithm> using namespace std; #include<stdlib.h> vector<string> total_match(vector<string> lst1,vector<string> lst2){
int num1,num2,i; num1=0;num2=0; for (i=0;i<lst1.size();i++) num1+=lst1[i].length(); for (i=0;i<lst2.size();i++) num2+=lst2[i].length(); if (num1>num2) return lst2; return lst1; }
#undef NDEBUG #include<assert.h> bool issame(vector<string> a,vector<string>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(total_match({}, {}) , {})); assert (issame(total_match({"hi", "admin"}, {"hi", "hi"}) , {"hi", "hi"})); assert (issame(total_match({"hi", "admin"}, {"hi", "hi", "admin", "project"}) , {"hi", "admin"})); assert (issame(total_match({"4"}, {"1", "2", "3", "4", "5"}) , {"4"})); assert (issame(total_match({"hi", "admin"}, {"hI", "Hi"}) , {"hI", "Hi"})); assert (issame(total_match({"hi", "admin"}, {"hI", "hi", "hi"}) , {"hI", "hi", "hi"})); assert (issame(total_match({"hi", "admin"}, {"hI", "hi", "hii"}) , {"hi", "admin"})); assert (issame(total_match({}, {"this"}) , {})); assert (issame(total_match({"this"}, {}) , {})); }
#undef NDEBUG #include<assert.h> bool issame(vector<string> a,vector<string>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(total_match({}, {}) , {})); assert (issame(total_match({"hi", "admin"}, {"hi", "hi", "admin", "project"}) , {"hi", "admin"})); assert (issame(total_match({"4"}, {"1", "2", "3", "4", "5"}) , {"4"})); assert (issame(total_match({"hi", "admin"}, {"hI", "Hi"}) , {"hI", "Hi"})); assert (issame(total_match({"hi", "admin"}, {"hI", "hi", "hi"}) , {"hI", "hi", "hi"})); }
CPP/75
/* Write a function that returns true if the given number is the multiplication of 3 prime numbers and false otherwise. Knowing that (a) is less then 100. Example: is_multiply_prime(30) == true 30 = 2 * 3 * 5 */ #include<stdio.h> using namespace std; bool is_multiply_prime(int a){
#include<stdio.h> #include<math.h> using namespace std; #include<algorithm> #include<stdlib.h> bool is_multiply_prime(int a){
int num=0; for (int i=2;i*i<=a;i++) while (a%i==0 and a>i) { a=a/i; num+=1; } if (num==2) return true; return false; }
#undef NDEBUG #include<assert.h> int main(){ assert (is_multiply_prime(5) == false); assert (is_multiply_prime(30) == true); assert (is_multiply_prime(8) == true); assert (is_multiply_prime(10) == false); assert (is_multiply_prime(125) == true); assert (is_multiply_prime(3 * 5 * 7) == true); assert (is_multiply_prime(3 * 6 * 7) == false); assert (is_multiply_prime(9 * 9 * 9) == false); assert (is_multiply_prime(11 * 9 * 9) == false); assert (is_multiply_prime(11 * 13 * 7) == true); }
#undef NDEBUG #include<assert.h> int main(){ assert (is_multiply_prime(30) == true); }
CPP/76
/* Your task is to write a function that returns true if a number x is a simple power of n and false in other cases. x is a simple power of n if n**int=x For example: is_simple_power(1, 4) => true is_simple_power(2, 2) => true is_simple_power(8, 2) => true is_simple_power(3, 2) => false is_simple_power(3, 1) => false is_simple_power(5, 3) => false */ #include<stdio.h> #include<math.h> using namespace std; bool is_simple_power(int x,int n){
#include<stdio.h> #include<math.h> using namespace std; #include<algorithm> #include<stdlib.h> bool is_simple_power(int x,int n){
int p=1,count=0; while (p<=x and count<100) { if (p==x) return true; p=p*n;count+=1; } return false; }
#undef NDEBUG #include<assert.h> int main(){ assert (is_simple_power(1, 4)== true); assert (is_simple_power(2, 2)==true); assert (is_simple_power(8, 2)==true); assert (is_simple_power(3, 2)==false); assert (is_simple_power(3, 1)==false); assert (is_simple_power(5, 3)==false); assert (is_simple_power(16, 2)== true); assert (is_simple_power(143214, 16)== false); assert (is_simple_power(4, 2)==true); assert (is_simple_power(9, 3)==true); assert (is_simple_power(16, 4)==true); assert (is_simple_power(24, 2)==false); assert (is_simple_power(128, 4)==false); assert (is_simple_power(12, 6)==false); assert (is_simple_power(1, 1)==true); assert (is_simple_power(1, 12)==true); }
#undef NDEBUG #include<assert.h> int main(){ assert (is_simple_power(1, 4)== true); assert (is_simple_power(2, 2)==true); assert (is_simple_power(8, 2)==true); assert (is_simple_power(3, 2)==false); assert (is_simple_power(3, 1)==false); assert (is_simple_power(5, 3)==false); }
CPP/77
/* Write a function that takes an integer a and returns true if this ingeger is a cube of some integer number. Note: you may assume the input is always valid. Examples: iscube(1) ==> true iscube(2) ==> false iscube(-1) ==> true iscube(64) ==> true iscube(0) ==> true iscube(180) ==> false */ #include<stdio.h> #include<math.h> using namespace std; bool iscuber(int a){
#include<stdio.h> #include<math.h> using namespace std; #include<algorithm> #include<stdlib.h> bool iscuber(int a){
for (int i=0;i*i*i<=abs(a);i++) if (i*i*i==abs(a)) return true; return false; }
#undef NDEBUG #include<assert.h> int main(){ assert (iscuber(1) == true); assert (iscuber(2) == false); assert (iscuber(-1) == true); assert (iscuber(64) == true); assert (iscuber(180) == false); assert (iscuber(1000) == true); assert (iscuber(0) == true); assert (iscuber(1729) == false); }
#undef NDEBUG #include<assert.h> int main(){ assert (iscuber(1) == true); assert (iscuber(2) == false); assert (iscuber(-1) == true); assert (iscuber(64) == true); assert (iscuber(180) == false); assert (iscuber(0) == true); }
CPP/78
/* You have been tasked to write a function that receives a hexadecimal number as a string and counts the number of hexadecimal digits that are primes (prime number, or a prime, is a natural number greater than 1 that is not a product of two smaller natural numbers). Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Prime numbers are 2, 3, 5, 7, 11, 13, 17,... So you have to determine a number of the following digits: 2, 3, 5, 7, B (=decimal 11), D (=decimal 13). Note: you may assume the input is always correct or empty string, and symbols A,B,C,D,E,F are always uppercase. Examples: For num = "AB" the output should be 1. For num = "1077E" the output should be 2. For num = "ABED1A33" the output should be 4. For num = "123456789ABCDEF0" the output should be 6. For num = "2020" the output should be 2. */ #include<stdio.h> #include<string> #include<algorithm> using namespace std; int hex_key(string num){
#include<stdio.h> #include<math.h> #include<string> #include<algorithm> using namespace std; #include<stdlib.h> int hex_key(string num){
string key="2357BD"; int out=0; for (int i=0;i<num.length();i++) if (find(key.begin(),key.end(),num[i])!=key.end()) out+=1; return out; }
#undef NDEBUG #include<assert.h> int main(){ assert (hex_key("AB") == 1 ); assert (hex_key("1077E") == 2 ); assert (hex_key("ABED1A33") == 4 ); assert (hex_key("2020") == 2 ); assert (hex_key("123456789ABCDEF0") == 6 ); assert (hex_key("112233445566778899AABBCCDDEEFF00") == 12 ); assert (hex_key("") == 0); }
#undef NDEBUG #include<assert.h> int main(){ assert (hex_key("AB") == 1 ); assert (hex_key("1077E") == 2 ); assert (hex_key("ABED1A33") == 4 ); assert (hex_key("2020") == 2 ); assert (hex_key("123456789ABCDEF0") == 6 ); }
CPP/79
/* You will be given a number in decimal form and your task is to convert it to binary format. The function should return a string, with each character representing a binary number. Each character in the string will be '0' or '1'. There will be an extra couple of characters "db" at the beginning and at the end of the string. The extra characters are there to help with the format. Examples: decimal_to_binary(15) // returns "db1111db" decimal_to_binary(32) // returns "db100000db" */ #include<stdio.h> #include<string> using namespace std; string decimal_to_binary(int decimal){
#include<stdio.h> #include<math.h> #include<string> using namespace std; #include<algorithm> #include<stdlib.h> string decimal_to_binary(int decimal){
string out=""; if (decimal==0) return "db0db"; while (decimal>0) { out=to_string(decimal%2)+out; decimal=decimal/2; } out="db"+out+"db"; return out; }
#undef NDEBUG #include<assert.h> int main(){ assert (decimal_to_binary(0) == "db0db"); assert (decimal_to_binary(32) == "db100000db"); assert (decimal_to_binary(103) == "db1100111db"); assert (decimal_to_binary(15) == "db1111db"); }
#undef NDEBUG #include<assert.h> int main(){ assert (decimal_to_binary(32) == "db100000db"); assert (decimal_to_binary(15) == "db1111db"); }
CPP/80
/* You are given a string s. Your task is to check if the string is happy or not. A string is happy if its length is at least 3 and every 3 consecutive letters are distinct For example: is_happy("a") => false is_happy("aa") => false is_happy("abcd") => true is_happy("aabb") => false is_happy("adb") => true is_happy("xyy") => false */ #include<stdio.h> #include<string> using namespace std; bool is_happy(string s){
#include<stdio.h> #include<math.h> #include<string> using namespace std; #include<algorithm> #include<stdlib.h> bool is_happy(string s){
if (s.length()<3) return false; for (int i=2;i<s.length();i++) if (s[i]==s[i-1] or s[i]==s[i-2]) return false; return true; }
#undef NDEBUG #include<assert.h> int main(){ assert (is_happy("a") == false ); assert (is_happy("aa") == false ); assert (is_happy("abcd") == true ); assert (is_happy("aabb") == false ); assert (is_happy("adb") == true ); assert (is_happy("xyy") == false ); assert (is_happy("iopaxpoi") == true ); assert (is_happy("iopaxioi") == false ); }
#undef NDEBUG #include<assert.h> int main(){ assert (is_happy("a") == false ); assert (is_happy("aa") == false ); assert (is_happy("abcd") == true ); assert (is_happy("aabb") == false ); assert (is_happy("adb") == true ); assert (is_happy("xyy") == false ); }
CPP/81
/* It is the last week of the semester and the teacher has to give the grades to students. The teacher has been making her own algorithm for grading. The only problem is, she has lost the code she used for grading. She has given you a vector of GPAs for some students and you have to write a function that can output a vector of letter grades using the following table: GPA | Letter grade 4.0 A+ > 3.7 A > 3.3 A- > 3.0 B+ > 2.7 B > 2.3 B- > 2.0 C+ > 1.7 C > 1.3 C- > 1.0 D+ > 0.7 D > 0.0 D- 0.0 E Example: grade_equation({4.0, 3, 1.7, 2, 3.5}) ==> {"A+", "B", "C-", "C", "A-"} */ #include<stdio.h> #include<vector> #include<string> using namespace std; vector<string> numerical_letter_grade(vector<float> grades){
#include<stdio.h> #include<math.h> #include<vector> #include<string> using namespace std; #include<algorithm> #include<stdlib.h> vector<string> numerical_letter_grade(vector<float> grades){
vector<string> out={}; for (int i=0;i<grades.size();i++) { if (grades[i]>=3.9999) out.push_back("A+"); if (grades[i]>3.7001 and grades[i]<3.9999) out.push_back("A"); if (grades[i]>3.3001 and grades[i]<=3.7001) out.push_back("A-"); if (grades[i]>3.0001 and grades[i]<=3.3001) out.push_back("B+"); if (grades[i]>2.7001 and grades[i]<=3.0001) out.push_back("B"); if (grades[i]>2.3001 and grades[i]<=2.7001) out.push_back("B-"); if (grades[i]>2.0001 and grades[i]<=2.3001) out.push_back("C+"); if (grades[i]>1.7001 and grades[i]<=2.0001) out.push_back("C"); if (grades[i]>1.3001 and grades[i]<=1.7001) out.push_back("C-"); if (grades[i]>1.0001 and grades[i]<=1.3001) out.push_back("D+"); if (grades[i]>0.7001 and grades[i]<=1.0001) out.push_back("D"); if (grades[i]>0.0001 and grades[i]<=0.7001) out.push_back("D-"); if (grades[i]<=0.0001) out.push_back("E"); } return out; }
#undef NDEBUG #include<assert.h> bool issame(vector<string> a,vector<string>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(numerical_letter_grade({4.0, 3, 1.7, 2, 3.5}) , {"A+", "B", "C-", "C", "A-"})); assert (issame(numerical_letter_grade({1.2}) , {"D+"})); assert (issame(numerical_letter_grade({0.5}) , {"D-"})); assert (issame(numerical_letter_grade({0.0}) , {"E"})); assert (issame(numerical_letter_grade({1, 0.3, 1.5, 2.8, 3.3}) , {"D", "D-", "C-", "B", "B+"})); assert (issame(numerical_letter_grade({0, 0.7}) , {"E", "D-"})); }
#undef NDEBUG #include<assert.h> bool issame(vector<string> a,vector<string>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(numerical_letter_grade({4.0, 3, 1.7, 2, 3.5}) , {"A+", "B", "C-", "C", "A-"})); }
CPP/82
/* Write a function that takes a string and returns true if the string length is a prime number or false otherwise Examples prime_length("Hello") == true prime_length("abcdcba") == true prime_length("kittens") == true prime_length("orange") == false */ #include<stdio.h> #include<string> using namespace std; bool prime_length(string str){
#include<stdio.h> #include<math.h> #include<string> using namespace std; #include<algorithm> #include<stdlib.h> bool prime_length(string str){
int l,i; l=str.length(); if (l<2) return false; for (i=2;i*i<=l;i++) if (l%i==0) return false; return true; }
#undef NDEBUG #include<assert.h> int main(){ assert (prime_length("Hello") == true); assert (prime_length("abcdcba") == true); assert (prime_length("kittens") == true); assert (prime_length("orange") == false); assert (prime_length("wow") == true); assert (prime_length("world") == true); assert (prime_length("MadaM") == true); assert (prime_length("Wow") == true); assert (prime_length("") == false); assert (prime_length("HI") == true); assert (prime_length("go") == true); assert (prime_length("gogo") == false); assert (prime_length("aaaaaaaaaaaaaaa") == false); assert (prime_length("Madam") == true); assert (prime_length("M") == false); assert (prime_length("0") == false); }
#undef NDEBUG #include<assert.h> int main(){ assert (prime_length("Hello") == true); assert (prime_length("abcdcba") == true); assert (prime_length("kittens") == true); assert (prime_length("orange") == false); }
CPP/83
/* Given a positive integer n, return the count of the numbers of n-digit positive integers that start or end with 1. */ #include<stdio.h> using namespace std; int starts_one_ends(int n){
#include<stdio.h> #include<math.h> using namespace std; #include<algorithm> #include<stdlib.h> int starts_one_ends(int n){
if (n<1) return 0; if (n==1) return 1; int out=18; for (int i=2;i<n;i++) out=out*10; return out; }
#undef NDEBUG #include<assert.h> int main(){ assert (starts_one_ends(1) == 1); assert (starts_one_ends(2) == 18); assert (starts_one_ends(3) == 180); assert (starts_one_ends(4) == 1800); assert (starts_one_ends(5) == 18000); }
CPP/84
/* Given a positive integer N, return the total sum of its digits in binary. Example For N = 1000, the sum of digits will be 1 the output should be "1". For N = 150, the sum of digits will be 6 the output should be "110". For N = 147, the sum of digits will be 12 the output should be "1100". Variables: @N integer Constraints: 0 โ‰ค N โ‰ค 10000. Output: a string of binary number */ #include<stdio.h> #include<string> using namespace std; string solve(int N){
#include<stdio.h> #include<math.h> #include<string> using namespace std; #include<algorithm> #include<stdlib.h> string solve(int N){
string str,bi=""; str=to_string(N); int i,sum=0; for (int i=0;i<str.length();i++) sum+=str[i]-48; while (sum>0) { bi=to_string(sum%2)+bi; sum=sum/2; } return bi; }
#undef NDEBUG #include<assert.h> int main(){ assert (solve(1000) == "1"); assert (solve(150) == "110"); assert (solve(147) == "1100"); assert (solve(333) == "1001"); assert (solve(963) == "10010"); }
CPP/85
/* Given a non-empty vector of integers lst. add the even elements that are at odd indices.. Examples: add({4, 2, 6, 7}) ==> 2 */ #include<stdio.h> #include<vector> using namespace std; int add(vector<int> lst){
#include<stdio.h> #include<math.h> #include<vector> using namespace std; #include<algorithm> #include<stdlib.h> int add(vector<int> lst){
int sum=0; for (int i=0;i*2+1<lst.size();i++) if (lst[i*2+1]%2==0) sum+=lst[i*2+1]; return sum; }
#undef NDEBUG #include<assert.h> int main(){ assert (add({4, 88}) == 88); assert (add({4, 5, 6, 7, 2, 122}) == 122); assert (add({4, 0, 6, 7}) == 0); assert (add({4, 4, 6, 8}) == 12); }
#undef NDEBUG #include<assert.h> int main(){ assert (add({4, 2, 6, 7}) == 2); }
CPP/86
/* Write a function that takes a string and returns an ordered version of it. Ordered version of string, is a string where all words (separated by space) are replaced by a new word where all the characters arranged in ascending order based on ascii value. Note: You should keep the order of words and blank spaces in the sentence. For example: anti_shuffle("Hi") returns "Hi" anti_shuffle("hello") returns "ehllo" anti_shuffle("Hello World!!!") returns "Hello !!!Wdlor" */ #include<stdio.h> #include<string> #include<algorithm> using namespace std; string anti_shuffle(string s){
#include<stdio.h> #include<math.h> #include<string> #include<algorithm> using namespace std; #include<stdlib.h> string anti_shuffle(string s){
string out=""; string current=""; s=s+' '; for (int i=0;i<s.length();i++) if (s[i]==' ') { sort(current.begin(),current.end()); if (out.length()>0) out=out+' '; out=out+current; current=""; } else current=current+s[i]; return out; }
#undef NDEBUG #include<assert.h> int main(){ assert (anti_shuffle("Hi") == "Hi"); assert (anti_shuffle("hello") == "ehllo"); assert (anti_shuffle("number") == "bemnru"); assert (anti_shuffle("abcd") == "abcd"); assert (anti_shuffle("Hello World!!!") == "Hello !!!Wdlor"); assert (anti_shuffle("") == ""); assert (anti_shuffle("Hi. My name is Mister Robot. How are you?") == ".Hi My aemn is Meirst .Rboot How aer ?ouy"); }
#undef NDEBUG #include<assert.h> int main(){ assert (anti_shuffle("Hi") == "Hi"); assert (anti_shuffle("hello") == "ehllo"); assert (anti_shuffle("Hello World!!!") == "Hello !!!Wdlor"); }
CPP/87
/* You are given a 2 dimensional data, as a nested vectors, which is similar to matrix, however, unlike matrices, each row may contain a different number of columns. Given lst, and integer x, find integers x in the vector, and return vector of vectors, {{x1, y1}, {x2, y2} ...} such that each vector is a coordinate - {row, columns}, starting with 0. Sort coordinates initially by rows in ascending order. Also, sort coordinates of the row by columns in descending order. Examples: get_row({ {1,2,3,4,5,6}, {1,2,3,4,1,6}, {1,2,3,4,5,1} }, 1) == {{0, 0}, {1, 4}, {1, 0}, {2, 5}, {2, 0}} get_row({}, 1) == {} get_row({{}, {1}, {1, 2, 3}}, 3) == {{2, 2}} */ #include<stdio.h> #include<vector> using namespace std; vector<vector<int>> get_row(vector<vector<int>> lst, int x){
#include<stdio.h> #include<math.h> #include<vector> using namespace std; #include<algorithm> #include<stdlib.h> vector<vector<int>> get_row(vector<vector<int>> lst, int x){
vector<vector<int>> out={}; for (int i=0;i<lst.size();i++) for (int j=lst[i].size()-1;j>=0;j-=1) if (lst[i][j]==x) out.push_back({i,j}); return out; }
#undef NDEBUG #include<assert.h> bool issame(vector<vector<int>> a,vector<vector<int>> b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i].size()!=b[i].size()) return false; for (int j=0;j<a[i].size();j++) if (a[i][j]!=b[i][j]) return false; } return true; } int main(){ assert (issame(get_row({ {1,2,3,4,5,6}, {1,2,3,4,1,6}, {1,2,3,4,5,1}}, 1) , {{0, 0}, {1, 4}, {1, 0}, {2, 5}, {2, 0}})); assert (issame(get_row({ {1,2,3,4,5,6}, {1,2,3,4,5,6}, {1,2,3,4,5,6}, {1,2,3,4,5,6}, {1,2,3,4,5,6}, {1,2,3,4,5,6}}, 2) , {{0, 1}, {1, 1}, {2, 1}, {3, 1}, {4, 1}, {5, 1}})); assert (issame(get_row({ {1,2,3,4,5,6}, {1,2,3,4,5,6}, {1,1,3,4,5,6}, {1,2,1,4,5,6}, {1,2,3,1,5,6}, {1,2,3,4,1,6}, {1,2,3,4,5,1} }, 1) , {{0, 0}, {1, 0}, {2, 1}, {2, 0}, {3, 2}, {3, 0}, {4, 3}, {4, 0}, {5, 4}, {5, 0}, {6, 5}, {6, 0}})); assert (issame(get_row({}, 1) , {})); assert (issame(get_row({{1}}, 2) , {})); assert (issame(get_row({{}, {1}, {1, 2, 3}}, 3) , {{2, 2}})); }
#undef NDEBUG #include<assert.h> bool issame(vector<vector<int>> a,vector<vector<int>> b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i].size()!=b[i].size()) return false; for (int j=0;j<a[i].size();j++) if (a[i][j]!=b[i][j]) return false; } return true; } int main(){ assert (issame(get_row({ {1,2,3,4,5,6}, {1,2,3,4,1,6}, {1,2,3,4,5,1}}, 1) , {{0, 0}, {1, 4}, {1, 0}, {2, 5}, {2, 0}})); assert (issame(get_row({}, 1) , {})); assert (issame(get_row({{}, {1}, {1, 2, 3}}, 3) , {{2, 2}})); }
CPP/88
/* Given a vector of non-negative integers, return a copy of the given vector after sorting, you will sort the given vector in ascending order if the sum( first index value, last index value) is odd, or sort it in descending order if the sum( first index value, last index value) is even. Note: * don't change the given vector. Examples: * sort_vector({}) => {} * sort_vector({5}) => {5} * sort_vector({2, 4, 3, 0, 1, 5}) => {0, 1, 2, 3, 4, 5} * sort_vector({2, 4, 3, 0, 1, 5, 6}) => {6, 5, 4, 3, 2, 1, 0} */ #include<stdio.h> #include<vector> #include<algorithm> using namespace std; vector<int> sort_array(vector<int> array){
#include<stdio.h> #include<math.h> #include<vector> #include<algorithm> using namespace std; #include<stdlib.h> vector<int> sort_array(vector<int> array){
if (array.size()==0) return {}; if ((array[0]+array[array.size()-1]) %2==1) { sort(array.begin(),array.end()); return array; } else { sort(array.begin(),array.end()); vector<int> out={}; for (int i=array.size()-1;i>=0;i-=1) out.push_back(array[i]); return out; } }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(sort_array({}) , {})); assert (issame(sort_array({5}) , {5})); assert (issame(sort_array({2, 4, 3, 0, 1, 5}) , {0, 1, 2, 3, 4, 5})); assert (issame(sort_array({2, 4, 3, 0, 1, 5, 6}) , {6, 5, 4, 3, 2, 1, 0})); assert (issame(sort_array({2, 1}) , {1, 2})); assert (issame(sort_array({15, 42, 87, 32 ,11, 0}) , {0, 11, 15, 32, 42, 87})); assert (issame(sort_array({21, 14, 23, 11}) , {23, 21, 14, 11})); }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(sort_array({}) , {})); assert (issame(sort_array({5}) , {5})); assert (issame(sort_array({2, 4, 3, 0, 1, 5}) , {0, 1, 2, 3, 4, 5})); assert (issame(sort_array({2, 4, 3, 0, 1, 5, 6}) , {6, 5, 4, 3, 2, 1, 0})); }
CPP/89
/* Create a function encrypt that takes a string as an argument and returns a string encrypted with the alphabet being rotated. The alphabet should be rotated in a manner such that the letters shift down by two multiplied to two places. For example: encrypt("hi") returns "lm" encrypt("asdfghjkl") returns "ewhjklnop" encrypt("gf") returns "kj" encrypt("et") returns "ix" */ #include<stdio.h> #include<string> using namespace std; string encrypt(string s){
#include<stdio.h> #include<math.h> #include<string> using namespace std; #include<algorithm> #include<stdlib.h> string encrypt(string s){
string out; int i; for (i=0;i<s.length();i++) { int w=((int)s[i]+4-(int)'a')%26+(int)'a'; out=out+(char)w; } return out; }
#undef NDEBUG #include<assert.h> int main(){ assert (encrypt("hi") == "lm"); assert (encrypt("asdfghjkl") == "ewhjklnop"); assert (encrypt("gf") == "kj"); assert (encrypt("et") == "ix"); assert (encrypt("faewfawefaewg")=="jeiajeaijeiak"); assert (encrypt("hellomyfriend")=="lippsqcjvmirh"); assert (encrypt("dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh")=="hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl"); assert (encrypt("a")=="e"); }
#undef NDEBUG #include<assert.h> int main(){ assert (encrypt("hi") == "lm"); assert (encrypt("asdfghjkl") == "ewhjklnop"); assert (encrypt("gf") == "kj"); assert (encrypt("et") == "ix"); }
CPP/90
/* You are given a vector of integers. Write a function next_smallest() that returns the 2nd smallest element of the vector. Return None if there is no such element. next_smallest({1, 2, 3, 4, 5}) == 2 next_smallest({5, 1, 4, 3, 2}) == 2 next_smallest({}) == None next_smallest({1, 1}) == None */ #include<stdio.h> #include<vector> #include<algorithm> using namespace std; int next_smallest(vector<int> lst){
#include<stdio.h> #include<math.h> #include<vector> #include<algorithm> using namespace std; #include<stdlib.h> int next_smallest(vector<int> lst){
sort(lst.begin(),lst.end()); for (int i=1;i<lst.size();i++) if (lst[i]!=lst[i-1]) return lst[i]; return -1; }
#undef NDEBUG #include<assert.h> int main(){ assert (next_smallest({1, 2, 3, 4, 5}) == 2); assert (next_smallest({5, 1, 4, 3, 2}) == 2); assert (next_smallest({}) == -1); assert (next_smallest({1, 1}) == -1); assert (next_smallest({1,1,1,1,0}) == 1); assert (next_smallest({-35, 34, 12, -45}) == -35); }
#undef NDEBUG #include<assert.h> int main(){ assert (next_smallest({1, 2, 3, 4, 5}) == 2); assert (next_smallest({5, 1, 4, 3, 2}) == 2); assert (next_smallest({}) == -1); assert (next_smallest({1, 1}) == -1); }
CPP/91
/* You'll be given a string of words, and your task is to count the number of boredoms. A boredom is a sentence that starts with the word "I". Sentences are delimited by '.', '?' or '!'. For example: >>> is_bored("Hello world") 0 >>> is_bored("The sky is blue. The sun is shining. I love this weather") 1 */ #include<stdio.h> #include<string> using namespace std; int is_bored(string S){
#include<stdio.h> #include<math.h> #include<string> using namespace std; #include<algorithm> #include<stdlib.h> int is_bored(string S){
bool isstart=true; bool isi=false; int sum=0; for (int i=0;i<S.length();i++) { if (S[i]==' ' and isi) {isi=false; sum+=1;} if (S[i]=='I' and isstart) {isi=true; } else isi=false; if (S[i]!=' ') { isstart=false;} if (S[i]=='.' or S[i]=='?' or S[i]=='!') isstart=true; } return sum; }
#undef NDEBUG #include<assert.h> int main(){ assert (is_bored("Hello world") == 0); assert (is_bored("Is the sky blue?") == 0); assert (is_bored("I love It !") == 1); assert (is_bored("bIt") == 0); assert (is_bored("I feel good today. I will be productive. will kill It") == 2); assert (is_bored("You and I are going for a walk") == 0); }
#undef NDEBUG #include<assert.h> int main(){ assert (is_bored("Hello world") == 0); assert (is_bored("The sky is blue. The sun is shining. I love this weather") == 1); }
CPP/92
/* Create a function that takes 3 numbers. Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers. Returns false in any other cases. Examples any_int(5, 2, 7) โžž true any_int(3, 2, 2) โžž false any_int(3, -2, 1) โžž true any_int(3.6, -2.2, 2) โžž false */ #include<stdio.h> #include<math.h> using namespace std; bool any_int(float a,float b,float c){
#include<stdio.h> #include<math.h> using namespace std; #include<algorithm> #include<stdlib.h> bool any_int(float a,float b,float c){
if (round(a)!=a) return false; if (round(b)!=b) return false; if (round(c)!=c) return false; if (a+b==c or a+c==b or b+c==a) return true; return false; }
#undef NDEBUG #include<assert.h> int main(){ assert (any_int(2, 3, 1)==true); assert (any_int(2.5, 2, 3)==false); assert (any_int(1.5, 5, 3.5)==false); assert (any_int(2, 6, 2)==false); assert (any_int(4, 2, 2)==true); assert (any_int(2.2, 2.2, 2.2)==false); assert (any_int(-4, 6, 2)==true); assert (any_int(2,1,1)==true); assert (any_int(3,4,7)==true); assert (any_int(3.01,4,7)==false); }
#undef NDEBUG #include<assert.h> int main(){ assert (any_int(5, 2, 7)==true); assert (any_int(3, 2, 2)==false); assert (any_int(3, -2, 1)==true); assert (any_int(3.6, -2.2, 2)==false); }
CPP/93
/* Write a function that takes a message, and encodes in such a way that it swaps case of all letters, replaces all vowels in the message with the letter that appears 2 places ahead of that vowel in the english alphabet. Assume only letters. Examples: >>> encode('test") "TGST" >>> encode("This is a message") 'tHKS KS C MGSSCGG" */ #include<stdio.h> #include<string> #include<algorithm> using namespace std; string encode(string message){
#include<stdio.h> #include<math.h> #include<string> #include<algorithm> using namespace std; #include<stdlib.h> string encode(string message){
string vowels="aeiouAEIOU"; string out=""; for (int i=0;i<message.length();i++) { char w=message[i]; if (w>=97 and w<=122){w=w-32;} else if (w>=65 and w<=90) w=w+32; if (find(vowels.begin(),vowels.end(),w)!=vowels.end()) w=w+2; out=out+w; } return out; }
#undef NDEBUG #include<assert.h> int main(){ assert (encode("TEST") == "tgst"); assert (encode("Mudasir") == "mWDCSKR"); assert (encode("YES") == "ygs"); assert (encode("This is a message") == "tHKS KS C MGSSCGG"); assert (encode("I DoNt KnOw WhAt tO WrItE") == "k dQnT kNqW wHcT Tq wRkTg"); }
#undef NDEBUG #include<assert.h> int main(){ assert (encode("test") == "TGST"); assert (encode("This is a message") == "tHKS KS C MGSSCGG"); }
CPP/94
/* You are given a vector of integers. You need to find the largest prime value and return the sum of its digits. Examples: For lst = {0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3} the output should be 10 For lst = {1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1} the output should be 25 For lst = {1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3} the output should be 13 For lst = {0,724,32,71,99,32,6,0,5,91,83,0,5,6} the output should be 11 For lst = {0,81,12,3,1,21} the output should be 3 For lst = {0,8,1,2,1,7} the output should be 7 */ #include<stdio.h> #include<vector> #include<string> using namespace std; int skjkasdkd(vector<int> lst){
#include<stdio.h> #include<math.h> #include<vector> #include<string> using namespace std; #include<algorithm> #include<stdlib.h> int skjkasdkd(vector<int> lst){
int largest=0; for (int i=0;i<lst.size();i++) if (lst[i]>largest) { bool prime=true; for (int j=2;j*j<=lst[i];j++) if (lst[i]%j==0) prime=false; if (prime) largest=lst[i]; } int sum=0; string s; s=to_string(largest); for (int i=0;i<s.length();i++) sum+=s[i]-48; return sum; } #undef NDEBUG #include<assert.h>
#undef NDEBUG #include<assert.h> int main(){ assert (skjkasdkd({0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3}) == 10); assert (skjkasdkd({1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1}) == 25); assert (skjkasdkd({1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3}) == 13); assert (skjkasdkd({0,724,32,71,99,32,6,0,5,91,83,0,5,6}) == 11); assert (skjkasdkd({0,81,12,3,1,21}) == 3); assert (skjkasdkd({0,8,1,2,1,7}) == 7); assert (skjkasdkd({8191}) == 19); assert (skjkasdkd({8191, 123456, 127, 7}) == 19); assert (skjkasdkd({127, 97, 8192}) == 10); }
#undef NDEBUG #include<assert.h> #undef NDEBUG #include<assert.h> #undef NDEBUG #include<assert.h> int main(){ assert (skjkasdkd({0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3}) == 10); assert (skjkasdkd({1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1}) == 25); assert (skjkasdkd({1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3}) == 13); assert (skjkasdkd({0,724,32,71,99,32,6,0,5,91,83,0,5,6}) == 11); assert (skjkasdkd({0,81,12,3,1,21}) == 3); assert (skjkasdkd({0,8,1,2,1,7}) == 7); }
CPP/95
/* Given a map, return true if all keys are strings in lower case or all keys are strings in upper case, else return false. The function should return false is the given map is empty. Examples: check_map_case({{"a","apple"}, {"b","banana"}}) should return true. check_map_case({{"a","apple"}, {"A","banana"}, {"B","banana"}}) should return false. check_map_case({{"a","apple"}, {"8","banana"}, {"a","apple"}}) should return false. check_map_case({{"Name","John"}, {"Age","36"}, {"City","Houston"}}) should return false. check_map_case({{"STATE","NC"}, {"ZIP","12345"} }) should return true. */ #include<stdio.h> #include<string> #include<map> using namespace std; bool check_dict_case(map<string,string> dict){
#include<stdio.h> #include<math.h> #include<string> #include<map> using namespace std; #include<algorithm> #include<stdlib.h> bool check_dict_case(map<string,string> dict){
map<string,string>::iterator it; int islower=0,isupper=0; if (dict.size()==0) return false; for (it=dict.begin();it!=dict.end();it++) { string key=it->first; for (int i=0;i<key.length();i++) { if (key[i]<65 or (key[i]>90 and key[i]<97) or key[i]>122) return false; if (key[i]>=65 and key[i]<=90) isupper=1; if (key[i]>=97 and key[i]<=122) islower=1; if (isupper+islower==2) return false; } } return true; }
#undef NDEBUG #include<assert.h> int main(){ assert (check_dict_case({{"p","pineapple"}, {"b","banana"}}) == true); assert (check_dict_case({{"p","pineapple"}, {"A","banana"}, {"B","banana"}}) == false); assert (check_dict_case({{"p","pineapple"}, {"5","banana"}, {"a","apple"}}) == false); assert (check_dict_case({{"Name","John"}, {"Age","36"}, {"City","Houston"}}) == false); assert (check_dict_case({{"STATE","NC"}, {"ZIP","12345"} }) == true ); assert (check_dict_case({{"fruit","Orange"}, {"taste","Sweet"} }) == true ); assert (check_dict_case({}) == false); }
#undef NDEBUG #include<assert.h> int main(){ assert (check_dict_case({{"p","pineapple"}, {"b","banana"}}) == true); assert (check_dict_case({{"p","pineapple"}, {"A","banana"}, {"B","banana"}}) == false); assert (check_dict_case({{"p","pineapple"}, {"5","banana"}, {"a","apple"}}) == false); assert (check_dict_case({{"Name","John"}, {"Age","36"}, {"City","Houston"}}) == false); assert (check_dict_case({{"STATE","NC"}, {"ZIP","12345"} }) == true ); }
CPP/96
/* Implement a function that takes an non-negative integer and returns a vector of the first n integers that are prime numbers and less than n. for example: count_up_to(5) => {2,3} count_up_to(11) => {2,3,5,7} count_up_to(0) => {} count_up_to(20) => {2,3,5,7,11,13,17,19} count_up_to(1) => {} count_up_to(18) => {2,3,5,7,11,13,17} */ #include<stdio.h> #include<vector> using namespace std; vector<int> count_up_to(int n){
#include<stdio.h> #include<math.h> #include<vector> using namespace std; #include<algorithm> #include<stdlib.h> vector<int> count_up_to(int n){
vector<int> out={}; int i,j; for (i=2;i<n;i++) if (out.size()==0) {out.push_back(i);} else { bool isp=true; for (j=0;out[j]*out[j]<=i;j++) if (i%out[j]==0) isp=false; if (isp) out.push_back(i); } return out; }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(count_up_to(5) , {2,3})); assert (issame(count_up_to(6) , {2,3,5})); assert (issame(count_up_to(7) , {2,3,5})); assert (issame(count_up_to(10) , {2,3,5,7})); assert (issame(count_up_to(0) , {})); assert (issame(count_up_to(22) , {2,3,5,7,11,13,17,19})); assert (issame(count_up_to(1) , {})); assert (issame(count_up_to(18) , {2,3,5,7,11,13,17})); assert (issame(count_up_to(47) , {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43})); assert (issame(count_up_to(101) , {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97})); }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(count_up_to(5) , {2,3})); assert (issame(count_up_to(11) , {2,3,5,7})); assert (issame(count_up_to(0) , {})); assert (issame(count_up_to(20) , {2,3,5,7,11,13,17,19})); assert (issame(count_up_to(1) , {})); assert (issame(count_up_to(18) , {2,3,5,7,11,13,17})); }
CPP/97
/* Complete the function that takes two integers and returns the product of their unit digits. Assume the input is always valid. Examples: multiply(148, 412) should return 16. multiply(19, 28) should return 72. multiply(2020, 1851) should return 0. multiply(14,-15) should return 20. */ #include<stdio.h> #include<math.h> using namespace std; int multiply(int a,int b){
#include<stdio.h> #include<math.h> using namespace std; #include<algorithm> #include<stdlib.h> int multiply(int a,int b){
return (abs(a)%10)*(abs(b)%10); }
#undef NDEBUG #include<assert.h> int main(){ assert (multiply(148, 412) == 16 ); assert (multiply(19, 28) == 72 ); assert (multiply(2020, 1851) == 0); assert (multiply(14,-15) == 20 ); assert (multiply(76, 67) == 42 ); assert (multiply(17, 27) == 49 ); assert (multiply(0, 1) == 0); assert (multiply(0, 0) == 0); }
#undef NDEBUG #include<assert.h> int main(){ assert (multiply(148, 412) == 16 ); assert (multiply(19, 28) == 72 ); assert (multiply(2020, 1851) == 0); assert (multiply(14,-15) == 20 ); }
CPP/98
/* Given a string s, count the number of uppercase vowels in even indices. For example: count_upper("aBCdEf") returns 1 count_upper("abcdefg") returns 0 count_upper("dBBE") returns 0 */ #include<stdio.h> #include<string> #include<algorithm> using namespace std; int count_upper(string s){
#include<stdio.h> #include<math.h> #include<string> #include<algorithm> using namespace std; #include<stdlib.h> int count_upper(string s){
string uvowel="AEIOU"; int count=0; for (int i=0;i*2<s.length();i++) if (find(uvowel.begin(),uvowel.end(),s[i*2])!=uvowel.end()) count+=1; return count; }
#undef NDEBUG #include<assert.h> int main(){ assert (count_upper("aBCdEf") == 1); assert (count_upper("abcdefg") == 0); assert (count_upper("dBBE") == 0); assert (count_upper("B") == 0); assert (count_upper("U") == 1); assert (count_upper("") == 0); assert (count_upper("EEEE") == 2); }
#undef NDEBUG #include<assert.h> int main(){ assert (count_upper("aBCdEf") == 1); assert (count_upper("abcdefg") == 0); assert (count_upper("dBBE") == 0); }
CPP/99
/* Create a function that takes a value (string) representing a number and returns the closest integer to it. If the number is equidistant from two integers, round it away from zero. Examples >>> closest_integer("10") 10 >>> closest_integer("15.3") 15 Note: Rounding away from zero means that if the given number is equidistant from two integers, the one you should return is the one that is the farthest from zero. For example closest_integer("14.5") should return 15 and closest_integer("-14.5") should return -15. */ #include<stdio.h> #include<math.h> #include<string> using namespace std; int closest_integer(string value){
#include<stdio.h> #include<math.h> #include<string> using namespace std; #include<algorithm> #include<stdlib.h> int closest_integer(string value){
double w; w=atof(value.c_str()); return round(w); }
#undef NDEBUG #include<assert.h> int main(){ assert (closest_integer("10") == 10); assert (closest_integer("14.5") == 15); assert (closest_integer("-15.5") == -16); assert (closest_integer("15.3") == 15); assert (closest_integer("0") == 0); }
#undef NDEBUG #include<assert.h> int main(){ assert (closest_integer("10") == 10); assert (closest_integer("15.3") == 15); }

HumanEval-X

Dataset Description

HumanEval-X is a benchmark for evaluating the multilingual ability of code generative models. It consists of 820 high-quality human-crafted data samples (each with test cases) in Python, C++, Java, JavaScript, and Go, and can be used for various tasks, such as code generation and translation.

Languages

The dataset contains coding problems in 5 programming languages: Python, C++, Java, JavaScript, and Go.

Dataset Structure

To load the dataset you need to specify a subset among the 5 exiting languages [python, cpp, go, java, js]. By default python is loaded.

from datasets import load_dataset
load_dataset("THUDM/humaneval-x", "js")

DatasetDict({
    test: Dataset({
        features: ['task_id', 'prompt', 'declaration', 'canonical_solution', 'test', 'example_test'],
        num_rows: 164
    })
})
next(iter(data["test"]))
{'task_id': 'JavaScript/0',
 'prompt': '/* Check if in given list of numbers, are any two numbers closer to each other than\n  given threshold.\n  >>> hasCloseElements([1.0, 2.0, 3.0], 0.5)\n  false\n  >>> hasCloseElements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\n  true\n  */\nconst hasCloseElements = (numbers, threshold) => {\n',
 'declaration': '\nconst hasCloseElements = (numbers, threshold) => {\n',
 'canonical_solution': '  for (let i = 0; i < numbers.length; i++) {\n    for (let j = 0; j < numbers.length; j++) {\n      if (i != j) {\n        let distance = Math.abs(numbers[i] - numbers[j]);\n        if (distance < threshold) {\n          return true;\n        }\n      }\n    }\n  }\n  return false;\n}\n\n',
 'test': 'const testHasCloseElements = () => {\n  console.assert(hasCloseElements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) === true)\n  console.assert(\n    hasCloseElements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) === false\n  )\n  console.assert(hasCloseElements([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) === true)\n  console.assert(hasCloseElements([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) === false)\n  console.assert(hasCloseElements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) === true)\n  console.assert(hasCloseElements([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) === true)\n  console.assert(hasCloseElements([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) === false)\n}\n\ntestHasCloseElements()\n',
 'example_test': 'const testHasCloseElements = () => {\n  console.assert(hasCloseElements([1.0, 2.0, 3.0], 0.5) === false)\n  console.assert(\n    hasCloseElements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) === true\n  )\n}\ntestHasCloseElements()\n'}

Data Fields

  • task_id: indicates the target language and ID of the problem. Language is one of ["Python", "Java", "JavaScript", "CPP", "Go"].
  • prompt: the function declaration and docstring, used for code generation.
  • declaration: only the function declaration, used for code translation.
  • canonical_solution: human-crafted example solutions.
  • test: hidden test samples, used for evaluation.
  • example_test: public test samples (appeared in prompt), used for evaluation.

Data Splits

Each subset has one split: test.

Citation Information

Refer to https://github.com/THUDM/CodeGeeX.

Downloads last month
2,368
Edit dataset card