task_id
stringlengths
5
7
prompt
stringlengths
133
1.35k
declaration
stringlengths
111
515
canonical_solution
stringlengths
18
1.4k
test
stringlengths
148
1.76k
example_test
stringlengths
0
679
CPP/100
/* Given a positive integer n, you have to make a pile of n levels of stones. The first level has n stones. The number of stones in the next level is: - the next odd number if n is odd. - the next even number if n is even. Return the number of stones in each level in a vector, where element at index i represents the number of stones in the level (i+1). Examples: >>> make_a_pile(3) {3, 5, 7} */ #include<stdio.h> #include<vector> using namespace std; vector<int> make_a_pile(int n){
#include<stdio.h> #include<math.h> #include<vector> using namespace std; #include<algorithm> #include<stdlib.h> vector<int> make_a_pile(int n){
vector<int> out={n}; for (int i=1;i<n;i++) out.push_back(out[out.size()-1]+2); return out; }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(make_a_pile(3) , {3, 5, 7})); assert (issame(make_a_pile(4) , {4,6,8,10})); assert (issame(make_a_pile(5) , {5, 7, 9, 11, 13})); assert (issame(make_a_pile(6) , {6, 8, 10, 12, 14, 16})); assert (issame(make_a_pile(8) , {8, 10, 12, 14, 16, 18, 20, 22})); }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(make_a_pile(3) , {3, 5, 7})); }
CPP/101
/* You will be given a string of words separated by commas or spaces. Your task is to split the string into words and return a vector of the words. For example: words_string("Hi, my name is John") == {"Hi", "my", "name", "is", "John"} words_string("One, two, three, four, five, six") == {"One", 'two", 'three", "four", "five", 'six"} */ #include<stdio.h> #include<vector> #include<string> using namespace std; vector<string> words_string(string s){
#include<stdio.h> #include<math.h> #include<vector> #include<string> using namespace std; #include<algorithm> #include<stdlib.h> vector<string> words_string(string s){
string current=""; vector<string> out={}; s=s+' '; for (int i=0;i<s.length();i++) if (s[i]==' ' or s[i]==',') { if (current.length()>0) { out.push_back(current); current=""; } } else current=current+s[i]; return out; }
#undef NDEBUG #include<assert.h> bool issame(vector<string> a,vector<string>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(words_string("Hi, my name is John") , {"Hi", "my", "name", "is", "John"})); assert (issame(words_string("One, two, three, four, five, six") , {"One", "two", "three", "four", "five", "six"})); assert (issame(words_string("Hi, my name") , {"Hi", "my", "name"})); assert (issame(words_string("One,, two, three, four, five, six,") , {"One", "two", "three", "four", "five", "six"})); assert (issame(words_string("") , {})); assert (issame(words_string("ahmed , gamal") , {"ahmed", "gamal"})); }
#undef NDEBUG #include<assert.h> bool issame(vector<string> a,vector<string>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(words_string("Hi, my name is John") , {"Hi", "my", "name", "is", "John"})); assert (issame(words_string("One, two, three, four, five, six") , {"One", "two", "three", "four", "five", "six"})); }
CPP/102
/* This function takes two positive numbers x and y and returns the biggest even integer number that is in the range [x, y] inclusive. If there's no such number, then the function should return -1. For example: choose_num(12, 15) = 14 choose_num(13, 12) = -1 */ #include<stdio.h> using namespace std; int choose_num(int x,int y){
#include<stdio.h> #include<math.h> using namespace std; #include<algorithm> #include<stdlib.h> int choose_num(int x,int y){
if (y<x) return -1; if (y==x and y%2==1) return -1; if (y%2==1) return y-1; return y; }
#undef NDEBUG #include<assert.h> int main(){ assert (choose_num(12, 15) == 14); assert (choose_num(13, 12) == -1); assert (choose_num(33, 12354) == 12354); assert (choose_num(5234, 5233) == -1); assert (choose_num(6, 29) == 28); assert (choose_num(27, 10) == -1); assert (choose_num(7, 7) == -1); assert (choose_num(546, 546) == 546); }
#undef NDEBUG #include<assert.h> int main(){ assert (choose_num(12, 15) == 14); assert (choose_num(13, 12) == -1); }
CPP/103
/* You are given two positive integers n and m, and your task is to compute the average of the integers from n through m (including n and m). Round the answer to the nearest integer(smaller one) and convert that to binary. If n is greater than m, return "-1". Example: rounded_avg(1, 5) => "11" rounded_avg(7, 5) => "-1" rounded_avg(10, 20) => "1111" rounded_avg(20, 33) => "11010" */ #include<stdio.h> #include<math.h> #include<string> using namespace std; string rounded_avg(int n,int m){
#include<stdio.h> #include<math.h> #include<string> using namespace std; #include<algorithm> #include<stdlib.h> string rounded_avg(int n,int m){
if (n>m) return "-1"; int num=(m+n)/2; string out=""; while (num>0) { out=to_string(num%2)+out; num=num/2; } return out; }
#undef NDEBUG #include<assert.h> int main(){ assert (rounded_avg(1, 5) == "11"); assert (rounded_avg(7, 13) == "1010"); assert (rounded_avg(964,977) == "1111001010"); assert (rounded_avg(996,997) == "1111100100"); assert (rounded_avg(560,851) == "1011000001"); assert (rounded_avg(185,546) == "101101101"); assert (rounded_avg(362,496) == "110101101"); assert (rounded_avg(350,902) == "1001110010"); assert (rounded_avg(197,233) == "11010111"); assert (rounded_avg(7, 5) == "-1"); assert (rounded_avg(5, 1) == "-1"); assert (rounded_avg(5, 5) == "101"); }
#undef NDEBUG #include<assert.h> int main(){ assert (rounded_avg(1, 5) == "11"); assert (rounded_avg(7, 5) == "-1"); assert (rounded_avg(10,20) == "1111"); assert (rounded_avg(20,33) == "11010"); }
CPP/104
/* Given a vector of positive integers x. return a sorted vector of all elements that hasn't any even digit. Note: Returned vector should be sorted in increasing order. For example: >>> unique_digits({15, 33, 1422, 1}) {1, 15, 33} >>> unique_digits({152, 323, 1422, 10}) {} */ #include<stdio.h> #include<vector> #include<algorithm> using namespace std; vector<int> unique_digits(vector<int> x){
#include<stdio.h> #include<math.h> #include<vector> #include<algorithm> using namespace std; #include<stdlib.h> vector<int> unique_digits(vector<int> x){
vector<int> out={}; for (int i=0;i<x.size();i++) { int num=x[i]; bool u=true; if (num==0) u=false; while (num>0 and u) { if (num%2==0) u=false; num=num/10; } if (u) out.push_back(x[i]); } sort(out.begin(),out.end()); return out; }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(unique_digits({15, 33, 1422, 1}) , {1, 15, 33})); assert (issame(unique_digits({152, 323, 1422, 10}) , {})); assert (issame(unique_digits({12345, 2033, 111, 151}) , {111, 151})); assert (issame(unique_digits({135, 103, 31}) , {31, 135})); }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(unique_digits({15, 33, 1422, 1}) , {1, 15, 33})); assert (issame(unique_digits({152, 323, 1422, 10}) , {})); }
CPP/105
/* Given a vector of integers, sort the integers that are between 1 and 9 inclusive, reverse the resulting vector, and then replace each digit by its corresponding name from "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine". For example: arr = {2, 1, 1, 4, 5, 8, 2, 3} -> sort arr -> {1, 1, 2, 2, 3, 4, 5, 8} -> reverse arr -> {8, 5, 4, 3, 2, 2, 1, 1} return {"Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"} If the vector is empty, return an empty vector: arr = {} return {} If the vector has any strange number ignore it: arr = {1, -1 , 55} -> sort arr -> {-1, 1, 55} -> reverse arr -> {55, 1, -1} return = {"One"} */ #include<stdio.h> #include<vector> #include<string> #include<map> #include<algorithm> using namespace std; vector<string> by_length(vector<int> arr){
#include<stdio.h> #include<math.h> #include<vector> #include<string> #include<map> #include<algorithm> using namespace std; #include<stdlib.h> vector<string> by_length(vector<int> arr){
map<int,string> numto={{0,"Zero"},{1,"One"},{2,"Two"},{3,"Three"},{4,"Four"},{5,"Five"},{6,"Six"},{7,"Seven"},{8,"Eight"},{9,"Nine"}}; sort(arr.begin(),arr.end()); vector<string> out={}; for (int i=arr.size()-1;i>=0;i-=1) if (arr[i]>=1 and arr[i]<=9) out.push_back(numto[arr[i]]); return out; }
#undef NDEBUG #include<assert.h> bool issame(vector<string> a,vector<string>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(by_length({2, 1, 1, 4, 5, 8, 2, 3}) , {"Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"})); assert (issame(by_length({}) , {})); assert (issame(by_length({1, -1 , 55}) , {"One"})); assert (issame(by_length({1, -1, 3, 2}) , {"Three", "Two", "One"})); assert (issame(by_length({9, 4, 8}) , {"Nine", "Eight", "Four"})); }
#undef NDEBUG #include<assert.h> bool issame(vector<string> a,vector<string>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(by_length({2, 1, 1, 4, 5, 8, 2, 3}) , {"Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"})); assert (issame(by_length({}) , {})); assert (issame(by_length({1, -1 , 55}) , {"One"})); }
CPP/106
/* Implement the function f that takes n as a parameter, and returns a vector of size n, such that the value of the element at index i is the factorial of i if i is even or the sum of numbers from 1 to i otherwise. i starts from 1. the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i). Example: f(5) == {1, 2, 6, 24, 15} */ #include<stdio.h> #include<vector> using namespace std; vector<int> f(int n){
#include<stdio.h> #include<math.h> #include<vector> using namespace std; #include<algorithm> #include<stdlib.h> vector<int> f(int n){
int sum=0,prod=1; vector<int> out={}; for (int i=1;i<=n;i++) { sum+=i; prod*=i; if (i%2==0) out.push_back(prod); else out.push_back(sum); } return out; }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(f(5) , {1, 2, 6, 24, 15})); assert (issame(f(7) , {1, 2, 6, 24, 15, 720, 28})); assert (issame(f(1) , {1})); assert (issame(f(3) , {1, 2, 6})); }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(f(5) , {1, 2, 6, 24, 15})); }
CPP/107
/* Given a positive integer n, return a vector that has the number of even and odd integer palindromes that fall within the range(1, n), inclusive. Example 1: Input: 3 Output: (1, 2) Explanation: Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd. Example 2: Input: 12 Output: (4, 6) Explanation: Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd. Note: 1. 1 <= n <= 10^3 2. returned vector has the number of even and odd integer palindromes respectively. */ #include<stdio.h> #include<vector> #include<string> using namespace std; vector<int> even_odd_palindrome(int n){
#include<stdio.h> #include<math.h> #include<vector> #include<string> using namespace std; #include<algorithm> #include<stdlib.h> vector<int> even_odd_palindrome(int n){
int num1=0,num2=0; for (int i=1;i<=n;i++) { string w=to_string(i); string p(w.rbegin(),w.rend()); if (w==p and i%2==1) num1+=1; if (w==p and i%2==0) num2+=1; } return {num2,num1}; }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(even_odd_palindrome(123) , {8, 13})); assert (issame(even_odd_palindrome(12) , {4, 6})); assert (issame(even_odd_palindrome(3) , {1, 2})); assert (issame(even_odd_palindrome(63) , {6, 8})); assert (issame(even_odd_palindrome(25) , {5, 6})); assert (issame(even_odd_palindrome(19) , {4, 6})); assert (issame(even_odd_palindrome(9) , {4, 5})); assert (issame(even_odd_palindrome(1) , {0, 1})); }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(even_odd_palindrome(12) , {4, 6})); assert (issame(even_odd_palindrome(3) , {1, 2})); }
CPP/108
/* Write a function count_nums which takes a vector of integers and returns the number of elements which has a sum of digits > 0. If a number is negative, then its first signed digit will be negative: e.g. -123 has signed digits -1, 2, and 3. >>> count_nums({}) == 0 >>> count_nums({-1, 11, -11}) == 1 >>> count_nums({1, 1, 2}) == 3 */ #include<stdio.h> #include<math.h> #include<vector> using namespace std; int count_nums(vector<int> n){
#include<stdio.h> #include<math.h> #include<vector> using namespace std; #include<algorithm> #include<stdlib.h> int count_nums(vector<int> n){
int num=0; for (int i=0;i<n.size();i++) if (n[i]>0) num+=1; else { int sum=0; int w; w=abs(n[i]); while (w>=10) { sum+=w%10; w=w/10; } sum-=w; if (sum>0) num+=1; } return num; }
#undef NDEBUG #include<assert.h> int main(){ assert (count_nums({}) == 0); assert (count_nums({-1, -2, 0}) == 0); assert (count_nums({1, 1, 2, -2, 3, 4, 5}) == 6); assert (count_nums({1, 6, 9, -6, 0, 1, 5}) == 5); assert (count_nums({1, 100, 98, -7, 1, -1}) == 4); assert (count_nums({12, 23, 34, -45, -56, 0}) == 5); assert (count_nums({-0, 1}) == 1); assert (count_nums({1}) == 1); }
#undef NDEBUG #include<assert.h> int main(){ assert (count_nums({}) == 0); assert (count_nums({-1, 11, -11}) == 1); assert (count_nums({1, 1, 2}) == 3); }
CPP/109
/* We have a vector "arr" of N integers arr[1], arr[2], ..., arr[N].The numbers in the vector will be randomly ordered. Your task is to determine if it is possible to get a vector sorted in non-decreasing order by performing the following operation on the given vector: You are allowed to perform right shift operation any number of times. One right shift operation means shifting all elements of the vector by one position in the right direction. The last element of the vector will be moved to the starting position in the vector i.e. 0th index. If it is possible to obtain the sorted vector by performing the above operation then return true else return false. If the given vector is empty then return true. Note: The given vector is guaranteed to have unique elements. For Example: move_one_ball({3, 4, 5, 1, 2})==>true Explanation: By performing 2 right shift operations, non-decreasing order can be achieved for the given vector. move_one_ball({3, 5, 4, 1, 2})==>false Explanation:It is not possible to get non-decreasing order for the given vector by performing any number of right shift operations. */ #include<stdio.h> #include<vector> using namespace std; bool move_one_ball(vector<int> arr){
#include<stdio.h> #include<math.h> #include<vector> using namespace std; #include<algorithm> #include<stdlib.h> bool move_one_ball(vector<int> arr){
int num=0; if (arr.size()==0) return true; for (int i=1;i<arr.size();i++) if (arr[i]<arr[i-1]) num+=1; if (arr[arr.size()-1]>arr[0]) num+=1; if (num<2) return true; return false; }
#undef NDEBUG #include<assert.h> int main(){ assert (move_one_ball({3, 4, 5, 1, 2})==true); assert (move_one_ball({3, 5, 10, 1, 2})==true); assert (move_one_ball({4, 3, 1, 2})==false); assert (move_one_ball({3, 5, 4, 1, 2})==false); assert (move_one_ball({})==true); }
#undef NDEBUG #include<assert.h> int main(){ assert (move_one_ball({3, 4, 5, 1, 2})==true); assert (move_one_ball({3, 5, 4, 1, 2})==false); }
CPP/110
/* In this problem, you will implement a function that takes two vectors of numbers, and determines whether it is possible to perform an exchange of elements between them to make lst1 a vector of only even numbers. There is no limit on the number of exchanged elements between lst1 and lst2. If it is possible to exchange elements between the lst1 and lst2 to make all the elements of lst1 to be even, return "YES". Otherwise, return "NO". For example: exchange({1, 2, 3, 4}, {1, 2, 3, 4}) => "YES" exchange({1, 2, 3, 4}, {1, 5, 3, 4}) => "NO" It is assumed that the input vectors will be non-empty. */ #include<stdio.h> #include<vector> #include<string> using namespace std; string exchange(vector<int> lst1,vector<int> lst2){
#include<stdio.h> #include<math.h> #include<vector> #include<string> using namespace std; #include<algorithm> #include<stdlib.h> string exchange(vector<int> lst1,vector<int> lst2){
int num=0; for (int i=0;i<lst1.size();i++) if (lst1[i]%2==0) num+=1; for (int i=0;i<lst2.size();i++) if (lst2[i]%2==0) num+=1; if (num>=lst1.size()) return "YES"; return "NO"; }
#undef NDEBUG #include<assert.h> int main(){ assert (exchange({1, 2, 3, 4}, {1, 2, 3, 4}) == "YES"); assert (exchange({1, 2, 3, 4}, {1, 5, 3, 4}) == "NO"); assert (exchange({1, 2, 3, 4}, {2, 1, 4, 3}) == "YES" ); assert (exchange({5, 7, 3}, {2, 6, 4}) == "YES"); assert (exchange({5, 7, 3}, {2, 6, 3}) == "NO" ); assert (exchange({3, 2, 6, 1, 8, 9}, {3, 5, 5, 1, 1, 1}) == "NO"); assert (exchange({100, 200}, {200, 200}) == "YES"); }
#undef NDEBUG #include<assert.h> int main(){ assert (exchange({1, 2, 3, 4}, {1, 2, 3, 4}) == "YES"); assert (exchange({1, 2, 3, 4}, {1, 5, 3, 4}) == "NO"); }
CPP/111
/* Given a string representing a space separated lowercase letters, return a map of the letter with the most repetition and containing the corresponding count. If several letters have the same occurrence, return all of them. Example: histogram("a b c") == {{"a", 1}, {"b", 1}, {"c", 1}} histogram("a b b a") == {{"a", 2}, {"b", 2}} histogram("a b c a b") == {{"a", 2}, {"b", 2}} histogram("b b b b a") == {{"b", 4}} histogram("") == {} */ #include<stdio.h> #include<string> #include<map> using namespace std; map<char,int> histogram(string test){
#include<stdio.h> #include<math.h> #include<string> #include<map> using namespace std; #include<algorithm> #include<stdlib.h> map<char,int> histogram(string test){
map<char,int> count={},out={}; map <char,int>::iterator it; int max=0; for (int i=0;i<test.length();i++) if (test[i]!=' ') { count[test[i]]+=1; if (count[test[i]]>max) max=count[test[i]]; } for (it=count.begin();it!=count.end();it++) { char w1=it->first; int w2=it->second; if (w2==max) out[w1]=w2; } return out; }
#undef NDEBUG #include<assert.h> bool issame(map<char,int> a,map<char,int> b){ if (a.size()!=b.size()) return false; map <char,int>::iterator it; for (it=a.begin();it!=a.end();it++) { char w1=it->first; int w2=it->second; if (b.find(w1)==b.end()) return false; if (b[w1]!=w2) return false; } return true; } int main(){ assert (issame(histogram("a b b a") , {{'a',2},{'b', 2}})); assert (issame(histogram("a b c a b") , {{'a', 2},{'b', 2}})); assert (issame(histogram("a b c d g") , {{'a', 1}, {'b', 1}, {'c', 1}, {'d', 1}, {'g', 1}})); assert (issame(histogram("r t g") , {{'r', 1},{'t', 1},{'g', 1}})); assert (issame(histogram("b b b b a") , {{'b', 4}})); assert (issame(histogram("r t g") , {{'r', 1},{'t', 1},{'g', 1}})); assert (issame(histogram("") , {})); assert (issame(histogram("a") , {{'a', 1}})); }
#undef NDEBUG #include<assert.h> bool issame(map<char,int> a,map<char,int> b){ if (a.size()!=b.size()) return false; map <char,int>::iterator it; for (it=a.begin();it!=a.end();it++) { char w1=it->first; int w2=it->second; if (b.find(w1)==b.end()) return false; if (b[w1]!=w2) return false; } return true; } int main(){ assert (issame(histogram("a b b a") , {{'a',2},{'b', 2}})); assert (issame(histogram("a b c a b") , {{'a', 2},{'b', 2}})); assert (issame(histogram("a b c") , {{'a', 1},{'b', 1},{'c', 1}})); assert (issame(histogram("b b b b a") , {{'b', 4}})); assert (issame(histogram("") , {})); }
CPP/112
/* Task We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c then check if the result string is palindrome. A string is called palindrome if it reads the same backward as forward. You should return a vector containing the result string and "True"/"False" for the check. Example For s = "abcde", c = "ae", the result should be ("bcd","False") For s = "abcdef", c = "b" the result should be ("acdef","False") For s = "abcdedcba", c = "ab", the result should be ("cdedc","True") */ #include<stdio.h> #include<vector> #include<string> #include<algorithm> using namespace std; vector<string> reverse_delete(string s,string c){
#include<stdio.h> #include<math.h> #include<vector> #include<string> #include<algorithm> using namespace std; #include<stdlib.h> vector<string> reverse_delete(string s,string c){
string n=""; for (int i=0;i<s.length();i++) if (find(c.begin(),c.end(),s[i])==c.end()) n=n+s[i]; if (n.length()==0) return {n,"True"}; string w(n.rbegin(),n.rend()); if (w==n) return {n,"True"}; return {n,"False"}; }
#undef NDEBUG #include<assert.h> bool issame(vector<string> a,vector<string>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(reverse_delete("abcde","ae") , {"bcd","False"})); assert (issame(reverse_delete("abcdef", "b") , {"acdef","False"})); assert (issame(reverse_delete("abcdedcba","ab") , {"cdedc","True"})); assert (issame(reverse_delete("dwik","w") , {"dik","False"})); assert (issame(reverse_delete("a","a") , {"","True"})); assert (issame(reverse_delete("abcdedcba","") , {"abcdedcba","True"})); assert (issame(reverse_delete("abcdedcba","v") , {"abcdedcba","True"})); assert (issame(reverse_delete("vabba","v") , {"abba","True"})); assert (issame(reverse_delete("mamma", "mia") , {"", "True"})); }
#undef NDEBUG #include<assert.h> bool issame(vector<string> a,vector<string>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(reverse_delete("abcde","ae") , {"bcd","False"})); assert (issame(reverse_delete("abcdef", "b") , {"acdef","False"})); assert (issame(reverse_delete("abcdedcba","ab") , {"cdedc","True"})); }
CPP/113
/* Given a vector of strings, where each string consists of only digits, return a vector. Each element i of the output should be 'the number of odd elements in the string i of the input." where all the i's should be replaced by the number of odd digits in the i'th string of the input. >>> odd_count({"1234567"}) {'the number of odd elements 4n the str4ng 4 of the 4nput."} >>> odd_count({"3","11111111"}) {'the number of odd elements 1n the str1ng 1 of the 1nput.", 'the number of odd elements 8n the str8ng 8 of the 8nput."} */ #include<stdio.h> #include<vector> #include<string> #include<map> using namespace std; vector<string> odd_count(vector<string> lst){
#include<stdio.h> #include<math.h> #include<vector> #include<string> #include<map> using namespace std; #include<algorithm> #include<stdlib.h> vector<string> odd_count(vector<string> lst){
vector<string> out={}; for (int i=0;i<lst.size();i++) { int sum=0; for (int j=0;j<lst[i].length();j++) if (lst[i][j]>=48 and lst[i][j]<=57 and lst[i][j]%2==1) sum+=1; string s="the number of odd elements in the string i of the input."; string s2=""; for (int j=0;j<s.length();j++) if (s[j]=='i') s2=s2+to_string(sum); else s2=s2+s[j]; out.push_back(s2); } return out; }
#undef NDEBUG #include<assert.h> bool issame(vector<string> a,vector<string>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(odd_count({"1234567"}) , {"the number of odd elements 4n the str4ng 4 of the 4nput."})); assert (issame(odd_count({"3","11111111"}) , {"the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."})); assert (issame(odd_count({"271", "137", "314"}) , { "the number of odd elements 2n the str2ng 2 of the 2nput.", "the number of odd elements 3n the str3ng 3 of the 3nput.", "the number of odd elements 2n the str2ng 2 of the 2nput." })); }
#undef NDEBUG #include<assert.h> bool issame(vector<string> a,vector<string>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(odd_count({"1234567"}) , {"the number of odd elements 4n the str4ng 4 of the 4nput."})); assert (issame(odd_count({"3","11111111"}) , {"the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."})); }
CPP/114
/* Given a vector of integers nums, find the minimum sum of any non-empty sub-vector of nums. Example minSubArraySum({2, 3, 4, 1, 2, 4}) == 1 minSubArraySum({-1, -2, -3}) == -6 */ #include<stdio.h> #include<vector> using namespace std; long long minSubArraySum(vector<long long> nums){
#include<stdio.h> #include<math.h> #include<vector> using namespace std; #include<algorithm> #include<stdlib.h> long long minSubArraySum(vector<long long> nums){
long long current,min; current=nums[0]; min=nums[0]; for (int i=1;i<nums.size();i++) { if (current<0) current=current+nums[i]; else current=nums[i]; if (current<min) min=current; } return min; }
#undef NDEBUG #include<assert.h> int main(){ assert (minSubArraySum({2, 3, 4, 1, 2, 4}) == 1); assert (minSubArraySum({-1, -2, -3}) == -6); assert (minSubArraySum({-1, -2, -3, 2, -10}) == -14); assert (minSubArraySum({-9999999999999999}) == -9999999999999999); assert (minSubArraySum({0, 10, 20, 1000000}) == 0); assert (minSubArraySum({-1, -2, -3, 10, -5}) == -6); assert (minSubArraySum({100, -1, -2, -3, 10, -5}) == -6); assert (minSubArraySum({10, 11, 13, 8, 3, 4}) == 3); assert (minSubArraySum({100, -33, 32, -1, 0, -2}) == -33); assert (minSubArraySum({-10}) == -10); assert (minSubArraySum({7}) == 7); assert (minSubArraySum({1, -1}) == -1); }
#undef NDEBUG #include<assert.h> int main(){ assert (minSubArraySum({2, 3, 4, 1, 2, 4}) == 1); assert (minSubArraySum({-1, -2, -3}) == -6); }
CPP/115
/* You are given a rectangular grid of wells. Each row represents a single well, and each 1 in a row represents a single unit of water. Each well has a corresponding bucket that can be used to extract water from it, and all buckets have the same capacity. Your task is to use the buckets to empty the wells. Output the number of times you need to lower the buckets. Example 1: Input: grid : {{0,0,1,0}, {0,1,0,0}, {1,1,1,1}} bucket_capacity : 1 Output: 6 Example 2: Input: grid : {{0,0,1,1}, {0,0,0,0}, {1,1,1,1}, {0,1,1,1}} bucket_capacity : 2 Output: 5 Example 3: Input: grid : {{0,0,0}, {0,0,0}} bucket_capacity : 5 Output: 0 Constraints: * all wells have the same length * 1 <= grid.length <= 10^2 * 1 <= grid{:,1}.length <= 10^2 * grid{i}{j} -> 0 | 1 * 1 <= capacity <= 10 */ #include<stdio.h> #include<vector> using namespace std; int max_fill(vector<vector<int>> grid,int capacity){
#include<stdio.h> #include<math.h> #include<vector> using namespace std; #include<algorithm> #include<stdlib.h> int max_fill(vector<vector<int>> grid,int capacity){
int out=0; for (int i=0;i<grid.size();i++) { int sum=0; for (int j=0;j<grid[i].size();j++) sum+=grid[i][j]; if (sum>0) out+=(sum-1)/capacity+1; } return out; }
#undef NDEBUG #include<assert.h> int main(){ assert (max_fill({{0,0,1,0}, {0,1,0,0}, {1,1,1,1}}, 1) == 6); assert (max_fill({{0,0,1,1}, {0,0,0,0}, {1,1,1,1}, {0,1,1,1}}, 2) == 5); assert (max_fill({{0,0,0}, {0,0,0}}, 5) == 0); assert (max_fill({{1,1,1,1}, {1,1,1,1}}, 2) == 4); assert (max_fill({{1,1,1,1}, {1,1,1,1}}, 9) == 2); }
#undef NDEBUG #include<assert.h> int main(){ assert (max_fill({{0,0,1,0}, {0,1,0,0}, {1,1,1,1}}, 1) == 6); assert (max_fill({{0,0,1,1}, {0,0,0,0}, {1,1,1,1}, {0,1,1,1}}, 2) == 5); assert (max_fill({{0,0,0}, {0,0,0}}, 5) == 0); }
CPP/116
/* In this Kata, you have to sort a vector of non-negative integers according to number of ones in their binary representation in ascending order. For similar number of ones, sort based on decimal value. It must be implemented like this: >>> sort_vector({1, 5, 2, 3, 4}) == {1, 2, 3, 4, 5} >>> sort_vector({-2, -3, -4, -5, -6}) == {-6, -5, -4, -3, -2} >>> sort_vector({1, 0, 2, 3, 4}) == {0, 1, 2, 3, 4} */ #include<stdio.h> #include<math.h> #include<vector> #include<algorithm> using namespace std; vector<int> sort_array(vector<int> arr){
#include<stdio.h> #include<math.h> #include<vector> #include<algorithm> using namespace std; #include<stdlib.h> vector<int> sort_array(vector<int> arr){
vector<int> bin={}; int m; for (int i=0;i<arr.size();i++) { int b=0,n=abs(arr[i]); while (n>0) { b+=n%2;n=n/2; } bin.push_back(b); } for (int i=0;i<arr.size();i++) for (int j=1;j<arr.size();j++) if (bin[j]<bin[j-1] or (bin[j]==bin[j-1] and arr[j]<arr[j-1])) { m=arr[j];arr[j]=arr[j-1];arr[j-1]=m; m=bin[j];bin[j]=bin[j-1];bin[j-1]=m; } return arr; }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(sort_array({1,5,2,3,4}) , {1, 2, 4, 3, 5})); assert (issame(sort_array({-2,-3,-4,-5,-6}) , {-4, -2, -6, -5, -3})); assert (issame(sort_array({1,0,2,3,4}) , {0, 1, 2, 4, 3})); assert (issame(sort_array({}) , {})); assert (issame(sort_array({2,5,77,4,5,3,5,7,2,3,4}) , {2, 2, 4, 4, 3, 3, 5, 5, 5, 7, 77})); assert (issame(sort_array({3,6,44,12,32,5}) , {32, 3, 5, 6, 12, 44})); assert (issame(sort_array({2,4,8,16,32}) , {2, 4, 8, 16, 32})); assert (issame(sort_array({2,4,8,16,32}) , {2, 4, 8, 16, 32})); }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(sort_array({1,5,2,3,4}) , {1, 2, 4, 3, 5})); assert (issame(sort_array({-2,-3,-4,-5,-6}) , {-4, -2, -6, -5, -3})); assert (issame(sort_array({1,0,2,3,4}) , {0, 1, 2, 4, 3})); }
CPP/117
/* Given a string s and a natural number n, you have been tasked to implement a function that returns a vector of all words from string s that contain exactly n consonants, in order these words appear in the string s. If the string s is empty then the function should return an empty vector. Note: you may assume the input string contains only letters and spaces. Examples: select_words("Mary had a little lamb", 4) ==> {"little"} select_words("Mary had a little lamb", 3) ==> {"Mary", "lamb"} select_words('simple white space", 2) ==> {} select_words("Hello world", 4) ==> {"world"} select_words("Uncle sam", 3) ==> {"Uncle"} */ #include<stdio.h> #include<vector> #include<string> #include<algorithm> using namespace std; vector<string> select_words(string s,int n){
#include<stdio.h> #include<math.h> #include<vector> #include<string> #include<algorithm> using namespace std; #include<stdlib.h> vector<string> select_words(string s,int n){
string vowels="aeiouAEIOU"; string current=""; vector<string> out={}; int numc=0; s=s+' '; for (int i=0;i<s.length();i++) if (s[i]==' ') { if (numc==n) out.push_back(current); current=""; numc=0; } else { current=current+s[i]; if ((s[i]>=65 and s[i]<=90) or (s[i]>=97 and s[i]<=122)) if (find(vowels.begin(),vowels.end(),s[i])==vowels.end()) numc+=1; } return out; }
#undef NDEBUG #include<assert.h> bool issame(vector<string> a,vector<string>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(select_words("Mary had a little lamb", 4) , {"little"} )); assert (issame(select_words("Mary had a little lamb", 3) , {"Mary", "lamb"} )); assert (issame(select_words("simple white space", 2) , {} )); assert (issame(select_words("Hello world", 4) , {"world"} )); assert (issame(select_words("Uncle sam", 3) , {"Uncle"})); assert (issame(select_words("", 4) , {})); assert (issame(select_words("a b c d e f", 1) , {"b", "c", "d", "f"})); }
#undef NDEBUG #include<assert.h> bool issame(vector<string> a,vector<string>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(select_words("Mary had a little lamb", 4) , {"little"} )); assert (issame(select_words("Mary had a little lamb", 3) , {"Mary", "lamb"} )); assert (issame(select_words("simple white space", 2) , {} )); assert (issame(select_words("Hello world", 4) , {"world"} )); assert (issame(select_words("Uncle sam", 3) , {"Uncle"})); }
CPP/118
/* You are given a word. Your task is to find the closest vowel that stands between two consonants from the right side of the word (case sensitive). Vowels in the beginning and ending doesn't count. Return empty string if you didn't find any vowel met the above condition. You may assume that the given string contains English letter only. Example: get_closest_vowel("yogurt") ==> "u" get_closest_vowel("FULL") ==> "U" get_closest_vowel("quick") ==> "" get_closest_vowel("ab") ==> "" */ #include<stdio.h> #include<string> #include<algorithm> using namespace std; string get_closest_vowel(string word){
#include<stdio.h> #include<math.h> #include<string> #include<algorithm> using namespace std; #include<stdlib.h> string get_closest_vowel(string word){
string out=""; string vowels="AEIOUaeiou"; for (int i=word.length()-2;i>=1;i-=1) if (find(vowels.begin(),vowels.end(),word[i])!=vowels.end()) if (find(vowels.begin(),vowels.end(),word[i+1])==vowels.end()) if (find(vowels.begin(),vowels.end(),word[i-1])==vowels.end()) return out+word[i]; return out; }
#undef NDEBUG #include<assert.h> int main(){ assert (get_closest_vowel("yogurt") == "u"); assert (get_closest_vowel("full") == "u"); assert (get_closest_vowel("easy") == ""); assert (get_closest_vowel("eAsy") == ""); assert (get_closest_vowel("ali") == ""); assert (get_closest_vowel("bad") == "a"); assert (get_closest_vowel("most") =="o"); assert (get_closest_vowel("ab") == ""); assert (get_closest_vowel("ba") == ""); assert (get_closest_vowel("quick") == ""); assert (get_closest_vowel("anime") == "i"); assert (get_closest_vowel("Asia") == ""); assert (get_closest_vowel("Above") == "o"); }
#undef NDEBUG #include<assert.h> int main(){ assert (get_closest_vowel("yogurt") == "u"); assert (get_closest_vowel("FULL") == "U"); assert (get_closest_vowel("ab") == ""); assert (get_closest_vowel("quick") == ""); }
CPP/119
/* You are given a vector of two strings, both strings consist of open parentheses '(' or close parentheses ')' only. Your job is to check if it is possible to concatenate the two strings in some order, that the resulting string will be good. A string S is considered to be good if and only if all parentheses in S are balanced. For example: the string "(())()" is good, while the string "())" is not. Return "Yes" if there's a way to make a good string, and return "No" otherwise. Examples: match_parens({"()(", ")"}) == "Yes" match_parens({")", ")"}) == "No" */ #include<stdio.h> #include<vector> #include<string> using namespace std; string match_parens(vector<string> lst){
#include<stdio.h> #include<math.h> #include<vector> #include<string> using namespace std; #include<algorithm> #include<stdlib.h> string match_parens(vector<string> lst){
string l1=lst[0]+lst[1]; int i,count=0; bool can=true; for (i=0;i<l1.length();i++) { if (l1[i]=='(') count+=1; if (l1[i]==')') count-=1; if (count<0) can=false; } if (count!=0) return "No"; if (can==true) return "Yes"; l1=lst[1]+lst[0]; can=true; for (i=0;i<l1.length();i++) { if (l1[i]=='(') count+=1; if (l1[i]==')') count-=1; if (count<0) can=false; } if (can==true) return "Yes"; return "No"; }
#undef NDEBUG #include<assert.h> int main(){ assert (match_parens({"()(", ")"}) == "Yes"); assert (match_parens({")", ")"}) == "No"); assert (match_parens({"(()(())", "())())"}) == "No"); assert (match_parens({")())", "(()()("}) == "Yes"); assert (match_parens({"(())))", "(()())(("}) == "Yes"); assert (match_parens({"()", "())"}) == "No"); assert (match_parens({"(()(", "()))()"}) == "Yes"); assert (match_parens({"((((", "((())"}) == "No"); assert (match_parens({")(()", "(()("}) == "No"); assert (match_parens({")(", ")("}) == "No"); assert (match_parens({"(", ")"}) == "Yes"); assert (match_parens({")", "("}) == "Yes" ); }
#undef NDEBUG #include<assert.h> int main(){ assert (match_parens({"()(", ")"}) == "Yes"); assert (match_parens({")", ")"}) == "No"); }
CPP/120
/* Given a vector arr of integers and a positive integer k, return a sorted vector of length k with the maximum k numbers in arr. Example 1: Input: arr = {-3, -4, 5}, k = 3 Output: {-4, -3, 5} Example 2: Input: arr = {4, -4, 4}, k = 2 Output: {4, 4} Example 3: Input: arr = {-3, 2, 1, 2, -1, -2, 1}, k = 1 Output: {2} Note: 1. The length of the vector will be in the range of {1, 1000}. 2. The elements in the vector will be in the range of {-1000, 1000}. 3. 0 <= k <= len(arr) */ #include<stdio.h> #include<vector> #include<algorithm> using namespace std; vector<int> maximum(vector<int> arr,int k){
#include<stdio.h> #include<math.h> #include<vector> #include<algorithm> using namespace std; #include<stdlib.h> vector<int> maximum(vector<int> arr,int k){
sort(arr.begin(),arr.end()); vector<int> out(arr.end()-k,arr.end()); return out; }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(maximum({-3, -4, 5}, 3) , {-4, -3, 5})); assert (issame(maximum({4, -4, 4}, 2) , {4, 4})); assert (issame(maximum({-3, 2, 1, 2, -1, -2, 1}, 1) , {2})); assert (issame(maximum({123, -123, 20, 0 , 1, 2, -3}, 3) , {2, 20, 123})); assert (issame(maximum({-123, 20, 0 , 1, 2, -3}, 4) , {0, 1, 2, 20})); assert (issame(maximum({5, 15, 0, 3, -13, -8, 0}, 7) , {-13, -8, 0, 0, 3, 5, 15})); assert (issame(maximum({-1, 0, 2, 5, 3, -10}, 2) , {3, 5})); assert (issame(maximum({1, 0, 5, -7}, 1) , {5})); assert (issame(maximum({4, -4}, 2) , {-4, 4})); assert (issame(maximum({-10, 10}, 2) , {-10, 10})); assert (issame(maximum({1, 2, 3, -23, 243, -400, 0}, 0) , {})); }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(maximum({-3, -4, 5}, 3) , {-4, -3, 5})); assert (issame(maximum({4, -4, 4}, 2) , {4, 4})); assert (issame(maximum({-3, 2, 1, 2, -1, -2, 1}, 1) , {2})); }
CPP/121
/* Given a non-empty vector of integers, return the sum of all of the odd elements that are in even positions. Examples solution({5, 8, 7, 1}) ==> 12 solution({3, 3, 3, 3, 3}) ==> 9 solution({30, 13, 24, 321}) ==>0 */ #include<stdio.h> #include<vector> using namespace std; int solutions(vector<int> lst){
#include<stdio.h> #include<math.h> #include<vector> using namespace std; #include<algorithm> #include<stdlib.h> int solutions(vector<int> lst){
int sum=0; for (int i=0;i*2<lst.size();i++) if (lst[i*2]%2==1) sum+=lst[i*2]; return sum; }
#undef NDEBUG #include<assert.h> int main(){ assert (solutions({5, 8, 7, 1}) == 12); assert (solutions({3, 3, 3, 3, 3}) == 9); assert (solutions({30, 13, 24, 321}) == 0); assert (solutions({5, 9}) == 5); assert (solutions({2, 4, 8}) == 0); assert (solutions({30, 13, 23, 32}) == 23); assert (solutions({3, 13, 2, 9}) == 3); }
#undef NDEBUG #include<assert.h> int main(){ assert (solutions({5, 8, 7, 1}) == 12); assert (solutions({3, 3, 3, 3, 3}) == 9); assert (solutions({30, 13, 24, 321}) == 0); }
CPP/122
/* Given a non-empty vector of integers arr and an integer k, return the sum of the elements with at most two digits from the first k elements of arr. Example: Input: arr = {111,21,3,4000,5,6,7,8,9}, k = 4 Output: 24 # sum of 21 + 3 Constraints: 1. 1 <= len(arr) <= 100 2. 1 <= k <= len(arr) */ #include<stdio.h> #include<vector> using namespace std; int add_elements(vector<int> arr,int k){
#include<stdio.h> #include<math.h> #include<vector> using namespace std; #include<algorithm> #include<stdlib.h> int add_elements(vector<int> arr,int k){
int sum=0; for (int i=0;i<k;i++) if( arr[i]>=-99 and arr[i]<=99) sum+=arr[i]; return sum; }
#undef NDEBUG #include<assert.h> int main(){ assert (add_elements({1,-2,-3,41,57,76,87,88,99}, 3) == -4); assert (add_elements({111,121,3,4000,5,6}, 2) == 0); assert (add_elements({11,21,3,90,5,6,7,8,9}, 4) == 125); assert (add_elements({111,21,3,4000,5,6,7,8,9}, 4) == 24); assert (add_elements({1}, 1) == 1); }
#undef NDEBUG #include<assert.h> int main(){ assert (add_elements({111,21,3,4000,5,6,7,8,9}, 4) == 24); }
CPP/123
/* Given a positive integer n, return a sorted vector that has the odd numbers in collatz sequence. The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined as follows: start with any positive integer n. Then each term is obtained from the previous term as follows: if the previous term is even, the next term is one half of the previous term. If the previous term is odd, the next term is 3 times the previous term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1. Note: 1. Collatz(1) is {1}. 2. returned vector sorted in increasing order. For example: get_odd_collatz(5) returns {1, 5} // The collatz sequence for 5 is {5, 16, 8, 4, 2, 1}, so the odd numbers are only 1, and 5. */ #include<stdio.h> #include<vector> #include<algorithm> using namespace std; vector<int> get_odd_collatz(int n){
#include<stdio.h> #include<math.h> #include<vector> #include<algorithm> using namespace std; #include<stdlib.h> vector<int> get_odd_collatz(int n){
vector<int> out={1}; while (n!=1) { if (n%2==1) {out.push_back(n); n=n*3+1;} else n=n/2; } sort(out.begin(),out.end()); return out; }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(get_odd_collatz(14) , {1, 5, 7, 11, 13, 17})); assert (issame(get_odd_collatz(5) , {1, 5})); assert (issame(get_odd_collatz(12) , {1, 3, 5})); assert (issame(get_odd_collatz(1) , {1})); }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(get_odd_collatz(5) , {1, 5})); }
CPP/124
/* You have to write a function which validates a given date string and returns true if the date is valid otherwise false. The date is valid if all of the following rules are satisfied: 1. The date string is not empty. 2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2. 3. The months should not be less than 1 or higher than 12. 4. The date should be in the format: mm-dd-yyyy for example: valid_date("03-11-2000") => true valid_date("15-01-2012") => false valid_date("04-0-2040") => false valid_date("06-04-2020") => true valid_date("06/04/2020") => false */ #include<stdio.h> #include<string> using namespace std; bool valid_date(string date){
#include<stdio.h> #include<math.h> #include<string> #include<algorithm> using namespace std; #include<stdlib.h> bool valid_date(string date){
int mm,dd,yy,i; if (date.length()!=10) return false; for (int i=0;i<10;i++) if (i==2 or i==5) { if (date[i]!='-') return false; } else if (date[i]<48 or date[i]>57) return false; mm=atoi(date.substr(0,2).c_str()); dd=atoi(date.substr(3,2).c_str()); yy=atoi(date.substr(6,4).c_str()); if (mm<1 or mm>12) return false; if (dd<1 or dd>31) return false; if (dd==31 and (mm==4 or mm==6 or mm==9 or mm==11 or mm==2)) return false; if (dd==30 and mm==2) return false; return true; }
#undef NDEBUG #include<assert.h> int main(){ assert (valid_date("03-11-2000") == true); assert (valid_date("15-01-2012") == false); assert (valid_date("04-0-2040") == false); assert (valid_date("06-04-2020") == true); assert (valid_date("01-01-2007") == true); assert (valid_date("03-32-2011") == false); assert (valid_date("") == false); assert (valid_date("04-31-3000") == false); assert (valid_date("06-06-2005") == true); assert (valid_date("21-31-2000") == false); assert (valid_date("04-12-2003") == true); assert (valid_date("04122003") == false); assert (valid_date("20030412") == false); assert (valid_date("2003-04") == false); assert (valid_date("2003-04-12") == false); assert (valid_date("04-2003") == false); }
#undef NDEBUG #include<assert.h> int main(){ assert (valid_date("03-11-2000") == true); assert (valid_date("15-01-2012") == false); assert (valid_date("04-0-2040") == false); assert (valid_date("06-04-2020") == true); assert (valid_date("06/04/2020") == false); }
CPP/125
/* Given a string of words, return a vector of words split on whitespace, if no whitespaces exists in the text you should split on commas ',' if no commas exists you should return a vector with one element, the number of lower-case letters with odd order in the alphabet, ord("a") = 0, ord("b") = 1, ... ord("z") = 25 Examples split_words("Hello world!") ➞ {"Hello", "world!"} split_words("Hello,world!") ➞ {"Hello", "world!"} split_words("abcdef") == {"3"} */ #include<stdio.h> #include<vector> #include<string> #include<algorithm> using namespace std; vector<string> split_words(string txt){
#include<stdio.h> #include<math.h> #include<vector> #include<string> #include<algorithm> using namespace std; #include<stdlib.h> vector<string> split_words(string txt){
int i; string current=""; vector<string> out={}; if (find(txt.begin(),txt.end(),' ')!=txt.end()) { txt=txt+' '; for (i=0;i<txt.length();i++) if (txt[i]==' ') { if (current.length()>0)out.push_back(current); current=""; } else current=current+txt[i]; return out; } if (find(txt.begin(),txt.end(),',')!=txt.end()) { txt=txt+','; for (i=0;i<txt.length();i++) if (txt[i]==',') { if (current.length()>0)out.push_back(current); current=""; } else current=current+txt[i]; return out; } int num=0; for (i=0;i<txt.length();i++) if (txt[i]>=97 and txt[i]<=122 and txt[i]%2==0) num+=1; return {to_string(num)}; }
#undef NDEBUG #include<assert.h> bool issame(vector<string> a,vector<string>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(split_words("Hello world!") , {"Hello","world!"})); assert (issame(split_words("Hello,world!") , {"Hello","world!"})); assert (issame(split_words("Hello world,!") , {"Hello","world,!"})); assert (issame(split_words("Hello,Hello,world !") , {"Hello,Hello,world","!"})); assert (issame(split_words("abcdef") , {"3"})); assert (issame(split_words("aaabb") , {"2"})); assert (issame(split_words("aaaBb") , {"1"})); assert (issame(split_words("") ,{"0"})); }
#undef NDEBUG #include<assert.h> bool issame(vector<string> a,vector<string>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(split_words("Hello world!") , {"Hello","world!"})); assert (issame(split_words("Hello,world!") , {"Hello","world!"})); assert (issame(split_words("abcdef") , {"3"})); }
CPP/126
/* Given a vector of numbers, return whether or not they are sorted in ascending order. If vector has more than 1 duplicate of the same number, return false. Assume no negative numbers and only integers. Examples is_sorted({5}) ➞ true is_sorted({1, 2, 3, 4, 5}) ➞ true is_sorted({1, 3, 2, 4, 5}) ➞ false is_sorted({1, 2, 3, 4, 5, 6}) ➞ true is_sorted({1, 2, 3, 4, 5, 6, 7}) ➞ true is_sorted({1, 3, 2, 4, 5, 6, 7}) ➞ false is_sorted({1, 2, 2, 3, 3, 4}) ➞ true is_sorted({1, 2, 2, 2, 3, 4}) ➞ false */ #include<stdio.h> #include<vector> #include<algorithm> using namespace std; bool is_sorted(vector<int> lst){
#include<stdio.h> #include<math.h> #include<vector> #include<algorithm> using namespace std; #include<stdlib.h> bool is_sorted(vector<int> lst){
for (int i=1;i<lst.size();i++) { if (lst[i]<lst[i-1]) return false; if (i>=2 and lst[i]==lst[i-1] and lst[i]==lst[i-2]) return false; } return true; }
#undef NDEBUG #include<assert.h> int main(){ assert (is_sorted({5}) == true); assert (is_sorted({1, 2, 3, 4, 5}) == true); assert (is_sorted({1, 3, 2, 4, 5}) == false); assert (is_sorted({1, 2, 3, 4, 5, 6}) == true); assert (is_sorted({1, 2, 3, 4, 5, 6, 7}) == true); assert (is_sorted({1, 3, 2, 4, 5, 6, 7}) == false); assert (is_sorted({}) == true); assert (is_sorted({1}) == true); assert (is_sorted({3, 2, 1}) == false); assert (is_sorted({1, 2, 2, 2, 3, 4}) == false); assert (is_sorted({1, 2, 3, 3, 3, 4}) == false); assert (is_sorted({1, 2, 2, 3, 3, 4}) == true); assert (is_sorted({1, 2, 3, 4}) == true); }
#undef NDEBUG #include<assert.h> int main(){ assert (is_sorted({5}) == true); assert (is_sorted({1, 2, 3, 4, 5}) == true); assert (is_sorted({1, 3, 2, 4, 5}) == false); assert (is_sorted({1, 2, 3, 4, 5, 6}) == true); assert (is_sorted({1, 2, 3, 4, 5, 6, 7}) == true); assert (is_sorted({1, 3, 2, 4, 5, 6, 7}) == false); assert (is_sorted({1, 2, 2, 2, 3, 4}) == false); assert (is_sorted({1, 2, 2, 3, 3, 4}) == true); }
CPP/127
/* You are given two intervals, where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). The given intervals are closed which means that the interval (start, end) includes both start and end. For each given interval, it is assumed that its start is less or equal its end. Your task is to determine whether the length of intersection of these two intervals is a prime number. Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) which its length is 1, which not a prime number. If the length of the intersection is a prime number, return "YES", otherwise, return "NO". If the two intervals don't intersect, return "NO". {input/output} samples: intersection({1, 2}, {2, 3}) ==> "NO" intersection({-1, 1}, {0, 4}) ==> "NO" intersection({-3, -1}, {-5, 5}) ==> "YES" */ #include<stdio.h> #include<vector> #include<string> using namespace std; string intersection( vector<int> interval1,vector<int> interval2){
#include<stdio.h> #include<math.h> #include<vector> #include<string> #include<algorithm> using namespace std; #include<stdlib.h> string intersection( vector<int> interval1,vector<int> interval2){
int inter1,inter2,l,i; inter1=max(interval1[0],interval2[0]); inter2=min(interval1[1],interval2[1]); l=inter2-inter1; if (l<2) return "NO"; for (i=2;i*i<=l;i++) if (l%i==0) return "NO"; return "YES"; }
#undef NDEBUG #include<assert.h> int main(){ assert (intersection({1, 2}, {2, 3}) == "NO"); assert (intersection({-1, 1}, {0, 4}) == "NO"); assert (intersection({-3, -1}, {-5, 5}) == "YES"); assert (intersection({-2, 2}, {-4, 0}) == "YES"); assert (intersection({-11, 2}, {-1, -1}) == "NO"); assert (intersection({1, 2}, {3, 5}) == "NO"); assert (intersection({1, 2}, {1, 2}) == "NO"); assert (intersection({-2, -2}, {-3, -2}) == "NO"); }
#undef NDEBUG #include<assert.h> int main(){ assert (intersection({1, 2}, {2, 3}) == "NO"); assert (intersection({-1, 1}, {0, 4}) == "NO"); assert (intersection({-3, -1}, {-5, 5}) == "YES"); }
CPP/128
/* You are given a vector arr of integers and you need to return sum of magnitudes of integers multiplied by product of all signs of each number in the vector, represented by 1, -1 or 0. Note: return -32768 for empty arr. Example: >>> prod_signs({1, 2, 2, -4}) == -9 >>> prod_signs({0, 1}) == 0 >>> prod_signs({}) == -32768 */ #include<stdio.h> #include<math.h> #include<vector> using namespace std; int prod_signs(vector<int> arr){
#include<stdio.h> #include<math.h> #include<vector> #include<algorithm> using namespace std; #include<stdlib.h> int prod_signs(vector<int> arr){
if (arr.size()==0) return -32768; int i,sum=0,prods=1; for (i=0;i<arr.size();i++) { sum+=abs(arr[i]); if (arr[i]==0) prods=0; if (arr[i]<0) prods=-prods; } return sum*prods; }
#undef NDEBUG #include<assert.h> int main(){ assert (prod_signs({1, 2, 2, -4}) == -9); assert (prod_signs({0, 1}) == 0); assert (prod_signs({1, 1, 1, 2, 3, -1, 1}) == -10); assert (prod_signs({}) == -32768); assert (prod_signs({2, 4,1, 2, -1, -1, 9}) == 20); assert (prod_signs({-1, 1, -1, 1}) == 4); assert (prod_signs({-1, 1, 1, 1}) == -4); assert (prod_signs({-1, 1, 1, 0}) == 0); }
#undef NDEBUG #include<assert.h> int main(){ assert (prod_signs({1, 2, 2, -4}) == -9); assert (prod_signs({0, 1}) == 0); assert (prod_signs({}) == -32768); }
CPP/129
/* Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range {1, N * N} inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered vectors of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered vector of the values on the cells that the minimum path go through. Examples: Input: grid = { {1,2,3}, {4,5,6}, {7,8,9}}, k = 3 Output: {1, 2, 1} Input: grid = { {5,9,3}, {4,1,6}, {7,8,2}}, k = 1 Output: {1} */ #include<stdio.h> #include<vector> using namespace std; vector<int> minPath(vector<vector<int>> grid, int k){
#include<stdio.h> #include<math.h> #include<vector> #include<algorithm> using namespace std; #include<stdlib.h> vector<int> minPath(vector<vector<int>> grid, int k){
int i,j,x,y,min; for (i=0;i<grid.size();i++) for (j=0;j<grid[i].size();j++) if (grid[i][j]==1) { x=i;y=j; } min=grid.size()*grid.size(); if (x>0 and grid[x-1][y]<min) min=grid[x-1][y]; if (x<grid.size()-1 and grid[x+1][y]<min) min=grid[x+1][y]; if (y>0 and grid[x][y-1]<min) min=grid[x][y-1]; if (y<grid.size()-1 and grid[x][y+1]<min) min=grid[x][y+1]; vector<int> out={}; for (i=0;i<k;i++) if (i%2==0) out.push_back(1); else out.push_back(min); return out; }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(minPath({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}, 3) , {1, 2, 1})); assert (issame(minPath({{5, 9, 3}, {4, 1, 6}, {7, 8, 2}}, 1) , {1})); assert (issame(minPath({{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16}}, 4) , {1, 2, 1, 2})); assert (issame(minPath({{6, 4, 13, 10}, {5, 7, 12, 1}, {3, 16, 11, 15}, {8, 14, 9, 2}}, 7) , {1, 10, 1, 10, 1, 10, 1})); assert (issame(minPath({{8, 14, 9, 2}, {6, 4, 13, 15}, {5, 7, 1, 12}, {3, 10, 11, 16}}, 5) , {1, 7, 1, 7, 1})); assert (issame(minPath({{11, 8, 7, 2}, {5, 16, 14, 4}, {9, 3, 15, 6}, {12, 13, 10, 1}}, 9) , {1, 6, 1, 6, 1, 6, 1, 6, 1})); assert (issame(minPath({{12, 13, 10, 1}, {9, 3, 15, 6}, {5, 16, 14, 4}, {11, 8, 7, 2}}, 12) , {1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6})); assert (issame(minPath({{2, 7, 4}, {3, 1, 5}, {6, 8, 9}}, 8) , {1, 3, 1, 3, 1, 3, 1, 3})); assert (issame(minPath({{6, 1, 5}, {3, 8, 9}, {2, 7, 4}}, 8) , {1, 5, 1, 5, 1, 5, 1, 5})); assert (issame(minPath({{1, 2}, {3, 4}}, 10) , {1, 2, 1, 2, 1, 2, 1, 2, 1, 2})); assert (issame(minPath({{1, 3}, {3, 2}}, 10) , {1, 3, 1, 3, 1, 3, 1, 3, 1, 3})); }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(minPath({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}, 3) , {1, 2, 1})); assert (issame(minPath({{5, 9, 3}, {4, 1, 6}, {7, 8, 2}}, 1) , {1})); }
CPP/130
/* Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in the last couple centuries. However, what people don't know is Tribonacci sequence. Tribonacci sequence is defined by the recurrence: tri(1) = 3 tri(n) = 1 + n / 2, if n is even. tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd. For example: tri(2) = 1 + (2 / 2) = 2 tri(4) = 3 tri(3) = tri(2) + tri(1) + tri(4) = 2 + 3 + 3 = 8 You are given a non-negative integer number n, you have to a return a vector of the first n + 1 numbers of the Tribonacci sequence. Examples: tri(3) = {1, 3, 2, 8} */ #include<stdio.h> #include<vector> using namespace std; vector<int> tri(int n){
#include<stdio.h> #include<math.h> #include<vector> #include<algorithm> using namespace std; #include<stdlib.h> vector<int> tri(int n){
vector<int> out={1,3}; if (n==0) return {1}; for (int i=2;i<=n;i++) { if (i%2==0) out.push_back(1+i/2); else out.push_back(out[i-1]+out[i-2]+1+(i+1)/2); } return out; }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(tri(3) , {1, 3, 2, 8})); assert (issame(tri(4) , {1, 3, 2, 8, 3})); assert (issame(tri(5) , {1, 3, 2, 8, 3, 15})); assert (issame(tri(6) , {1, 3, 2, 8, 3, 15, 4})); assert (issame(tri(7) , {1, 3, 2, 8, 3, 15, 4, 24})); assert (issame(tri(8) , {1, 3, 2, 8, 3, 15, 4, 24, 5})); assert (issame(tri(9) , {1, 3, 2, 8, 3, 15, 4, 24, 5, 35})); assert (issame(tri(20) , {1, 3, 2, 8, 3, 15, 4, 24, 5, 35, 6, 48, 7, 63, 8, 80, 9, 99, 10, 120, 11})); assert (issame(tri(0) , {1})); assert (issame(tri(1) , {1, 3})); }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(tri(3) , {1, 3, 2, 8})); }
CPP/131
/* Given a positive integer n, return the product of the odd digits. Return 0 if all digits are even. For example: digits(1) == 1 digits(4) == 0 digits(235) == 15 */ #include<stdio.h> #include<string> using namespace std; int digits(int n){
#include<stdio.h> #include<math.h> #include<string> #include<algorithm> using namespace std; #include<stdlib.h> int digits(int n){
int prod=1,has=0; string s=to_string(n); for (int i=0;i<s.length();i++) if (s[i]%2==1) { has=1; prod=prod*(s[i]-48); } if (has==0) return 0; return prod; }
#undef NDEBUG #include<assert.h> int main(){ assert (digits(5) == 5); assert (digits(54) == 5); assert (digits(120) ==1); assert (digits(5014) == 5); assert (digits(98765) == 315); assert (digits(5576543) == 2625); assert (digits(2468) == 0); }
#undef NDEBUG #include<assert.h> int main(){ assert (digits(1) == 1); assert (digits(4) == 0); assert (digits(235) ==15); }
CPP/132
/* Create a function that takes a string as input which contains only square brackets. The function should return true if and only if there is a valid subsequence of brackets where at least one bracket in the subsequence is nested. is_nested("[[]]") ➞ true is_nested("[]]]]]]][[[[[]") ➞ false is_nested("[][]") ➞ false is_nested("[]") ➞ false is_nested("[[][]]") ➞ true is_nested("[[]][[") ➞ true */ #include<stdio.h> #include<string> using namespace std; bool is_nested(string str){
#include<stdio.h> #include<math.h> #include<string> #include<algorithm> using namespace std; #include<stdlib.h> bool is_nested(string str){
int count=0,maxcount=0; for (int i=0;i<str.length();i++) { if (str[i]=='[') count+=1; if (str[i]==']') count-=1; if (count<0) count=0; if (count>maxcount) maxcount=count; if (count<=maxcount-2) return true; } return false; }
#undef NDEBUG #include<assert.h> int main(){ assert (is_nested("[[]]") == true); assert (is_nested("[]]]]]]][[[[[]") == false); assert (is_nested("[][]") == false); assert (is_nested(("[]")) == false); assert (is_nested("[[[[]]]]") == true); assert (is_nested("[]]]]]]]]]]") == false); assert (is_nested("[][][[]]") == true); assert (is_nested("[[]") == false); assert (is_nested("[]]") == false); assert (is_nested("[[]][[") == true); assert (is_nested("[[][]]") == true); assert (is_nested("") == false); assert (is_nested("[[[[[[[[") == false); assert (is_nested("]]]]]]]]") == false); }
#undef NDEBUG #include<assert.h> int main(){ assert (is_nested("[[]]") == true); assert (is_nested("[]]]]]]][[[[[]") == false); assert (is_nested("[][]") == false); assert (is_nested("[]") == false); assert (is_nested("[[]][[") == true); assert (is_nested("[[][]]") == true); }
CPP/133
/* You are given a vector of numbers. You need to return the sum of squared numbers in the given vector, round each element in the vector to the upper int(Ceiling) first. Examples: For lst = {1,2,3} the output should be 14 For lst = {1,4,9} the output should be 98 For lst = {1,3,5,7} the output should be 84 For lst = {1.4,4.2,0} the output should be 29 For lst = {-2.4,1,1} the output should be 6 */ #include<stdio.h> #include<math.h> #include<vector> using namespace std; int sum_squares(vector<float> lst){
#include<stdio.h> #include<math.h> #include<vector> #include<algorithm> using namespace std; #include<stdlib.h> int sum_squares(vector<float> lst){
int sum=0; for (int i=0;i<lst.size();i++) sum+=ceil(lst[i])*ceil(lst[i]); return sum; }
#undef NDEBUG #include<assert.h> int main(){ assert (sum_squares({1,2,3})==14); assert (sum_squares({1.0,2,3})==14); assert (sum_squares({1,3,5,7})==84); assert (sum_squares({1.4,4.2,0})==29); assert (sum_squares({-2.4,1,1})==6); assert (sum_squares({100,1,15,2})==10230); assert (sum_squares({10000,10000})==200000000); assert (sum_squares({-1.4,4.6,6.3})==75); assert (sum_squares({-1.4,17.9,18.9,19.9})==1086); assert (sum_squares({0})==0); assert (sum_squares({-1})==1); assert (sum_squares({-1,1,0})==2); }
#undef NDEBUG #include<assert.h> int main(){ assert (sum_squares({1,2,3})==14); assert (sum_squares({1,4,9})==98); assert (sum_squares({1,3,5,7})==84); assert (sum_squares({1.4,4.2,0})==29); assert (sum_squares({-2.4,1,1})==6); }
CPP/134
/* Create a function that returns true if the last character of a given string is an alphabetical character and is not a part of a word, and false otherwise. Note: "word" is a group of characters separated by space. Examples: check_if_last_char_is_a_letter("apple pie") ➞ false check_if_last_char_is_a_letter("apple pi e") ➞ true check_if_last_char_is_a_letter("apple pi e ") ➞ false check_if_last_char_is_a_letter("") ➞ false */ #include<stdio.h> #include<string> using namespace std; bool check_if_last_char_is_a_letter(string txt){
#include<stdio.h> #include<math.h> #include<string> #include<algorithm> using namespace std; #include<stdlib.h> bool check_if_last_char_is_a_letter(string txt){
if (txt.length()==0) return false; char chr=txt[txt.length()-1]; if (chr<65 or (chr>90 and chr<97) or chr>122) return false; if (txt.length()==1) return true; chr=txt[txt.length()-2]; if ((chr>=65 and chr<=90) or (chr>=97 and chr<=122)) return false; return true; }
#undef NDEBUG #include<assert.h> int main(){ assert (check_if_last_char_is_a_letter("apple") == false); assert (check_if_last_char_is_a_letter("apple pi e") == true); assert (check_if_last_char_is_a_letter("eeeee") == false); assert (check_if_last_char_is_a_letter("A") == true); assert (check_if_last_char_is_a_letter("Pumpkin pie ") == false); assert (check_if_last_char_is_a_letter("Pumpkin pie 1") == false); assert (check_if_last_char_is_a_letter("") == false); assert (check_if_last_char_is_a_letter("eeeee e ") == false); assert (check_if_last_char_is_a_letter("apple pie") == false); assert (check_if_last_char_is_a_letter("apple pi e ") == false); }
#undef NDEBUG #include<assert.h> int main(){ assert (check_if_last_char_is_a_letter("apple pi e") == true); assert (check_if_last_char_is_a_letter("") == false); assert (check_if_last_char_is_a_letter("apple pie") == false); assert (check_if_last_char_is_a_letter("apple pi e ") == false); }
CPP/135
/* Create a function which returns the largest index of an element which is not greater than or equal to the element immediately preceding it. If no such element exists then return -1. The given vector will not contain duplicate values. Examples: can_arrange({1,2,4,3,5}) = 3 can_arrange({1,2,3}) = -1 */ #include<stdio.h> #include<vector> using namespace std; int can_arrange(vector<int> arr){
#include<stdio.h> #include<math.h> #include<vector> #include<algorithm> using namespace std; #include<stdlib.h> int can_arrange(vector<int> arr){
int max=-1; for (int i=0;i<arr.size();i++) if (arr[i]<=i) max=i; return max; }
#undef NDEBUG #include<assert.h> int main(){ assert (can_arrange({1,2,4,3,5})==3); assert (can_arrange({1,2,4,5})==-1); assert (can_arrange({1,4,2,5,6,7,8,9,10})==2); assert (can_arrange({4,8,5,7,3})==4); assert (can_arrange({})==-1); }
#undef NDEBUG #include<assert.h> int main(){ assert (can_arrange({1,2,4,3,5})==3); assert (can_arrange({1,2,3})==-1); }
CPP/136
/* Create a function that returns a vector (a, b), where "a" is the largest of negative integers, and "b" is the smallest of positive integers in a vector. If there is no negative or positive integers, return them as 0. Examples: largest_smallest_integers({2, 4, 1, 3, 5, 7}) == {0, 1} largest_smallest_integers({}) == {0,0} largest_smallest_integers({0}) == {0,0} */ #include<stdio.h> #include<vector> using namespace std; vector<int> largest_smallest_integers(vector<int> lst){
#include<stdio.h> #include<math.h> #include<vector> #include<algorithm> using namespace std; #include<stdlib.h> vector<int> largest_smallest_integers(vector<int> lst){
int maxneg=0,minpos=0; for (int i=0;i<lst.size();i++) { if (lst[i]<0 and (maxneg==0 or lst[i]>maxneg)) maxneg=lst[i]; if (lst[i]>0 and (minpos==0 or lst[i]<minpos)) minpos=lst[i]; } return {maxneg,minpos}; }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(largest_smallest_integers({2, 4, 1, 3, 5, 7}) , {0, 1})); assert (issame(largest_smallest_integers({2, 4, 1, 3, 5, 7, 0}) , {0, 1})); assert (issame(largest_smallest_integers({1, 3, 2, 4, 5, 6, -2}) , {-2, 1})); assert (issame(largest_smallest_integers({4, 5, 3, 6, 2, 7, -7}) , {-7, 2})); assert (issame(largest_smallest_integers({7, 3, 8, 4, 9, 2, 5, -9}) , {-9, 2})); assert (issame(largest_smallest_integers({}) , {0, 0})); assert (issame(largest_smallest_integers({0}) , {0, 0})); assert (issame(largest_smallest_integers({-1, -3, -5, -6}) , {-1, 0})); assert (issame(largest_smallest_integers({-1, -3, -5, -6, 0}) , {-1, 0})); assert (issame(largest_smallest_integers({-6, -4, -4, -3, 1}) , {-3, 1})); assert (issame(largest_smallest_integers({-6, -4, -4, -3, -100, 1}) , {-3, 1})); }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(largest_smallest_integers({2, 4, 1, 3, 5, 7}) , {0, 1})); assert (issame(largest_smallest_integers({}) , {0, 0})); assert (issame(largest_smallest_integers({0}) , {0, 0})); }
CPP/137
/* Create a function that takes integers, floats, or strings representing real numbers, and returns the larger variable in its given variable type. Return "None" if the values are equal. Note: If a real number is represented as a string, the floating point might be . or , compare_one(1, 2.5) ➞ 2.5 compare_one(1, "2,3") ➞ "2,3" compare_one("5,1", "6") ➞ "6" compare_one("1", 1) ➞ "None" */ #include<stdio.h> #include<string> #include<algorithm> #include<boost/any.hpp> using namespace std; boost::any compare_one(boost::any a,boost::any b){
#include<stdio.h> #include<math.h> #include<string> #include<algorithm> #include<boost/any.hpp> using namespace std; #include<stdlib.h> boost::any compare_one(boost::any a,boost::any b){
double numa,numb; boost::any out; if (a.type()==typeid(string)) { string s; s=boost::any_cast<string>(a); if (find(s.begin(),s.end(),',')!=s.end()) for (int i=0;i<s.length();i++) if (s[i]==',') s=s.substr(0,i)+'.'+s.substr(i+1); numa=atof(s.c_str()); } else { if (a.type()==typeid(int)) numa=boost::any_cast<int>(a); if (a.type()==typeid(double)) numa=boost::any_cast<double>(a); } if (b.type()==typeid(string)) { string s; s=boost::any_cast<string>(b); if (find(s.begin(),s.end(),',')!=s.end()) for (int i=0;i<s.length();i++) if (s[i]==',') s=s.substr(0,i)+'.'+s.substr(i+1); numb=atof(s.c_str()); } else { if (b.type()==typeid(int)) numb=boost::any_cast<int>(b); if (b.type()==typeid(double)) numb=boost::any_cast<double>(b); } if (numa==numb) return string("None"); if (numa<numb) return b; if (numa>numb) return a; }
#undef NDEBUG #include<assert.h> int main(){ assert (boost::any_cast<int>(compare_one(1, 2)) == 2); assert (boost::any_cast<double>(compare_one(1, 2.5))== 2.5); assert (boost::any_cast<int>(compare_one(2, 3)) == 3); assert (boost::any_cast<int>(compare_one(5, 6)) == 6); assert (boost::any_cast<string>(compare_one(1, string("2,3")))== "2,3"); assert (boost::any_cast<string>(compare_one(string("5,1"), string("6"))) == "6"); assert (boost::any_cast<string>(compare_one(string("1"), string("2"))) == "2"); assert (boost::any_cast<string>(compare_one(string("1"), 1)) == "None"); }
#undef NDEBUG #include<assert.h> int main(){ assert (boost::any_cast<double>(compare_one(1, 2.5))== 2.5); assert (boost::any_cast<string>(compare_one(1, string("2,3")))== "2,3"); assert (boost::any_cast<string>(compare_one(string("5,1"), string("6"))) == "6"); assert (boost::any_cast<string>(compare_one(string("1"), 1)) == "None"); }
CPP/138
/* Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers Example is_equal_to_sum_even(4) == false is_equal_to_sum_even(6) == false is_equal_to_sum_even(8) == true */ #include<stdio.h> using namespace std; bool is_equal_to_sum_even(int n){
#include<stdio.h> #include<math.h> #include<algorithm> using namespace std; #include<stdlib.h> bool is_equal_to_sum_even(int n){
if (n%2==0 and n>=8) return true; return false; }
#undef NDEBUG #include<assert.h> int main(){ assert (is_equal_to_sum_even(4) == false); assert (is_equal_to_sum_even(6) == false); assert (is_equal_to_sum_even(8) == true); assert (is_equal_to_sum_even(10) == true); assert (is_equal_to_sum_even(11) == false); assert (is_equal_to_sum_even(12) == true); assert (is_equal_to_sum_even(13) == false); assert (is_equal_to_sum_even(16) == true); }
#undef NDEBUG #include<assert.h> int main(){ assert (is_equal_to_sum_even(4) == false); assert (is_equal_to_sum_even(6) == false); assert (is_equal_to_sum_even(8) == true); }
CPP/139
/* The Brazilian factorial is defined as: brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1! where n > 0 For example: >>> special_factorial(4) 288 The function will receive an integer as input and should return the special factorial of this integer. */ #include<stdio.h> using namespace std; long long special_factorial(int n){
#include<stdio.h> #include<math.h> #include<algorithm> using namespace std; #include<stdlib.h> long long special_factorial(int n){
long long fact=1,bfact=1; for (int i=1;i<=n;i++) { fact=fact*i; bfact=bfact*fact; } return bfact; }
#undef NDEBUG #include<assert.h> int main(){ assert (special_factorial(4) == 288); assert (special_factorial(5) == 34560); assert (special_factorial(7) == 125411328000); assert (special_factorial(1) == 1); }
#undef NDEBUG #include<assert.h> int main(){ assert (special_factorial(4) == 288); }
CPP/140
/* Given a string text, replace all spaces in it with underscores, and if a string has more than 2 consecutive spaces, then replace all consecutive spaces with - fix_spaces("Example") == "Example" fix_spaces("Example 1") == "Example_1" fix_spaces(" Example 2") == "_Example_2" fix_spaces(" Example 3") == "_Example-3" */ #include<stdio.h> #include<string> using namespace std; string fix_spaces(string text){
#include<stdio.h> #include<string> using namespace std; #include<algorithm> #include<math.h> #include<stdlib.h> string fix_spaces(string text){
string out=""; int spacelen=0; for (int i=0;i<text.length();i++) if (text[i]==' ') spacelen+=1; else { if (spacelen==1) out=out+'_'; if (spacelen==2) out=out+"__"; if (spacelen>2) out=out+'-'; spacelen=0; out=out+text[i]; } if (spacelen==1) out=out+'_'; if (spacelen==2) out=out+"__"; if (spacelen>2) out=out+'-'; return out; }
#undef NDEBUG #include<assert.h> int main(){ assert (fix_spaces("Example") == "Example"); assert (fix_spaces("Mudasir Hanif ") == "Mudasir_Hanif_"); assert (fix_spaces("Yellow Yellow Dirty Fellow") == "Yellow_Yellow__Dirty__Fellow"); assert (fix_spaces("Exa mple") == "Exa-mple"); assert (fix_spaces(" Exa 1 2 2 mple") == "-Exa_1_2_2_mple"); }
#undef NDEBUG #include<assert.h> int main(){ assert (fix_spaces("Example") == "Example"); assert (fix_spaces("Example 1") == "Example_1"); assert (fix_spaces(" Example 2") == "_Example_2"); assert (fix_spaces(" Example 3") == "_Example-3"); }
CPP/141
/* Create a function which takes a string representing a file's name, and returns "Yes" if the the file's name is valid, and returns "No" otherwise. A file's name is considered to be valid if and only if all the following conditions are met: - There should not be more than three digits ('0'-'9') in the file's name. - The file's name contains exactly one dot "." - The substring before the dot should not be empty, and it starts with a letter from the latin alphapet ('a'-'z' and 'A'-'Z'). - The substring after the dot should be one of these: {'txt", "exe", "dll"} Examples: file_name_check("example.txt") => "Yes" file_name_check("1example.dll") => "No" // (the name should start with a latin alphapet letter) */ #include<stdio.h> #include<string> using namespace std; string file_name_check(string file_name){
#include<stdio.h> #include<string> #include<algorithm> using namespace std; #include<math.h> #include<stdlib.h> string file_name_check(string file_name){
int numdigit=0,numdot=0; if (file_name.length()<5) return "No"; char w=file_name[0]; if (w<65 or (w>90 and w<97) or w>122) return "No"; string last=file_name.substr(file_name.length()-4,4); if (last!=".txt" and last!=".exe" and last!=".dll") return "No"; for (int i=0;i<file_name.length();i++) { if (file_name[i]>=48 and file_name[i]<=57) numdigit+=1; if (file_name[i]=='.') numdot+=1; } if (numdigit>3 or numdot!=1) return "No"; return "Yes"; }
#undef NDEBUG #include<assert.h> int main(){ assert (file_name_check("example.txt") == "Yes"); assert (file_name_check("1example.dll") == "No"); assert (file_name_check("s1sdf3.asd") == "No"); assert (file_name_check("K.dll") == "Yes"); assert (file_name_check("MY16FILE3.exe") == "Yes"); assert (file_name_check("His12FILE94.exe") == "No"); assert (file_name_check("_Y.txt") == "No"); assert (file_name_check("?aREYA.exe") == "No"); assert (file_name_check("/this_is_valid.dll") == "No"); assert (file_name_check("this_is_valid.wow") == "No"); assert (file_name_check("this_is_valid.txt") == "Yes"); assert (file_name_check("this_is_valid.txtexe") == "No"); assert (file_name_check("#this2_i4s_5valid.ten") == "No"); assert (file_name_check("@this1_is6_valid.exe") == "No"); assert (file_name_check("this_is_12valid.6exe4.txt") == "No"); assert (file_name_check("all.exe.txt") == "No"); assert (file_name_check("I563_No.exe") == "Yes"); assert (file_name_check("Is3youfault.txt") == "Yes"); assert (file_name_check("no_one#knows.dll") == "Yes"); assert (file_name_check("1I563_Yes3.exe") == "No"); assert (file_name_check("I563_Yes3.txtt") == "No"); assert (file_name_check("final..txt") == "No"); assert (file_name_check("final132") == "No"); assert (file_name_check("_f4indsartal132.") == "No"); assert (file_name_check(".txt") == "No"); assert (file_name_check("s.") == "No"); }
#undef NDEBUG #include<assert.h> int main(){ assert (file_name_check("example.txt") == "Yes"); assert (file_name_check("1example.dll") == "No"); }
CPP/142
/* " This function will take a vector of integers. For all entries in the vector, the function shall square the integer entry if its index is a multiple of 3 and will cube the integer entry if its index is a multiple of 4 and not a multiple of 3. The function will not change the entries in the vector whose indexes are not a multiple of 3 or 4. The function shall then return the sum of all entries. Examples: For lst = {1,2,3} the output should be 6 For lst = {} the output should be 0 For lst = {-1,-5,2,-1,-5} the output should be -126 */ #include<stdio.h> #include<vector> using namespace std; int sum_squares(vector<int> lst){
#include<stdio.h> #include<math.h> #include<vector> #include<algorithm> using namespace std; #include<stdlib.h> int sum_squares(vector<int> lst){
int sum=0; for (int i=0;i<lst.size();i++) if (i%3==0) sum+=lst[i]*lst[i]; else if (i%4==0) sum+=lst[i]*lst[i]*lst[i]; else sum+=lst[i]; return sum; }
#undef NDEBUG #include<assert.h> int main(){ assert (sum_squares({1,2,3}) == 6); assert (sum_squares({1,4,9}) == 14); assert (sum_squares({}) == 0); assert (sum_squares({1,1,1,1,1,1,1,1,1}) == 9); assert (sum_squares({-1,-1,-1,-1,-1,-1,-1,-1,-1}) == -3); assert (sum_squares({0}) == 0); assert (sum_squares({-1,-5,2,-1,-5}) == -126); assert (sum_squares({-56,-99,1,0,-2}) == 3030); assert (sum_squares({-1,0,0,0,0,0,0,0,-1}) == 0); assert (sum_squares({-16, -9, -2, 36, 36, 26, -20, 25, -40, 20, -4, 12, -26, 35, 37}) == -14196); assert (sum_squares({-1, -3, 17, -1, -15, 13, -1, 14, -14, -12, -5, 14, -14, 6, 13, 11, 16, 16, 4, 10}) == -1448); }
#undef NDEBUG #include<assert.h> int main(){ assert (sum_squares({1,2,3}) == 6); assert (sum_squares({}) == 0); assert (sum_squares({-1,-5,2,-1,-5}) == -126); }
CPP/143
/* You are given a string representing a sentence, the sentence contains some words separated by a space, and you have to return a string that contains the words from the original sentence, whose lengths are prime numbers, the order of the words in the new string should be the same as the original one. Example 1: Input: sentence = "This is a test" Output: "is" Example 2: Input: sentence = "lets go for swimming" Output: "go for" Constraints: * 1 <= len(sentence) <= 100 * sentence contains only letters */ #include<stdio.h> #include<string> using namespace std; string words_in_sentence(string sentence){
#include<stdio.h> #include<string> using namespace std; #include<algorithm> #include<math.h> #include<stdlib.h> string words_in_sentence(string sentence){
string out=""; string current=""; sentence=sentence+' '; for (int i=0;i<sentence.size();i++) if (sentence[i]!=' ') current=current+sentence[i]; else { bool isp=true; int l=current.length(); if (l<2) isp=false; for (int j=2;j*j<=l;j++) if (l%j==0) isp=false; if (isp) out=out+current+' '; current=""; } if (out.length()>0) out.pop_back(); return out; }
#undef NDEBUG #include<assert.h> int main(){ assert (words_in_sentence("This is a test") == "is"); assert (words_in_sentence("lets go for swimming") == "go for"); assert (words_in_sentence("there is no place available here") == "there is no place"); assert (words_in_sentence("Hi I am Hussein") == "Hi am Hussein"); assert (words_in_sentence("go for it") == "go for it"); assert (words_in_sentence("here") == ""); assert (words_in_sentence("here is") == "is"); }
#undef NDEBUG #include<assert.h> int main(){ assert (words_in_sentence("This is a test") == "is"); assert (words_in_sentence("lets go for swimming") == "go for"); }
CPP/144
/* Your task is to implement a function that will simplify the expression x * n. The function returns true if x * n evaluates to a whole number and false otherwise. Both x and n, are string representation of a fraction, and have the following format, <numerator>/<denominator> where both numerator and denominator are positive whole numbers. You can assume that x, and n are valid fractions, and do not have zero as denominator. simplify("1/5", "5/1") = true simplify("1/6", "2/1") = false simplify("7/10", "10/2") = false */ #include<stdio.h> #include<string> using namespace std; bool simplify(string x,string n){
#include<stdio.h> #include<string> #include<algorithm> using namespace std; #include<math.h> #include<stdlib.h> bool simplify(string x,string n){
int a,b,c,d,i; for (i=0;i<x.size();i++) if (x[i]=='/') { a=atoi(x.substr(0,i).c_str()); b=atoi(x.substr(i+1).c_str()); } for (i=0;i<n.size();i++) if (n[i]=='/') { c=atoi(n.substr(0,i).c_str()); d=atoi(n.substr(i+1).c_str()); } if ((a*c)%(b*d)==0) return true; return false; }
#undef NDEBUG #include<assert.h> int main(){ assert (simplify("1/5", "5/1") == true); assert (simplify("1/6", "2/1") == false); assert (simplify("5/1", "3/1") == true); assert (simplify("7/10", "10/2") == false); assert (simplify("2/10", "50/10") == true); assert (simplify("7/2", "4/2") == true); assert (simplify("11/6", "6/1") == true); assert (simplify("2/3", "5/2") == false); assert (simplify("5/2", "3/5") == false); assert (simplify("2/4", "8/4") == true); assert (simplify("2/4", "4/2") == true); assert (simplify("1/5", "5/1") == true); assert (simplify("1/5", "1/5") == false); }
#undef NDEBUG #include<assert.h> int main(){ assert (simplify("1/5", "5/1") == true); assert (simplify("1/6", "2/1") == false); assert (simplify("7/10", "10/2") == false); }
CPP/145
/* Write a function which sorts the given vector of integers in ascending order according to the sum of their digits. Note: if there are several items with similar sum of their digits, order them based on their index in original vector. For example: >>> order_by_points({1, 11, -1, -11, -12}) == {-1, -11, 1, -12, 11} >>> order_by_points({}) == {} */ #include<stdio.h> #include<math.h> #include<vector> #include<string> using namespace std; vector<int> order_by_points(vector<int> nums){
#include<stdio.h> #include<math.h> #include<vector> #include<string> #include<algorithm> using namespace std; #include<stdlib.h> vector<int> order_by_points(vector<int> nums){
vector<int> sumdigit={}; for (int i=0;i<nums.size();i++) { string w=to_string(abs(nums[i])); int sum=0; for (int j=1;j<w.length();j++) sum+=w[j]-48; if (nums[i]>0) sum+=w[0]-48; else sum-=w[0]-48; sumdigit.push_back(sum); } int m; for (int i=0;i<nums.size();i++) for (int j=1;j<nums.size();j++) if (sumdigit[j-1]>sumdigit[j]) { m=sumdigit[j];sumdigit[j]=sumdigit[j-1];sumdigit[j-1]=m; m=nums[j];nums[j]=nums[j-1];nums[j-1]=m; } return nums; }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(order_by_points({1, 11, -1, -11, -12}) , {-1, -11, 1, -12, 11})); assert (issame(order_by_points({1234,423,463,145,2,423,423,53,6,37,3457,3,56,0,46}) , {0, 2, 3, 6, 53, 423, 423, 423, 1234, 145, 37, 46, 56, 463, 3457})); assert (issame(order_by_points({}) , {})); assert (issame(order_by_points({1, -11, -32, 43, 54, -98, 2, -3}) , {-3, -32, -98, -11, 1, 2, 43, 54})); assert (issame(order_by_points({1,2,3,4,5,6,7,8,9,10,11}) , {1, 10, 2, 11, 3, 4, 5, 6, 7, 8, 9})); assert (issame(order_by_points({0,6,6,-76,-21,23,4}) , {-76, -21, 0, 4, 23, 6, 6})); }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(order_by_points({1, 11, -1, -11, -12}) , {-1, -11, 1, -12, 11})); assert (issame(order_by_points({}) , {})); }
CPP/146
/* Write a function that takes a vector of numbers as input and returns the number of elements in the vector that are greater than 10 and both first and last digits of a number are odd (1, 3, 5, 7, 9). For example: specialFilter({15, -73, 14, -15}) => 1 specialFilter({33, -2, -3, 45, 21, 109}) => 2 */ #include<stdio.h> #include<vector> #include<string> using namespace std; int specialFilter(vector<int> nums){
#include<stdio.h> #include<math.h> #include<vector> #include<string> #include<algorithm> using namespace std; #include<stdlib.h> int specialFilter(vector<int> nums){
int num=0; for (int i=0;i<nums.size();i++) if (nums[i]>10) { string w=to_string(nums[i]); if (w[0]%2==1 and w[w.length()-1]%2==1) num+=1; } return num; }
#undef NDEBUG #include<assert.h> int main(){ assert (specialFilter({5, -2, 1, -5}) == 0 ); assert (specialFilter({15, -73, 14, -15}) == 1); assert (specialFilter({33, -2, -3, 45, 21, 109}) == 2); assert (specialFilter({43, -12, 93, 125, 121, 109}) == 4); assert (specialFilter({71, -2, -33, 75, 21, 19}) == 3); assert (specialFilter({1}) == 0 ); assert (specialFilter({}) == 0 ); }
#undef NDEBUG #include<assert.h> int main(){ assert (specialFilter({15, -73, 14, -15}) == 1); assert (specialFilter({33, -2, -3, 45, 21, 109}) == 2); }
CPP/147
/* You are given a positive integer n. You have to create an integer vector a of length n. For each i (1 ≤ i ≤ n), the value of a{i} = i * i - i + 1. Return the number of triples (a{i}, a{j}, a{k}) of a where i < j < k, and a[i] + a[j] + a[k] is a multiple of 3. Example : Input: n = 5 Output: 1 Explanation: a = {1, 3, 7, 13, 21} The only valid triple is (1, 7, 13). */ #include<stdio.h> #include<vector> using namespace std; int get_matrix_triples(int n){
#include<stdio.h> #include<vector> using namespace std; #include<algorithm> #include<math.h> #include<stdlib.h> int get_matrix_triples(int n){
vector<int> a; vector<vector<int>> sum={{0,0,0}}; vector<vector<int>> sum2={{0,0,0}}; for (int i=1;i<=n;i++) { a.push_back((i*i-i+1)%3); sum.push_back(sum[sum.size()-1]); sum[i][a[i-1]]+=1; } for (int times=1;times<3;times++) { for (int i=1;i<=n;i++) { sum2.push_back(sum2[sum2.size()-1]); if (i>=1) for (int j=0;j<=2;j++) sum2[i][(a[i-1]+j)%3]+=sum[i-1][j]; } sum=sum2; sum2={{0,0,0}}; } return sum[n][0]; }
#undef NDEBUG #include<assert.h> int main(){ assert (get_matrix_triples(5) == 1); assert (get_matrix_triples(6) == 4); assert (get_matrix_triples(10) == 36); assert (get_matrix_triples(100) == 53361); }
#undef NDEBUG #include<assert.h> int main(){ assert (get_matrix_triples(5) == 1); }
CPP/148
/* There are eight planets in our solar system: the closerst to the Sun is Mercury, the next one is Venus, then Earth, Mars, Jupiter, Saturn, Uranus, Neptune. Write a function that takes two planet names as strings planet1 and planet2. The function should return a vector containing all planets whose orbits are located between the orbit of planet1 and the orbit of planet2, sorted by the proximity to the sun. The function should return an empty vector if planet1 or planet2 are not correct planet names. Examples bf("Jupiter", "Neptune") ==> {"Saturn", "Uranus"} bf("Earth", "Mercury") ==> {"Venus"} bf("Mercury", "Uranus") ==> {"Venus", "Earth", "Mars", "Jupiter", "Saturn"} */ #include<stdio.h> #include<vector> #include<string> using namespace std; vector<string> bf(string planet1,string planet2){
#include<stdio.h> #include<math.h> #include<vector> #include<string> #include<algorithm> using namespace std; #include<stdlib.h> vector<string> bf(string planet1,string planet2){
vector<string> planets={"Mercury","Venus","Earth","Mars","Jupiter","Saturn","Uranus","Neptune"}; int pos1=-1,pos2=-1,m; for (m=0;m<planets.size();m++) { if (planets[m]==planet1) pos1=m; if (planets[m]==planet2) pos2=m; } if (pos1==-1 or pos2==-1) return {}; if (pos1>pos2) {m=pos1;pos1=pos2;pos2=m;} vector<string> out={}; for (m=pos1+1;m<pos2;m++) out.push_back(planets[m]); return out; }
#undef NDEBUG #include<assert.h> bool issame(vector<string> a,vector<string>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(bf("Jupiter", "Neptune") , {"Saturn", "Uranus"})); assert (issame(bf("Earth", "Mercury") , {"Venus",})); assert (issame(bf("Mercury", "Uranus") , {"Venus", "Earth", "Mars", "Jupiter", "Saturn"})); assert (issame(bf("Neptune", "Venus") , {"Earth", "Mars", "Jupiter", "Saturn", "Uranus"})); assert (issame(bf("Earth", "Earth") , {})); assert (issame(bf("Mars", "Earth") , {})); assert (issame(bf("Jupiter", "Makemake") , {})); }
#undef NDEBUG #include<assert.h> bool issame(vector<string> a,vector<string>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(bf("Jupiter", "Neptune") , {"Saturn", "Uranus"})); assert (issame(bf("Earth", "Mercury") , {"Venus",})); assert (issame(bf("Mercury", "Uranus") , {"Venus", "Earth", "Mars", "Jupiter", "Saturn"})); }
CPP/149
/* Write a function that accepts a vector of strings as a parameter, deletes the strings that have odd lengths from it, and returns the resulted vector with a sorted order, The vector is always a vector of strings and never a vector of numbers, and it may contain duplicates. The order of the vector should be ascending by length of each word, and you should return the vector sorted by that rule. If two words have the same length, sort the vector alphabetically. The function should return a vector of strings in sorted order. You may assume that all words will have the same length. For example: assert vector_sort({"aa", "a", "aaa"}) => {"aa"} assert vector_sort({"ab", "a", "aaa", "cd"}) => {"ab", "cd"} */ #include<stdio.h> #include<vector> #include<string> #include<algorithm> using namespace std; vector<string> sorted_list_sum(vector<string> lst){
#include<stdio.h> #include<vector> #include<string> #include<algorithm> using namespace std; #include<math.h> #include<stdlib.h> vector<string> sorted_list_sum(vector<string> lst){
vector<string> out={}; for (int i=0;i<lst.size();i++) if (lst[i].length()%2==0) out.push_back(lst[i]); string mid; sort(out.begin(),out.end()); for (int i=0;i<out.size();i++) for (int j=1;j<out.size();j++) if (out[j].length()<out[j-1].length()) { mid=out[j];out[j]=out[j-1];out[j-1]=mid; } return out; }
#undef NDEBUG #include<assert.h> bool issame(vector<string> a,vector<string>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(sorted_list_sum({"aa", "a", "aaa"}) , {"aa"})); assert (issame(sorted_list_sum({"school", "AI", "asdf", "b"}) , {"AI", "asdf", "school"})); assert (issame(sorted_list_sum({"d", "b", "c", "a"}) , {})); assert (issame(sorted_list_sum({"d", "dcba", "abcd", "a"}) , {"abcd", "dcba"})); assert (issame(sorted_list_sum({"AI", "ai", "au"}) , {"AI", "ai", "au"})); assert (issame(sorted_list_sum({"a", "b", "b", "c", "c", "a"}) , {})); assert (issame(sorted_list_sum({"aaaa", "bbbb", "dd", "cc"}) , {"cc", "dd", "aaaa", "bbbb"})); }
#undef NDEBUG #include<assert.h> bool issame(vector<string> a,vector<string>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(sorted_list_sum({"aa", "a", "aaa"}) , {"aa"})); assert (issame(sorted_list_sum({"ab", "a", "aaa", "cd"}) , {"ab", "cd"})); }
CPP/150
/* A simple program which should return the value of x if n is a prime number and should return the value of y otherwise. Examples: for x_or_y(7, 34, 12) == 34 for x_or_y(15, 8, 5) == 5 */ #include<stdio.h> using namespace std; int x_or_y(int n,int x,int y){
#include<stdio.h> #include<math.h> #include<algorithm> using namespace std; #include<stdlib.h> int x_or_y(int n,int x,int y){
bool isp=true; if (n<2) isp=false; for (int i=2;i*i<=n;i++) if (n%i==0) isp=false; if (isp) return x; return y; }
#undef NDEBUG #include<assert.h> int main(){ assert (x_or_y(7, 34, 12) == 34); assert (x_or_y(15, 8, 5) == 5); assert (x_or_y(3, 33, 5212) == 33); assert (x_or_y(1259, 3, 52) == 3); assert (x_or_y(7919, -1, 12) == -1); assert (x_or_y(3609, 1245, 583) == 583); assert (x_or_y(91, 56, 129) == 129); assert (x_or_y(6, 34, 1234) == 1234); assert (x_or_y(1, 2, 0) == 0); assert (x_or_y(2, 2, 0) == 2); }
#undef NDEBUG #include<assert.h> int main(){ assert (x_or_y(7, 34, 12) == 34); assert (x_or_y(15, 8, 5) == 5); }
CPP/151
/* Given a vector of numbers, return the sum of squares of the numbers in the vector that are odd. Ignore numbers that are negative or not integers. double_the_difference({1, 3, 2, 0}) == 1 + 9 + 0 + 0 = 10 double_the_difference({-1, -2, 0}) == 0 double_the_difference({9, -2}) == 81 double_the_difference({0}) == 0 If the input vector is empty, return 0. */ #include<stdio.h> #include<math.h> #include<vector> using namespace std; long long double_the_difference(vector<float> lst){
#include<stdio.h> #include<math.h> #include<vector> #include<algorithm> using namespace std; #include<stdlib.h> long long double_the_difference(vector<float> lst){
long long sum=0; for (int i=0;i<lst.size();i++) if (lst[i]-round(lst[i])<1e-4) if (lst[i]>0 and (int)(round(lst[i]))%2==1) sum+=(int)(round(lst[i]))*(int)(round(lst[i])); return sum; }
#undef NDEBUG #include<assert.h> int main(){ assert (double_the_difference({}) == 0); assert (double_the_difference({5, 4}) == 25); assert (double_the_difference({0.1, 0.2, 0.3}) == 0 ); assert (double_the_difference({-10, -20, -30}) == 0 ); assert (double_the_difference({-1, -2, 8}) == 0); assert (double_the_difference({0.2, 3, 5}) == 34); long long odd_sum=0; vector<float> lst={}; for (int i=-99;i<100;i+=2) { lst.push_back(i+0.0); if (i>0 and i%2==1) odd_sum+=i*i; } assert (double_the_difference(lst) == odd_sum ); }
#undef NDEBUG #include<assert.h> int main(){ assert (double_the_difference({1, 3, 2, 0}) == 10); assert (double_the_difference({-1, -2, 0}) == 0); assert (double_the_difference({9, -2}) == 81 ); assert (double_the_difference({0}) == 0 ); }
CPP/152
/* I think we all remember that feeling when the result of some long-awaited event is finally known. The feelings and thoughts you have at that moment are definitely worth noting down and comparing. Your task is to determine if a person correctly guessed the results of a number of matches. You are given two vectors of scores and guesses of equal length, where each index shows a match. Return a vector of the same length denoting how far off each guess was. If they have guessed correctly, the value is 0, and if not, the value is the absolute difference between the guess and the score. example: compare({1,2,3,4,5,1},{1,2,3,4,2,-2}) -> {0,0,0,0,3,3} compare({0,5,0,0,0,4},{4,1,1,0,0,-2}) -> {4,4,1,0,0,6} */ #include<stdio.h> #include<math.h> #include<vector> using namespace std; vector<int> compare(vector<int> game,vector<int> guess){
#include<stdio.h> #include<math.h> #include<vector> using namespace std; #include<algorithm> #include<stdlib.h> vector<int> compare(vector<int> game,vector<int> guess){
vector<int> out; for (int i=0;i<game.size();i++) out.push_back(abs(game[i]-guess[i])); return out; }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(compare({1,2,3,4,5,1},{1,2,3,4,2,-2}),{0,0,0,0,3,3})); assert (issame(compare({0,5,0,0,0,4},{4,1,1,0,0,-2}),{4,4,1,0,0,6})); assert (issame(compare({1,2,3,4,5,1},{1,2,3,4,2,-2}),{0,0,0,0,3,3})); assert (issame(compare({0,0,0,0,0,0},{0,0,0,0,0,0}),{0,0,0,0,0,0})); assert (issame(compare({1,2,3},{-1,-2,-3}),{2,4,6})); assert (issame(compare({1,2,3,5},{-1,2,3,4}),{2,0,0,1})); }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(compare({1,2,3,4,5,1},{1,2,3,4,2,-2}),{0,0,0,0,3,3})); assert (issame(compare({0,5,0,0,0,4},{4,1,1,0,0,-2}),{4,4,1,0,0,6})); }
CPP/153
/* You will be given the name of a class (a string) and a vector of extensions. The extensions are to be used to load additional classes to the class. The strength of the extension is as follows: Let CAP be the number of the uppercase letters in the extension's name, and let SM be the number of lowercase letters in the extension's name, the strength is given by the fraction CAP - SM. You should find the strongest extension and return a string in this format: ClassName.StrongestExtensionName. If there are two or more extensions with the same strength, you should choose the one that comes first in the vector. For example, if you are given "Slices" as the class and a vector of the extensions: {"SErviNGSliCes", "Cheese", "StuFfed"} then you should return "Slices.SErviNGSliCes" since "SErviNGSliCes" is the strongest extension (its strength is -1). Example: for Strongest_Extension("my_class", {"AA", "Be", "CC"}) == "my_class.AA" */ #include<stdio.h> #include<vector> #include<string> using namespace std; string Strongest_Extension(string class_name,vector<string> extensions){
#include<stdio.h> #include<math.h> #include<vector> #include<string> #include<algorithm> using namespace std; #include<stdlib.h> string Strongest_Extension(string class_name,vector<string> extensions){
string strongest=""; int max=-1000; for (int i=0;i<extensions.size();i++) { int strength=0; for (int j=0;j<extensions[i].length();j++) { char chr=extensions[i][j]; if (chr>=65 and chr<=90) strength+=1; if (chr>=97 and chr<=122) strength-=1; } if (strength>max) { max=strength; strongest=extensions[i]; } } return class_name+'.'+strongest; }
#undef NDEBUG #include<assert.h> int main(){ assert (Strongest_Extension("Watashi", {"tEN", "niNE", "eIGHt8OKe"}) == "Watashi.eIGHt8OKe"); assert (Strongest_Extension("Boku123", {"nani", "NazeDa", "YEs.WeCaNe", "32145tggg"}) == "Boku123.YEs.WeCaNe"); assert (Strongest_Extension("__YESIMHERE", {"t", "eMptY", "(nothing", "zeR00", "NuLl__", "123NoooneB321"}) == "__YESIMHERE.NuLl__"); assert (Strongest_Extension("K", {"Ta", "TAR", "t234An", "cosSo"}) == "K.TAR"); assert (Strongest_Extension("__HAHA", {"Tab", "123", "781345", "-_-"}) == "__HAHA.123"); assert (Strongest_Extension("YameRore", {"HhAas", "okIWILL123", "WorkOut", "Fails", "-_-"}) == "YameRore.okIWILL123"); assert (Strongest_Extension("finNNalLLly", {"Die", "NowW", "Wow", "WoW"}) == "finNNalLLly.WoW"); assert (Strongest_Extension("_", {"Bb", "91245"}) == "_.Bb"); assert (Strongest_Extension("Sp", {"671235", "Bb"}) == "Sp.671235"); }
#undef NDEBUG #include<assert.h> int main(){ assert (Strongest_Extension("my_class", {"AA", "Be", "CC"}) == "my_class.AA"); }
CPP/154
/* You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word cycpattern_check("abcd","abd") => false cycpattern_check("hello","ell") => true cycpattern_check("whassup","psus") => false cycpattern_check("abab","baa") => true cycpattern_check("efef","eeff") => false cycpattern_check("himenss",'simen") => true */ #include<stdio.h> #include<string> using namespace std; bool cycpattern_check(string a,string b){
#include<stdio.h> #include<string> using namespace std; #include<algorithm> #include<math.h> #include<stdlib.h> bool cycpattern_check(string a,string b){
for (int i=0;i<b.size();i++) { string rotate=b.substr(i)+b.substr(0,i); if (a.find(rotate)!=string::npos) return true; } return false; }
#undef NDEBUG #include<assert.h> int main(){ assert (cycpattern_check("xyzw","xyw") == false ); assert (cycpattern_check("yello","ell") == true ); assert (cycpattern_check("whattup","ptut") == false ); assert (cycpattern_check("efef","fee") == true ); assert (cycpattern_check("abab","aabb") == false ); assert (cycpattern_check("winemtt","tinem") == true ); }
#undef NDEBUG #include<assert.h> int main(){ assert (cycpattern_check("abcd","abd") == false ); assert (cycpattern_check("hello","ell") == true ); assert (cycpattern_check("whassup","psus") == false ); assert (cycpattern_check("abab","baa") == true ); assert (cycpattern_check("efef","eeff") == false ); assert (cycpattern_check("himenss","simen") == true ); }
CPP/155
/* Given an integer. return a vector that has the number of even and odd digits respectively. Example: even_odd_count(-12) ==> {1, 1} even_odd_count(123) ==> {1, 2} */ #include<stdio.h> #include<math.h> #include<string> #include<vector> using namespace std; vector<int> even_odd_count(int num){
#include<stdio.h> #include<math.h> #include<string> #include<vector> using namespace std; #include<algorithm> #include<stdlib.h> vector<int> even_odd_count(int num){
string w=to_string(abs(num)); int n1=0,n2=0; for (int i=0;i<w.length();i++) if (w[i]%2==1) n1+=1; else n2+=1; return {n2,n1}; }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(even_odd_count(7) , {0, 1})); assert (issame(even_odd_count(-78) , {1, 1})); assert (issame(even_odd_count(3452) , {2, 2})); assert (issame(even_odd_count(346211) , {3, 3})); assert (issame(even_odd_count(-345821) , {3, 3})); assert (issame(even_odd_count(-2) , {1, 0})); assert (issame(even_odd_count(-45347) , {2, 3})); assert (issame(even_odd_count(0) , {1, 0})); }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(even_odd_count(-12) , {1, 1})); assert (issame(even_odd_count(123) , {1, 2})); }
CPP/156
/* Given a positive integer, obtain its roman numeral equivalent as a string, and return it in lowercase. Restrictions: 1 <= num <= 1000 Examples: >>> int_to_mini_roman(19) == "xix" >>> int_to_mini_roman(152) == "clii" >>> int_to_mini_roman(426) == "cdxxvi" */ #include<stdio.h> #include<vector> #include<string> using namespace std; string int_to_mini_romank(int number){
#include<stdio.h> #include<vector> #include<string> using namespace std; #include<algorithm> #include<math.h> #include<stdlib.h> string int_to_mini_romank(int number){
string current=""; vector<string> rep={"m","cm","d","cd","c","xc","l","xl","x","ix","v","iv","i"}; vector<int> num={1000,900,500,400,100,90,50,40,10,9,5,4,1}; int pos=0; while(number>0) { while (number>=num[pos]) { current=current+rep[pos]; number-=num[pos]; } if (number>0) pos+=1; } return current; }
#undef NDEBUG #include<assert.h> int main(){ assert (int_to_mini_romank(19) == "xix"); assert (int_to_mini_romank(152) == "clii"); assert (int_to_mini_romank(251) == "ccli"); assert (int_to_mini_romank(426) == "cdxxvi"); assert (int_to_mini_romank(500) == "d"); assert (int_to_mini_romank(1) == "i"); assert (int_to_mini_romank(4) == "iv"); assert (int_to_mini_romank(43) == "xliii"); assert (int_to_mini_romank(90) == "xc"); assert (int_to_mini_romank(94) == "xciv"); assert (int_to_mini_romank(532) == "dxxxii"); assert (int_to_mini_romank(900) == "cm"); assert (int_to_mini_romank(994) == "cmxciv"); assert (int_to_mini_romank(1000) == "m"); }
#undef NDEBUG #include<assert.h> int main(){ assert (int_to_mini_romank(19) == "xix"); assert (int_to_mini_romank(152) == "clii"); assert (int_to_mini_romank(426) == "cdxxvi"); }
CPP/157
/* Given the lengths of the three sides of a triangle. Return true if the three sides form a right-angled triangle, false otherwise. A right-angled triangle is a triangle in which one angle is right angle or 90 degree. Example: right_angle_triangle(3, 4, 5) == true right_angle_triangle(1, 2, 3) == false */ #include<stdio.h> #include<math.h> using namespace std; bool right_angle_triangle(float a,float b,float c){
#include<stdio.h> #include<math.h> using namespace std; #include<algorithm> #include<stdlib.h> bool right_angle_triangle(float a,float b,float c){
if (abs(a*a+b*b-c*c)<1e-4 or abs(a*a+c*c-b*b)<1e-4 or abs(b*b+c*c-a*a)<1e-4) return true; return false; }
#undef NDEBUG #include<assert.h> int main(){ assert (right_angle_triangle(3, 4, 5) == true); assert (right_angle_triangle(1, 2, 3) == false); assert (right_angle_triangle(10, 6, 8) == true); assert (right_angle_triangle(2, 2, 2) == false); assert (right_angle_triangle(7, 24, 25) == true); assert (right_angle_triangle(10, 5, 7) == false); assert (right_angle_triangle(5, 12, 13) == true); assert (right_angle_triangle(15, 8, 17) == true); assert (right_angle_triangle(48, 55, 73) == true); assert (right_angle_triangle(1, 1, 1) == false); assert (right_angle_triangle(2, 2, 10) == false); }
#undef NDEBUG #include<assert.h> int main(){ assert (right_angle_triangle(3, 4, 5) == true); assert (right_angle_triangle(1, 2, 3) == false); }
CPP/158
/* Write a function that accepts a vector of strings. The vector contains different words. Return the word with maximum number of unique characters. If multiple strings have maximum number of unique characters, return the one which comes first in lexicographical order. find_max({"name", "of", 'string"}) == 'string" find_max({"name", "enam", "game"}) == "enam" find_max({"aaaaaaa", "bb" ,"cc"}) == "aaaaaaa" */ #include<stdio.h> #include<vector> #include<string> #include<algorithm> using namespace std; string find_max(vector<string> words){
#include<stdio.h> #include<vector> #include<string> #include<algorithm> using namespace std; #include<math.h> #include<stdlib.h> string find_max(vector<string> words){
string max=""; int maxu=0; for (int i=0;i<words.size();i++) { string unique=""; for (int j=0;j<words[i].length();j++) if (find(unique.begin(),unique.end(),words[i][j])==unique.end()) unique=unique+words[i][j]; if (unique.length()>maxu or (unique.length()==maxu and words[i]<max)) { max=words[i]; maxu=unique.length(); } } return max; }
#undef NDEBUG #include<assert.h> int main(){ assert ((find_max({"name", "of", "string"}) == "string")); assert ((find_max({"name", "enam", "game"}) == "enam")); assert ((find_max({"aaaaaaa", "bb", "cc"}) == "aaaaaaa")); assert ((find_max({"abc", "cba"}) == "abc")); assert ((find_max({"play", "this", "game", "of","footbott"}) == "footbott")); assert ((find_max({"we", "are", "gonna", "rock"}) == "gonna")); assert ((find_max({"we", "are", "a", "mad", "nation"}) == "nation")); assert ((find_max({"this", "is", "a", "prrk"}) == "this")); assert ((find_max({"b"}) == "b")); assert ((find_max({"play", "play", "play"}) == "play")); }
#undef NDEBUG #include<assert.h> int main(){ assert ((find_max({"name", "of", "string"}) == "string")); assert ((find_max({"name", "enam", "game"}) == "enam")); assert ((find_max({"aaaaaaa", "bb", "cc"}) == "aaaaaaa")); }
CPP/159
/* You"re a hungry rabbit, and you already have eaten a certain number of carrots, but now you need to eat more carrots to complete the day's meals. you should return a vector of { total number of eaten carrots after your meals, the number of carrots left after your meals } if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry. Example: * eat(5, 6, 10) -> {11, 4} * eat(4, 8, 9) -> {12, 1} * eat(1, 10, 10) -> {11, 0} * eat(2, 11, 5) -> {7, 0} Variables: @number : integer the number of carrots that you have eaten. @need : integer the number of carrots that you need to eat. @remaining : integer the number of remaining carrots thet exist in stock Constrain: * 0 <= number <= 1000 * 0 <= need <= 1000 * 0 <= remaining <= 1000 Have fun :) */ #include<stdio.h> #include<vector> using namespace std; vector<int> eat(int number,int need,int remaining){
#include<stdio.h> #include<vector> using namespace std; #include<algorithm> #include<math.h> #include<stdlib.h> vector<int> eat(int number,int need,int remaining){
if (need>remaining) return {number+remaining, 0}; return {number+need,remaining-need}; }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(eat(5, 6, 10) , {11, 4})); assert (issame(eat(4, 8, 9) , {12, 1})); assert (issame(eat(1, 10, 10) , {11, 0})); assert (issame(eat(2, 11, 5) , {7, 0})); assert (issame(eat(4, 5, 7) , {9, 2})); assert (issame(eat(4, 5, 1) , {5, 0})); }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(eat(5, 6, 10) , {11, 4})); assert (issame(eat(4, 8, 9) , {12, 1})); assert (issame(eat(1, 10, 10) , {11, 0})); assert (issame(eat(2, 11, 5) , {7, 0})); }
CPP/160
/* Given two vectors operator, and operand. The first vector has basic algebra operations, and the second vector is a vector of integers. Use the two given vectors to build the algebric expression and return the evaluation of this expression. The basic algebra operations: Addition ( + ) Subtraction ( - ) Multiplication ( * ) Floor division ( // ) Exponentiation ( ** ) Example: operator{"+", "*", "-"} vector = {2, 3, 4, 5} result = 2 + 3 * 4 - 5 => result = 9 Note: The length of operator vector is equal to the length of operand vector minus one. Operand is a vector of of non-negative integers. Operator vector has at least one operator, and operand vector has at least two operands. */ #include<stdio.h> #include<math.h> #include<vector> #include<string> using namespace std; #include<algorithm> #include<stdlib.h> int do_algebra(vector<string> operato, vector<int> operand){
#include<stdio.h> #include<math.h> #include<vector> #include<string> using namespace std; #include<algorithm> #include<stdlib.h> int do_algebra(vector<string> operato, vector<int> operand){
vector<int> num={}; vector<int> posto={}; for (int i=0;i<operand.size();i++) posto.push_back(i); for (int i=0;i<operato.size();i++) if (operato[i]=="**") { while (posto[posto[i]]!=posto[i]) posto[i]=posto[posto[i]]; while (posto[posto[i+1]]!=posto[i+1]) posto[i+1]=posto[posto[i+1]]; operand[posto[i]]=pow(operand[posto[i]],operand[posto[i+1]]); posto[i+1]=posto[i]; } for (int i=0;i<operato.size();i++) if (operato[i]=="*" or operato[i]=="//") { while (posto[posto[i]]!=posto[i]) posto[i]=posto[posto[i]]; while (posto[posto[i+1]]!=posto[i+1]) posto[i+1]=posto[posto[i+1]]; if (operato[i]=="*") operand[posto[i]]=operand[posto[i]]*operand[posto[i+1]]; else operand[posto[i]]=operand[posto[i]]/operand[posto[i+1]]; posto[i+1]=posto[i]; } for (int i=0;i<operato.size();i++) if (operato[i]=="+" or operato[i]=="-") { while (posto[posto[i]]!=posto[i]) posto[i]=posto[posto[i]]; while (posto[posto[i+1]]!=posto[i+1]) posto[i+1]=posto[posto[i+1]]; if (operato[i]=="+") operand[posto[i]]=operand[posto[i]]+operand[posto[i+1]]; else operand[posto[i]]=operand[posto[i]]-operand[posto[i+1]]; posto[i+1]=posto[i]; } return operand[0]; }
#undef NDEBUG #include<assert.h> int main(){ assert (do_algebra({"**", "*", "+"}, {2, 3, 4, 5}) == 37); assert (do_algebra({"+", "*", "-"}, {2, 3, 4, 5}) == 9); assert (do_algebra({"//", "*"}, {7, 3, 4}) == 8); }
CPP/161
/* You are given a string s. if s[i] is a letter, reverse its case from lower to upper or vise versa, otherwise keep it as it is. If the string contains no letters, reverse the string. The function should return the resulted string. Examples solve("1234") = "4321" solve("ab") = "AB" solve("#a@C") = "#A@c" */ #include<stdio.h> #include<string> using namespace std; string solve(string s){
#include<stdio.h> #include<string> using namespace std; #include<algorithm> #include<math.h> #include<stdlib.h> string solve(string s){
int nletter=0; string out=""; for (int i=0;i<s.length();i++) { char w=s[i]; if (w>=65 and w<=90) w=w+32; else if (w>=97 and w<=122) w=w-32; else nletter+=1; out=out+w; } if (nletter==s.length()) { string p(s.rbegin(),s.rend()); return p; } else return out; }
#undef NDEBUG #include<assert.h> int main(){ assert (solve("AsDf") == "aSdF"); assert (solve("1234") == "4321"); assert (solve("ab") == "AB"); assert (solve("#a@C") == "#A@c"); assert (solve("#AsdfW^45") == "#aSDFw^45"); assert (solve("#6@2") == "2@6#"); assert (solve("#$a^D") == "#$A^d"); assert (solve("#ccc") == "#CCC"); }
#undef NDEBUG #include<assert.h> int main(){ assert (solve("1234") == "4321"); assert (solve("ab") == "AB"); assert (solve("#a@C") == "#A@c"); }
CPP/162
/* Given a string 'text", return its md5 hash equivalent string. If 'text" is an empty string, return None. >>> string_to_md5("Hello world") == "3e25960a79dbc69b674cd4ec67a72c62" */ #include<stdio.h> #include<string> #include<openssl/md5.h> using namespace std; string string_to_md5(string text){
#include<stdio.h> #include<string> #include<openssl/md5.h> using namespace std; #include<algorithm> #include<math.h> #include<stdlib.h> string string_to_md5(string text){
unsigned char md[16]; if (text.length()==0) return "None"; MD5_CTX c; int i; MD5_Init(&c); MD5_Update(&c, (unsigned char*)text.c_str(), text.length()); MD5_Final(md, &c); string out_str=""; for (int i=0;i<16;i++) { char w; if (md[i]<160) w=48+md[i]/16; else w=87+md[i]/16; out_str=out_str+w; if (md[i]%16<10) w=48+md[i]%16; else w=87+md[i]%16; out_str=out_str+w; } return out_str; }
#undef NDEBUG #include<assert.h> int main(){ assert (string_to_md5("Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"); assert (string_to_md5("") == "None"); assert (string_to_md5("A B C") == "0ef78513b0cb8cef12743f5aeb35f888"); assert (string_to_md5("password") == "5f4dcc3b5aa765d61d8327deb882cf99"); }
#undef NDEBUG #include<assert.h> int main(){ assert (string_to_md5("Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"); }
CPP/163
/* Given two positive integers a and b, return the even digits between a and b, in ascending order. For example: generate_integers(2, 8) => {2, 4, 6, 8} generate_integers(8, 2) => {2, 4, 6, 8} generate_integers(10, 14) => {} */ #include<stdio.h> #include<vector> using namespace std; vector<int> generate_integers(int a,int b){
#include<stdio.h> #include<vector> using namespace std; #include<algorithm> #include<math.h> #include<stdlib.h> vector<int> generate_integers(int a,int b){
int m; if (b<a) { m=a;a=b;b=m; } vector<int> out={}; for (int i=a;i<=b;i++) if (i<10 and i%2==0) out.push_back(i); return out; }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(generate_integers(2, 10) , {2, 4, 6, 8})); assert (issame(generate_integers(10, 2) , {2, 4, 6, 8})); assert (issame(generate_integers(132, 2) , {2, 4, 6, 8})); assert (issame(generate_integers(17,89) , {})); }
#undef NDEBUG #include<assert.h> bool issame(vector<int> a,vector<int>b){ if (a.size()!=b.size()) return false; for (int i=0;i<a.size();i++) { if (a[i]!=b[i]) return false; } return true; } int main(){ assert (issame(generate_integers(2, 8) , {2, 4, 6, 8})); assert (issame(generate_integers(8, 2) , {2, 4, 6, 8})); assert (issame(generate_integers(10,14) , {})); }