Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 5,598 Bytes
2e637cc
 
 
 
 
d766cb8
2e637cc
d766cb8
2e637cc
 
 
 
6f92cda
2e637cc
6f92cda
2e637cc
 
 
 
 
 
 
8cc5c7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167de17
 
8cc5c7d
 
 
 
 
 
 
 
 
 
 
 
 
6fefea4
2716928
6fefea4
 
68be146
 
 
8cc5c7d
 
 
 
 
6f92cda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cc5c7d
 
 
6646c12
8cc5c7d
 
 
 
 
 
 
 
 
 
 
bc990e5
89209af
bc990e5
8cc5c7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e637cc
8cc5c7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
---
annotations_creators:
- crowdsourced
language_creators:
- found
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- token-classification
task_ids:
- named-entity-recognition
paperswithcode_id: broad-twitter-corpus
pretty_name: Broad Twitter Corpus
---

# Dataset Card for broad_twitter_corpus

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-instances)
  - [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)

## Dataset Description

- **Homepage:** [https://github.com/GateNLP/broad_twitter_corpus](https://github.com/GateNLP/broad_twitter_corpus)
- **Repository:** [https://github.com/GateNLP/broad_twitter_corpus](https://github.com/GateNLP/broad_twitter_corpus)
- **Paper:** [http://www.aclweb.org/anthology/C16-1111](http://www.aclweb.org/anthology/C16-1111)
- **Leaderboard:** [Named Entity Recognition on Broad Twitter Corpus](https://paperswithcode.com/sota/named-entity-recognition-on-broad-twitter)
- **Point of Contact:** [Leon Derczynski](https://github.com/leondz)

### Dataset Summary

This is the Broad Twitter corpus, a dataset of tweets collected over stratified times, places and social uses. The goal is to represent a broad range of activities, giving a dataset more representative of the language used in this hardest of social media formats to process. Further, the BTC is annotated for named entities.

See the paper, [Broad Twitter Corpus: A Diverse Named Entity Recognition Resource](http://www.aclweb.org/anthology/C16-1111), for details.

### Supported Tasks and Leaderboards

* Named Entity Recognition
* On PWC: [Named Entity Recognition on Broad Twitter Corpus](https://paperswithcode.com/sota/named-entity-recognition-on-broad-twitter)

### Languages

English from UK, US, Australia, Canada, Ireland, New Zealand; `bcp47:en`

## Dataset Structure

### Data Instances

Feature |Count
---|---:
Documents |9 551
Tokens |165 739
Person entities |5 271
Location entities |3 114
Organization entities |3 732

### Data Fields

Each tweet contains an ID, a list of tokens, and a list of NER tags


- `id`: a `string` feature.
- `tokens`: a `list` of `strings` 
- `ner_tags`: a `list` of class IDs (`int`s) representing the NER class:

```
  0: O
  1: B-PER
  2: I-PER
  3: B-ORG
  4: I-ORG
  5: B-LOC
  6: I-LOC
```

### Data Splits

Section|Region|Collection period|Description|Annotators|Tweet count
---|---|---|---|---|---:
A | UK| 2012.01| General collection |Expert| 1000
B |UK |2012.01-02 |Non-directed tweets |Expert |2000
E |Global| 2014.07| Related to MH17 disaster| Crowd & expert |200
F |Stratified |2009-2014| Twitterati |Crowd & expert |2000
G |Stratified| 2011-2014| Mainstream news| Crowd & expert| 2351
H |Non-UK| 2014 |General collection |Crowd & expert |2000


The most varied parts of the BTC are sections F and H. However, each of the remaining four sections has some specific readily-identifiable bias. So, we propose that one uses half of section H for evaluation and leaves the other half in the training data. Section H should be partitioned in the order of the JSON-format lines. Note that the CoNLL-format data is readily reconstructible from the JSON format, which is the authoritative data format from which others are derived.

**Test**: Section F

**Development**: Section H (the paper says "second half of Section H" but ordinality could be ambiguous, so it all goes in. Bonne chance)

**Training**: everything else


## Dataset Creation

### Curation Rationale

[Needs More Information]

### Source Data

#### Initial Data Collection and Normalization

[Needs More Information]

#### Who are the source language producers?

[Needs More Information]

### Annotations

#### Annotation process

[Needs More Information]

#### Who are the annotators?

[Needs More Information]

### Personal and Sensitive Information

[Needs More Information]

## Considerations for Using the Data

### Social Impact of Dataset

[Needs More Information]

### Discussion of Biases

[Needs More Information]

### Other Known Limitations

[Needs More Information]

## Additional Information

### Dataset Curators

[Needs More Information]

### Licensing Information

Creative Commons Attribution 4.0 International (CC BY 4.0)

### Citation Information

```
@inproceedings{derczynski2016broad,
  title={Broad twitter corpus: A diverse named entity recognition resource},
  author={Derczynski, Leon and Bontcheva, Kalina and Roberts, Ian},
  booktitle={Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers},
  pages={1169--1179},
  year={2016}
}
```

### Contributions

Author-added dataset [@leondz](https://github.com/leondz)