Spaetzle-v69-7b

This is a progressive (mostly dare-ties, but also slerp) merge with the intention of a suitable compromise for English and German local tasks.

There is also an unquantized version.

It achieves (running quantized) in

  • German EQ Bench: Score (v2_de): 62.59 (Parseable: 171.0).
  • English EQ Bench: Score (v2): 76.43 (Parseable: 171.0).

It should work sufficiently well with ChatML prompt template (for all merged models should have seen ChatML prompts at least in DPO stage).

Spaetzle-v69-7b is a merge of the following models using LazyMergekit:

The merge tree in total involves to following original models:

🧩 Configuration

models:
  - model: cstr/Spaetzle-v68-7b
    # no parameters necessary for base model
  - model: abideen/AlphaMonarch-dora
    parameters:
      density: 0.60
      weight: 0.30
merge_method: dare_ties
base_model: cstr/Spaetzle-v68-7b
parameters:
  int8_mask: true
dtype: bfloat16
random_seed: 0
tokenizer_source: base

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "cstr/Spaetzle-v69-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
20
GGUF
Model size
7.24B params
Architecture
llama
Hardware compatibility
Log In to view the estimation
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for cstr/Spaetzle-v69-7b-GGUF

Quantized
(7)
this model

Collection including cstr/Spaetzle-v69-7b-GGUF