cptanalatriste/request-for-help

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.1342
  • Train Sparse Categorical Accuracy: 1.0
  • Validation Loss: 0.1514
  • Validation Sparse Categorical Accuracy: 0.9796
  • Epoch: 19

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Sparse Categorical Accuracy Validation Loss Validation Sparse Categorical Accuracy Epoch
0.8291 0.375 0.7483 0.3673 0
0.7470 0.375 0.6302 0.8163 1
0.6504 0.625 0.6079 0.9184 2
0.6128 0.7812 0.5882 0.8980 3
0.5939 0.8125 0.5639 0.9184 4
0.5300 0.9688 0.5378 0.9184 5
0.5306 0.9688 0.5098 0.9388 6
0.4963 1.0 0.4806 0.9388 7
0.4683 0.9688 0.4434 0.9592 8
0.3959 1.0 0.4070 0.9796 9
0.3807 1.0 0.3762 0.9796 10
0.3509 1.0 0.3439 0.9796 11
0.3013 1.0 0.3064 0.9796 12
0.2848 1.0 0.2931 0.9796 13
0.2587 1.0 0.2681 0.9796 14
0.2510 1.0 0.2295 0.9796 15
0.1867 1.0 0.2000 0.9796 16
0.1652 1.0 0.1793 0.9796 17
0.1297 1.0 0.1637 0.9796 18
0.1342 1.0 0.1514 0.9796 19

Framework versions

  • Transformers 4.17.0
  • TensorFlow 2.6.2
  • Datasets 1.18.4
  • Tokenizers 0.11.6
Downloads last month
16
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.