See axolotl config
axolotl version: 0.4.1
base_model: meta-llama/Meta-Llama-3-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
# load_in_4bit: true
chat_template: chatml
datasets:
- path: /workspace/datasets/dolphin201-sharegpt2.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/SystemChat_filtered_sharegpt.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/SystemChat_multilingual_sharegpt.jsonl
type: sharegpt
conversation: chatml
# - path: /workspace/datasets/SystemChat-2.0-Arabic/SystemChatArabic_sharegpt.jsonl
# type: sharegpt
# conversation: chatml
- path: /workspace/datasets/dolphin-coder-translate-sharegpt2.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-coder-codegen-sharegpt2.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/m-a-p_Code-Feedback-sharegpt-unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/m-a-p_CodeFeedback-Filtered-Instruction-sharegpt-unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/not_samantha_norefusals.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/Orca-Math-resort-unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/agent_instruct_react_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/toolbench_instruct_j1s1_3k_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/toolbench_negative_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/toolbench_react_10p_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/toolbench_tflan_cot_30p_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/openhermes200k_unfiltered.jsonl
type: sharegpt
conversation: chatml
dataset_prepared_path: last_run_prepared
val_set_size: 0.01
output_dir: ./llama-3-8b-2.9.3
sequence_len: 8192
sample_packing: false
pad_to_sequence_len: false
# adapter: qlora
# lora_r: 16
# lora_alpha: 32
# lora_dropout: 0.05
# lora_target_modules:
# - q_proj
# - k_proj
# - v_proj
# - o_proj
# - gate_proj
# - up_proj
# - down_proj
wandb_project: 2.9.3-llama-3-8b
# wandb_entity: oaaic
# wandb_watch:
# wandb_name:
# wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_8bit
lr_scheduler: cosine
learning_rate: 1e-5
# max_grad_norm: 1.0
train_on_inputs: false
group_by_length: false
bf16: true
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: true
logging_steps: 1
flash_attention: true
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json
warmup_steps: 10
evals_per_epoch: 2
saves_per_epoch: 2
save_total_limit: 2
weight_decay: 0.1
special_tokens:
eos_token: "<|im_end|>"
pad_token: "<|end_of_text|>"
tokens:
- "<|im_start|>"
- "<|im_end|>"
llama-3-8b-2.9.3
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5771
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.005 | 0.0001 | 1 | 0.9649 |
0.6468 | 0.5000 | 5058 | 0.6022 |
0.6648 | 1.0000 | 10116 | 0.5731 |
0.4983 | 1.5000 | 15174 | 0.5668 |
0.394 | 2.0000 | 20232 | 0.5478 |
0.3182 | 2.4999 | 25290 | 0.5781 |
0.2916 | 2.9999 | 30348 | 0.5771 |
Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 2,840
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for cognitivecomputations/dolphin-2.9.3-llama-3-8b
Base model
meta-llama/Meta-Llama-3-8B