File size: 1,482 Bytes
6a11c1d
 
6037ab3
 
 
 
6a11c1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1a75b8
 
6a11c1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1a75b8
6a11c1d
c1a75b8
 
6a11c1d
 
 
c1a75b8
6a11c1d
 
 
c1a75b8
 
 
6a11c1d
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
- trl
- sft
- alignment-handbook
- generated_from_trainer
datasets:
- generator
model-index:
- name: asset-generation-sft-qlora
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# asset-generation-sft-qlora

This model was trained from scratch on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7983

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.8288        | 1.0   | 5088 | 0.7983          |


### Framework versions

- Transformers 4.41.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1