Represents
A quantized version of Llama 3.2 1B Instruct with Activation-aware Weight Quantization (AWQ)[https://github.com/mit-han-lab/llm-awq]
Use with transformers/autoawq
Starting with
transformers==4.45.1
accelerate==0.34.2
torch==2.3.1
numpy==2.0.0
autoawq==0.2.6
Experimented with
- OS = Windows
- GPU = Nvidia GeForce RTX 3080 10gb
- CPU = Intel Core i5-9600K
- RAM = 32GB
For CUDA users
AutoAWQ
NOTE: this example uses fuse_layers=True
to fuse attention and mlp layers together for faster inference
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer
quant_id = "ciCic/llama-3.2-1B-Instruct-AWQ"
model = AutoAWQForCausalLM.from_quantized(quant_id, fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(quant_id, trust_remote_code=True)
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
# Declare prompt
prompt = "You're standing on the surface of the Earth. "\
"You walk one mile south, one mile west and one mile north. "\
"You end up exactly where you started. Where are you?"
# Tokenization of the prompt
tokens = tokenizer(
prompt,
return_tensors='pt'
).input_ids.cuda()
# Generate output in a streaming fashion
generation_output = model.generate(
tokens,
streamer=streamer,
max_new_tokens=512
)
Transformers
from transformers import AutoTokenizer, TextStreamer, AutoModelForCausalLM
import torch
quant_id = "ciCic/llama-3.2-1B-Instruct-AWQ"
tokenizer = AutoTokenizer.from_pretrained(quant_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
quant_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
device_map="cuda"
)
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
# Convert prompt to tokens
prompt = "You're standing on the surface of the Earth. "\
"You walk one mile south, one mile west and one mile north. "\
"You end up exactly where you started. Where are you?"
tokens = tokenizer(
prompt,
return_tensors='pt'
).input_ids.cuda()
# Generate output
generation_output = model.generate(
tokens,
streamer=streamer,
max_new_tokens=512
)
Issue/Solution
- torch.from_numpy fails
- This might be due to certain issues within
torch==2.3.1
.cpp files. Since AutoAWQ uses torch version 2.3.1, instead of most recent, this issue might occur within modulemarlin.py -> def _get_perms()
- Module path: Python\Python311\site-packages\awq\modules\linear\marlin.py
- Solution:
- there are several operations to numpy (cpu) then back to tensor (gpu) which could be completely replaced by tensor without having to use numpy, this will solve (temporarily) the from_numpy() issue
- This might be due to certain issues within
def _get_perms():
perm = []
for i in range(32):
perm1 = []
col = i // 4
for block in [0, 1]:
for row in [
2 * (i % 4),
2 * (i % 4) + 1,
2 * (i % 4 + 4),
2 * (i % 4 + 4) + 1,
]:
perm1.append(16 * row + col + 8 * block)
for j in range(4):
perm.extend([p + 256 * j for p in perm1])
# perm = np.array(perm)
perm = torch.asarray(perm)
# interleave = np.array([0, 2, 4, 6, 1, 3, 5, 7])
interleave = torch.asarray([0, 2, 4, 6, 1, 3, 5, 7])
perm = perm.reshape((-1, 8))[:, interleave].ravel()
# perm = torch.from_numpy(perm)
scale_perm = []
for i in range(8):
scale_perm.extend([i + 8 * j for j in range(8)])
scale_perm_single = []
for i in range(4):
scale_perm_single.extend([2 * i + j for j in [0, 1, 8, 9, 16, 17, 24, 25]])
return perm, scale_perm, scale_perm_single
- Downloads last month
- 626
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for ciCic/llama-3.2-1B-Instruct-AWQ
Base model
meta-llama/Llama-3.2-1B-Instruct