See axolotl config
axolotl version: 0.4.0
base_model: mistralai/Mistral-7B-v0.1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: ascherrer/mtext-data-150224_2
type: completion
field: text
dataset_prepared_path: last_run_prepared
hub_model_id: ascherrer/mtext-150224_mistral
val_set_size: 0.01
output_dir: ./out
adapter: qlora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
wandb_project: "machine-de-textes"
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_log_model: "checkpoint"
lora_modules_to_save:
- embed_tokens
- lm_head
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_sample_packing: False
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
tokens: # these are delimiters
- "<|s|>"
- "<|e|>"
mtext-150224_mistral
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.0248
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.2902 | 0.04 | 1 | 3.5809 |
2.6747 | 0.27 | 7 | 2.3159 |
1.8679 | 0.53 | 14 | 2.0945 |
1.9268 | 0.8 | 21 | 2.0629 |
1.6064 | 1.04 | 28 | 2.0900 |
1.5556 | 1.3 | 35 | 2.0501 |
1.5276 | 1.57 | 42 | 2.0626 |
1.517 | 1.84 | 49 | 2.0497 |
1.4512 | 2.1 | 56 | 2.0396 |
1.4266 | 2.36 | 63 | 2.0293 |
1.4217 | 2.63 | 70 | 2.0249 |
1.4334 | 2.9 | 77 | 2.0248 |
Framework versions
- PEFT 0.9.1.dev0
- Transformers 4.39.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.18.0
- Tokenizers 0.15.0
- Downloads last month
- 14
Model tree for chatbotNZ/mtext-150224_mistral_merged
Base model
mistralai/Mistral-7B-v0.1