Edit model card

computer_parts_classifier-model

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5140
  • Accuracy: 0.8069

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.97 9 1.0689 0.5379
1.1042 1.95 18 0.9123 0.6897
0.9605 2.92 27 0.7676 0.7379
0.7855 4.0 37 0.6722 0.7586
0.626 4.97 46 0.5915 0.8069
0.5102 5.95 55 0.5672 0.8138
0.4266 6.92 64 0.5106 0.8483
0.3561 8.0 74 0.5587 0.8138
0.3126 8.97 83 0.5492 0.8069
0.294 9.95 92 0.5589 0.7862
0.2287 10.92 101 0.5579 0.8069
0.2282 12.0 111 0.5193 0.8138
0.2261 12.97 120 0.4383 0.8552
0.2261 13.95 129 0.5205 0.7931
0.1996 14.92 138 0.5037 0.8138
0.1796 16.0 148 0.4986 0.8138
0.1583 16.97 157 0.5583 0.7931
0.1692 17.95 166 0.4743 0.8276
0.1577 18.92 175 0.4867 0.8345
0.1706 19.46 180 0.5140 0.8069

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
2
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for chador2003/computer_parts_classifier-model

Finetuned
(1670)
this model

Evaluation results