cetusian/ner-model-furniture-v2
This model is a fine-tuned version of distilbert/distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.3257
- Validation Loss: 0.3764
- Train Precision: 0.7369
- Train Recall: 0.7941
- Train F1: 0.7644
- Train Accuracy: 0.8553
- Epoch: 4
Model description
The model was fine-tuned in order to recognize product names. Ner tags: O, B-product, I-product.
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 348, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
Training results
Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch |
---|---|---|---|---|---|---|
0.6457 | 0.4855 | 0.6915 | 0.7054 | 0.6984 | 0.8105 | 0 |
0.4327 | 0.3963 | 0.7202 | 0.7764 | 0.7472 | 0.8445 | 1 |
0.3506 | 0.3764 | 0.7369 | 0.7941 | 0.7644 | 0.8553 | 2 |
0.3260 | 0.3764 | 0.7369 | 0.7941 | 0.7644 | 0.8553 | 3 |
0.3257 | 0.3764 | 0.7369 | 0.7941 | 0.7644 | 0.8553 | 4 |
Framework versions
- Transformers 4.41.1
- TensorFlow 2.15.0
- Datasets 2.19.2
- Tokenizers 0.19.1
- Downloads last month
- 20
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for cetusian/ner-model-furniture-v2
Base model
distilbert/distilbert-base-uncased