SentenceTransformer based on indobenchmark/indobert-base-p2
This is a sentence-transformers model finetuned from indobenchmark/indobert-base-p2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: indobenchmark/indobert-base-p2
- Maximum Sequence Length: 200 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 200, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Waduk wadaslintang sebenarnya terbagi menjadi dua kabupaten yaitu kabupaten kebumen dan kabupaten wonosobo.',
'Kabupaten kebumen dan kabupaten wonosobo bertentaggaan.',
'Musim ini di ajang PBL 2020 Hendra melawan tim Pune 7 aces.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | -0.0516 |
spearman_cosine | -0.0593 |
pearson_manhattan | -0.0643 |
spearman_manhattan | -0.066 |
pearson_euclidean | -0.0637 |
spearman_euclidean | -0.0653 |
pearson_dot | -0.0279 |
spearman_dot | -0.026 |
pearson_max | -0.0279 |
spearman_max | -0.026 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 10,330 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string int details - min: 11 tokens
- mean: 29.14 tokens
- max: 179 tokens
- min: 5 tokens
- mean: 11.95 tokens
- max: 41 tokens
- 0: ~36.30%
- 1: ~32.90%
- 2: ~30.80%
- Samples:
sentence_0 sentence_1 label Pada tahun 1436, pulau Timor mempunyai 12 kota bandar namun tidak disebutkan namanya.
Pulau Timor memiliki 10 kota bandar.
2
Komoditas pertanian yang ada di desa ini antara lain: bunga potong, sayur mayur, waluh (lejet) terutama Paprika (Capsicum annuum L.). Komoditas ini menjadi sumber perekonomian utama di desa ini karena harganya yang lumayan dibandingkan sayuran lain.
Komoditas pertanian di desa ini lebih mahal dibandingkan sayuran lain.
1
Setelah batas waktu pencalonan pada tanggal 15 Juli 2003, sembilan kota telah mencalonkan diri untuk mengadakan Olimpiade 2012. Kota-kota tersebut adalah Havana, Istanbul, Leipzig, London, Madrid, Moskwa, New York City, Paris, dan Rio de Janeiro. Pada 18 Mei 2004, Komite Olimpiade Internasional (IOC), sebagai hasil penilaian teknis, mengurangi jumlah kota kandidat menjadi lima: London, Madrid, Moskwa, New York, dan Paris.
Jumlah kota kandidat tuan rumah olimpide bertambah pada 18 Mei 2004.
2
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | sts-dev_spearman_max |
---|---|---|---|
0.0991 | 32 | - | -0.0592 |
0.1981 | 64 | - | -0.0425 |
0.2972 | 96 | - | -0.0467 |
0.3963 | 128 | - | -0.0428 |
0.4954 | 160 | - | -0.0512 |
0.5944 | 192 | - | -0.0473 |
0.6935 | 224 | - | -0.0412 |
0.7926 | 256 | - | -0.0435 |
0.8916 | 288 | - | -0.0405 |
0.9907 | 320 | - | -0.0425 |
1.0 | 323 | - | -0.0420 |
1.0898 | 352 | - | -0.0346 |
1.1889 | 384 | - | -0.0333 |
1.2879 | 416 | - | -0.0325 |
1.3870 | 448 | - | -0.0312 |
1.4861 | 480 | - | -0.0316 |
1.5480 | 500 | 0.077 | - |
1.5851 | 512 | - | -0.0260 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for cassador/indobert-t3
Base model
indobenchmark/indobert-base-p2Evaluation results
- Pearson Cosine on sts devself-reported-0.052
- Spearman Cosine on sts devself-reported-0.059
- Pearson Manhattan on sts devself-reported-0.064
- Spearman Manhattan on sts devself-reported-0.066
- Pearson Euclidean on sts devself-reported-0.064
- Spearman Euclidean on sts devself-reported-0.065
- Pearson Dot on sts devself-reported-0.028
- Spearman Dot on sts devself-reported-0.026
- Pearson Max on sts devself-reported-0.028
- Spearman Max on sts devself-reported-0.026