Edit model card

TabDetect

Supported Labels

['full_lined', 'not_full_lined']

How to use

  • Install ultralytics:
pip install -U ultralytics==8.0.227
  • Load model and perform prediction:
from ultralytics import YOLO

# load model
model = YOLO('camiloa2m/TabDetect-YOLOv8s')

# set model parameters (optional)
model.overrides['conf'] = 0.25  # NMS confidence threshold
model.overrides['iou'] = 0.45  # NMS IoU threshold
model.overrides['agnostic_nms'] = False  # NMS class-agnostic
model.overrides['max_det'] = 1000  # maximum number of detections per image

# set image
image = '<URL or Path to an image'

# perform inference
results = model.predict(image)

Dataset

TNCR_Dataset. I merged some classes: class 0 (full_lined, merged_cells), class 1 (no_lines, partial_lined, partial_lined_merged_cells).

Model summary (fused)

Class Images Instances P R mAP50 mAP50-95
all 1313 1906 0.957 0.926 0.973 0.938
full_lined 1313 984 0.96 0.949 0.98 0.968
not_full_lined 1313 922 0.953 0.904 0.966 0.908
camiloa2m/TabDetect-YOLOv8n
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Inference API (serverless) does not yet support ultralytics models for this pipeline type.