TabDetect
Supported Labels
['full_lined', 'not_full_lined']
How to use
- Install ultralytics:
pip install -U ultralytics==8.0.227
- Load model and perform prediction:
from ultralytics import YOLO
# load model
model = YOLO('camiloa2m/TabDetect-YOLOv8s')
# set model parameters (optional)
model.overrides['conf'] = 0.25 # NMS confidence threshold
model.overrides['iou'] = 0.45 # NMS IoU threshold
model.overrides['agnostic_nms'] = False # NMS class-agnostic
model.overrides['max_det'] = 1000 # maximum number of detections per image
# set image
image = '<URL or Path to an image'
# perform inference
results = model.predict(image)
Dataset
TNCR_Dataset. I merged some classes: class 0 (full_lined, merged_cells), class 1 (no_lines, partial_lined, partial_lined_merged_cells).
Model summary (fused)
Class | Images | Instances | P | R | mAP50 | mAP50-95 |
---|---|---|---|---|---|---|
all | 1313 | 1906 | 0.957 | 0.926 | 0.973 | 0.938 |
full_lined | 1313 | 984 | 0.96 | 0.949 | 0.98 | 0.968 |
not_full_lined | 1313 | 922 | 0.953 | 0.904 | 0.966 | 0.908 |
Inference API (serverless) does not yet support ultralytics models for this pipeline type.