YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

This model provides a Chinese GPT-2 language model trained with SimCTG on the LCCC benchmark (Wang et al., 2020) based on our paper A Contrastive Framework for Neural Text Generation.

We provide a detailed tutorial on how to apply SimCTG and Contrastive Search in our project repo. In the following, we illustrate a brief tutorial on how to use our approach to perform text generation.

1. Installation of SimCTG:

pip install simctg --upgrade

2. Initialize SimCTG Model:

import torch
# load SimCTG language model
from simctg.simctggpt import SimCTGGPT
model_name = r'cambridgeltl/simctg_lccc_dialogue'
model = SimCTGGPT(model_name)
model.eval()
tokenizer = model.tokenizer
eos_token = '[SEP]'
eos_token_id = tokenizer.convert_tokens_to_ids([eos_token])[0]

3. Prepare the Text Prefix:

context_list = ['刺猬很可爱!以前别人送了只没养,味儿太大!', '是很可爱但是非常臭', '是啊,没办法养', '那个怎么养哦不会扎手吗']
prefix_text = eos_token.join(context_list).strip(eos_token) + eos_token
print ('Prefix is: {}'.format(prefix_text))
tokens = tokenizer.tokenize(prefix_text)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
input_ids = torch.LongTensor(input_ids).view(1,-1)

4. Generate Text with Contrastive Search:

beam_width, alpha, decoding_len = 5, 0.6, 64
output = model.fast_contrastive_search(input_ids=input_ids, beam_width=beam_width, alpha=alpha, 
                                       decoding_len=decoding_len, end_of_sequence_token_id=eos_token_id,
                                       early_stop=True)  
                                           
print("Output:\n" + 100 * '-')
print(''.join(tokenizer.decode(output)))
'''
  Prefix is: 刺猬很可爱!以前别人送了只没养,味儿太大![SEP]是很可爱但是非常臭[SEP]是啊,没办法养[SEP]那个怎么养哦不会扎手吗[SEP]
  Output:
  ----------------------------------------------------------------------------------------------------
  刺猬很可爱!以前别人送了只没养,味儿太大![SEP]是很可爱但是非常臭[SEP]是啊,没办法养[SEP]那个怎么养哦不会扎手吗[SEP]我觉得还好,就是有点臭
'''

For more details of our work, please refer to our main project repo.

5. Citation:

If you find our paper and resources useful, please kindly leave a star and cite our paper. Thanks!

@article{su2022contrastive,
  title={A Contrastive Framework for Neural Text Generation},
  author={Su, Yixuan and Lan, Tian and Wang, Yan and Yogatama, Dani and Kong, Lingpeng and Collier, Nigel},
  journal={arXiv preprint arXiv:2202.06417},
  year={2022}
}
Downloads last month
17
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.