Back to all models
text-generation mask_token:
Query this model
🔥 This model is currently loaded and running on the Inference API. ⚠️ This model could not be loaded by the inference API. ⚠️ This model can be loaded on the Inference API on-demand.
JSON Output
API endpoint  

⚡️ Upgrade your account to access the Inference API

							$
							curl -X POST \
-H "Authorization: Bearer YOUR_ORG_OR_USER_API_TOKEN" \
-H "Content-Type: application/json" \
-d '"json encoded string"' \
https://api-inference.huggingface.co/models/cahya/gpt2-small-indonesian-522M
Share Copied link to clipboard

Monthly model downloads

cahya/gpt2-small-indonesian-522M cahya/gpt2-small-indonesian-522M
299 downloads
last 30 days

pytorch

tf

Contributed by

cahya Cahya Wirawan
9 models

How to use this model directly from the 🤗/transformers library:

			
Copy to clipboard
from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("cahya/gpt2-small-indonesian-522M") model = AutoModelWithLMHead.from_pretrained("cahya/gpt2-small-indonesian-522M")

Indonesian GPT2 small model

Model description

It is GPT2-small model pre-trained with indonesian Wikipedia using a causal language modeling (CLM) objective. This model is uncased: it does not make a difference between indonesia and Indonesia.

This is one of several other language models that have been pre-trained with indonesian datasets. More detail about its usage on downstream tasks (text classification, text generation, etc) is available at Transformer based Indonesian Language Models

Intended uses & limitations

How to use

You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility:

>>> from transformers import pipeline, set_seed
>>> generator = pipeline('text-generation', model='cahya/gpt2-small-indonesian-522M')
>>> set_seed(42)
>>> generator("Kerajaan Majapahit adalah", max_length=30, num_return_sequences=5, num_beams=10)

[{'generated_text': 'Kerajaan Majapahit adalah sebuah kerajaan yang pernah berdiri di Jawa Timur pada abad ke-14 hingga abad ke-15. Kerajaan ini berdiri pada abad ke-14'}, 
{'generated_text': 'Kerajaan Majapahit adalah sebuah kerajaan yang pernah berdiri di Jawa Timur pada abad ke-14 hingga abad ke-16. Kerajaan ini berdiri pada abad ke-14'}, 
{'generated_text': 'Kerajaan Majapahit adalah sebuah kerajaan yang pernah berdiri di Jawa Timur pada abad ke-14 hingga abad ke-15. Kerajaan ini berdiri pada abad ke-15'}, 
{'generated_text': 'Kerajaan Majapahit adalah sebuah kerajaan yang pernah berdiri di Jawa Timur pada abad ke-14 hingga abad ke-16. Kerajaan ini berdiri pada abad ke-15'}, 
{'generated_text': 'Kerajaan Majapahit adalah sebuah kerajaan yang pernah berdiri di Jawa Timur pada abad ke-14 hingga abad ke-15. Kerajaan ini merupakan kelanjutan dari Kerajaan Majapahit yang'}]

Here is how to use this model to get the features of a given text in PyTorch:

from transformers import GPT2Tokenizer, GPT2Model

model_name='cahya/gpt2-small-indonesian-522M'
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model = GPT2Model.from_pretrained(model_name)
text = "Silakan diganti dengan text apa saja."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)

and in Tensorflow:

from transformers import GPT2Tokenizer, TFGPT2Model

model_name='cahya/gpt2-small-indonesian-522M'
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model = TFGPT2Model.from_pretrained(model_name)
text = "Silakan diganti dengan text apa saja."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)

Training data

This model was pre-trained with 522MB of indonesian Wikipedia. The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a vocabulary size of 52,000. The inputs are sequences of 128 consecutive tokens.