Built with Axolotl

Enhanced Slither Auditor

This model is a fine-tuned version of teknium/OpenHermes-2.5-Mistral-7B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1923

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • total_eval_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
1.1498 0.0 1 1.1953
0.321 0.1 31 0.3176
0.2693 0.2 62 0.2712
0.2701 0.31 93 0.2523
0.27 0.41 124 0.2362
0.2244 0.51 155 0.2284
0.2227 0.61 186 0.2260
0.2167 0.71 217 0.2171
0.2098 0.81 248 0.2082
0.1842 0.92 279 0.2047
0.1917 1.02 310 0.2013
0.1639 1.12 341 0.1982
0.1835 1.22 372 0.1968
0.1666 1.32 403 0.1953
0.1694 1.43 434 0.1932
0.1461 1.53 465 0.1929
0.1535 1.63 496 0.1927
0.1419 1.73 527 0.1925
0.1612 1.83 558 0.1923
0.1857 1.93 589 0.1923

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
234
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for braindao/Enhanced-Slither-Auditor

Finetuned
(72)
this model

Space using braindao/Enhanced-Slither-Auditor 1