Edit model card
Configuration Parsing Warning: In config.json: "quantization_config.bits" must be an integer

NEO

🤗Neo-Models | 🤗Neo-Datasets | Github

Neo is a completely open source large language model, including code, all model weights, datasets used for training, and training details.

Model

Model Describe Download
neo_7b This repository contains the base model of neo_7b • 🤗 Hugging Face
neo_7b_intermediate This repo contains normal pre-training intermediate ckpts. A total of 3.7T tokens were learned at this phase. • 🤗 Hugging Face
neo_7b_decay This repo contains intermediate ckpts during the decay phase. A total of 720B tokens were learned at this phase. • 🤗 Hugging Face
neo_scalinglaw_980M This repo contains ckpts related to scalinglaw experiments • 🤗 Hugging Face
neo_scalinglaw_460M This repo contains ckpts related to scalinglaw experiments • 🤗 Hugging Face
neo_scalinglaw_250M This repo contains ckpts related to scalinglaw experiments • 🤗 Hugging Face
neo_2b_general This repo contains ckpts of 2b model trained using common domain knowledge • 🤗 Hugging Face

Usage

from transformers import AutoModelForCausalLM, AutoTokenizer

model_path = '<your-hf-model-path-with-tokenizer>'

tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, trust_remote_code=True)

model = AutoModelForCausalLM.from_pretrained(
    model_path,
    device_map="auto",
    torch_dtype='auto'
).eval()

input_text = "A long, long time ago,"

input_ids = tokenizer(input_text, add_generation_prompt=True, return_tensors='pt').to(model.device)
output_ids = model.generate(**input_ids, max_new_tokens=20)
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)

print(response)
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.