Model series

This model is part of a series of models training on TPU with Flax Jax during Huggingface Flax/Jax challenge.

Gpt models

Swedish Gpt

https://huggingface.co/birgermoell/swedish-gpt/

Swedish gpt wiki

https://huggingface.co/flax-community/swe-gpt-wiki

Nordic gpt wiki

https://huggingface.co/flax-community/nordic-gpt-wiki

Dansk gpt wiki

https://huggingface.co/flax-community/dansk-gpt-wiki

Norsk gpt wiki

https://huggingface.co/flax-community/norsk-gpt-wiki

Roberta models

Nordic Roberta Wiki

https://huggingface.co/flax-community/nordic-roberta-wiki

Swe Roberta Wiki Oscar

https://huggingface.co/flax-community/swe-roberta-wiki-oscar

Roberta Swedish Scandi

https://huggingface.co/birgermoell/roberta-swedish-scandi

Roberta Swedish

https://huggingface.co/birgermoell/roberta-swedish

Swedish T5 model

https://huggingface.co/birgermoell/t5-base-swedish

GPT-svenska-wikipedia

A swedish GPT2 style model trained using Flax CLM pipeline on the Swedish part of the wiki40b dataset and the Oscar dataset. https://huggingface.co/datasets/wiki40b

The model was trained for around 22600 steps (42 hours) as part of the Huggingface Jax/Flax challenge with the following loss and learning rate Loss: 3.1715331077575684, Learning Rate: 0.0024816440418362617)

The model could likely be trained for longer.

Data cleaning and preprocessing

The data was cleaned and preprocessed using the following script. Make sure to install depencies for beam_runner to make the dataset work.

from datasets import load_dataset
def load_and_clean_wiki():
    dataset = load_dataset('wiki40b', 'sv', beam_runner='DirectRunner', split="train")
    #dataset = load_dataset('wiki40b', 'sv', beam_runner='DirectRunner')
    dataset = dataset.remove_columns(['wikidata_id', 'version_id'])
    filtered_dataset = dataset.map(filter_wikipedia)
    # filtered_dataset[:3]
    # print(filtered_dataset[:3])
    return filtered_dataset

def filter_wikipedia(batch):
    batch["text"] = " ".join(batch["text"].split("\
_START_SECTION_\
"))
    batch["text"] = " ".join(batch["text"].split("\
_START_ARTICLE_\
"))
    batch["text"] = " ".join(batch["text"].split("\
_START_ARTICLE_\
"))
    batch["text"] = " ".join(batch["text"].split("\
_START_PARAGRAPH_\
"))
    batch["text"] = " ".join(batch["text"].split("_NEWLINE_"))
    batch["text"] = " ".join(batch["text"].split("\xa0"))
    return batch

Training script

The following training script was used to train the model.

./run_clm_flax.py     --output_dir="${MODEL_DIR}"     --model_type="gpt2"     --config_name="${MODEL_DIR}"     --tokenizer_name="${MODEL_DIR}"     --dataset_name="wiki40b"     --dataset_config_name="sv"     --do_train --do_eval     --block_size="512"     --per_device_train_batch_size="64"     --per_device_eval_batch_size="64"     --learning_rate="5e-3" --warmup_steps="1000"     --adam_beta1="0.9" --adam_beta2="0.98" --weight_decay="0.01"     --overwrite_output_dir     --num_train_epochs="20"     --logging_steps="500"     --save_steps="1000"     --eval_steps="2500"     --push_to_hub
Downloads last month
24
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using birgermoell/swedish-gpt 4