import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
base_model = 'bigdefence/Llama-3.1-8B-Ko-bigdefence'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
tokenizer = AutoTokenizer.from_pretrained(base_model)
model = AutoModelForCausalLM.from_pretrained(base_model, torch_dtype=torch.float16, device_map="auto")
model.eval()
def generate_response(prompt, model, tokenizer, text_streamer,max_new_tokens=256):
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=True)
inputs = inputs.to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
streamer=text_streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response.replace(prompt, '').strip()
key = "μλ
?"
prompt = f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{key}
### Response:
"""
text_streamer = TextStreamer(tokenizer)
response = generate_response(prompt, model, tokenizer,text_streamer)
print(response)
Uploaded model
- Developed by: Bigdefence
- License: apache-2.0
- Finetuned from model : meta-llama/Meta-Llama-3.1-8B
- Dataset : MarkrAI/KoCommercial-Dataset
Thanks
- νκ΅μ΄ LLM μ€νμνκ³μ λ§μ 곡νμ ν΄μ£Όμ , Beomi λκ³Ό maywell λ, MarkrAIλ κ°μ¬μ μΈμ¬ λ립λλ€.
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
- Downloads last month
- 803
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.