See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: dltjdgh0928/test_instruction
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- Code_Vulnerability_Security_DPO_train_data.json
ds_type: json
path: /workspace/input_data/Code_Vulnerability_Security_DPO_train_data.json
type:
field_input: lang
field_instruction: question
field_output: chosen
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 1
eval_max_new_tokens: 128
eval_steps: 5
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hours_to_complete: 6
hub_model_id: besimray/miner1_f81563ba-5c94-4caf-a3b7-56d28e62fae5_1731033882
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 2
mlflow_experiment_name: /tmp/Code_Vulnerability_Security_DPO_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 4
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
save_strategy: steps
sequence_len: 4096
started_at: '2024-11-08T02:44:42.513600'
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: besimray24-rayon
wandb_mode: online
wandb_project: Public_TuningSN
wandb_run: miner_id_24
wandb_runid: f81563ba-5c94-4caf-a3b7-56d28e62fae5
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
miner1_f81563ba-5c94-4caf-a3b7-56d28e62fae5_1731033882
This model is a fine-tuned version of dltjdgh0928/test_instruction on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3076
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 500
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.2815 | 0.0018 | 1 | 0.5765 |
1.5985 | 0.0092 | 5 | 0.4431 |
1.2781 | 0.0185 | 10 | 0.3860 |
2.113 | 0.0277 | 15 | 0.3428 |
1.4677 | 0.0370 | 20 | 0.3295 |
1.6174 | 0.0462 | 25 | 0.3228 |
1.2662 | 0.0555 | 30 | 0.3060 |
1.4139 | 0.0647 | 35 | 0.3003 |
1.4329 | 0.0739 | 40 | 0.3076 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.1
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.3
- Downloads last month
- 12
Model tree for besimray/miner1_f81563ba-5c94-4caf-a3b7-56d28e62fae5_1731033882
Base model
dltjdgh0928/test_instruction