TREC 6-class Task: distilbert-base-cased

Model description

A simple base distilBERT model trained on the "trec" dataset.

Intended uses & limitations

How to use

Transformers
# Load model and tokenizer
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Use pipeline
from transformers import pipeline

model_name = "aychang/distilbert-base-cased-trec-coarse"

nlp = pipeline("sentiment-analysis", model=model_name, tokenizer=model_name)

results = nlp(["Where did the queen go?", "Why did the Queen hire 1000 ML Engineers?"])
AdaptNLP
from adaptnlp import EasySequenceClassifier

model_name = "aychang/distilbert-base-cased-trec-coarse"
texts = ["Where did the queen go?", "Why did the Queen hire 1000 ML Engineers?"]

classifer = EasySequenceClassifier
results = classifier.tag_text(text=texts, model_name_or_path=model_name, mini_batch_size=2)

Limitations and bias

This is minimal language model trained on a benchmark dataset.

Training data

TREC https://huggingface.co/datasets/trec

Training procedure

Preprocessing, hardware used, hyperparameters...

Hardware

One V100

Hyperparameters and Training Args

from transformers import TrainingArguments

training_args = TrainingArguments(
    output_dir='./models',
    overwrite_output_dir=False,
    num_train_epochs=2,
    per_device_train_batch_size=16,
    per_device_eval_batch_size=16,
    warmup_steps=500,
    weight_decay=0.01,
    evaluation_strategy="steps",
    logging_dir='./logs',
    fp16=False,
    eval_steps=500,
    save_steps=300000
)

Eval results

{'epoch': 2.0,
 'eval_accuracy': 0.97,
 'eval_f1': array([0.98220641, 0.91620112, 1.        , 0.97709924, 0.98678414,
        0.97560976]),
 'eval_loss': 0.14275787770748138,
 'eval_precision': array([0.96503497, 0.96470588, 1.        , 0.96969697, 0.98245614,
        0.96385542]),
 'eval_recall': array([1.        , 0.87234043, 1.        , 0.98461538, 0.99115044,
        0.98765432]),
 'eval_runtime': 0.9731,
 'eval_samples_per_second': 513.798}
Downloads last month
24
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train aychang/distilbert-base-cased-trec-coarse

Evaluation results