YACHT-Llama-3-Ko-8B
π΅ [JayLee LLMs Signature Tag] : βοΈ "I need a Jay Jay chat boy" π΅
β¨ Navigating the High Seas of Data: Crafting the Ultimate Yacht Insights with Merged LLMs β¨
β¨ Arenβt you sometimes tired of just doing LLM & RAG & Normal Chat app? I'll show you a cool app soon integrating this my merged one(Tuned car). It wouldn't be fun if we only developed cars, so life is ultimately about driving cars and socializing with people. β¨
𧨠When using the Merge model for commercial purposes, a lot of care is needed. A mix of many models can be good, but it can also pose many risks. π§¨
ποΈ Merged Model Series Yacht Features
Welcome to the merged model series yacht! This provides an overview of the powerful features and functionalities that this series brings together, akin to a sleek, modern yacht sailing across the digital ocean.
1. Function Calling & JSON Outputs
- Offers precise function calling and structured JSON outputs via specialized tokens like
<tools>
,<tool_call>
, and<tool_response>
. Streamlines system communication for developers.
2. Conversational Interaction
- Avoids excessive "SYSTEM MESSAGE" chatter while delivering seamless, friendly dialogue.
- Specializes in answering questions with precision, handling arithmetic and tabular data effortlessly.
3. Expanded Context Length
- Extends the context length to 256k tokens using PoSE, offering a broader field of data analysis.
4. Multilingual Capabilities
- Transfers instruction-following from English to Korean for reliable interaction across languages.
5. Optimized Dialogue & Safety
- Aligns with human preferences using fine-tuning (SFT) and reinforcement learning (RLHF), ensuring helpful and safe dialogues.
6. Precision Merging
- Merges foundational and preview models for Korean language through task arithmetic, providing seamless integration.
7. Specialized Biomedical Knowledge
- Specializes in biomedical tasks with accurate responses for healthcare professionals and researchers.
8. Novel Training & Collaboration
- Combines ORPO method and dolphin preference datasets for high-quality conversation and collaboration.
The merged model series yacht offers unparalleled functionality, drawing together a fleet of specialized models. Whether you need precise function calling, multilingual capabilities, or conversational AI, this yacht has every deck optimized to navigate the digital ocean with style and precision.
π Merge Method
This model was merged using the DARE TIES merge method using NousResearch/Meta-Llama-3-8B as a base.
π©± Models Merged
The following models were included in the merge:
- NousResearch/Hermes-2-Pro-Llama-3-8B
- cognitivecomputations/dolphin-2.9-llama3-8b
- winglian/llama-3-8b-256k-PoSE
- maum-ai/Llama-3-MAAL-8B-Instruct-v0.1
- asiansoul/Llama-3-Open-Ko-Linear-8B
- NousResearch/Meta-Llama-3-8B-Instruct
- nvidia/Llama3-ChatQA-1.5-8B
- Danielbrdz/Barcenas-Llama3-8b-ORPO
- aaditya/Llama3-OpenBioLLM-8B
π ModelFile
The parameters below depend on the performance of your Ollma-based computer. Therefore, the settings below do not necessarily mean that the performance will be as good.
ollama create yacht -f ./Modelfile_Q5_K_M
FROM yacht-llama-3-ko-8b-Q5_K_M.gguf
TEMPLATE """
{{- if .System }}
system
<s>{{ .System }}</s>
{{- end }}
user
<s>Human:
{{ .Prompt }}</s>
assistant
<s>Assistant:
"""
SYSTEM """
μΉμ ν μ±λ΄μΌλ‘μ μλλ°©μ μμ²μ μ΅λν μμΈνκ³ μΉμ νκ² λ΅νμ. λͺ¨λ λλ΅μ νκ΅μ΄(Korean)μΌλ‘ λλ΅ν΄μ€.
"""
PARAMETER temperature 0.7
PARAMETER num_predict 3000
PARAMETER num_ctx 250000
PARAMETER stop "<s>"
PARAMETER stop "</s>"
πͺ Configuration
Computer System
Hardware:
Hardware Overview:
Model Name: MacBook Pro
Model Identifier: MacBookPro18,2
Chip: Apple M1 Max
Total Number of Cores: 10 (8 performance and 2 efficiency)
Memory: 64 GB
System Firmware Version: 10151.101.3
The following YAML configuration was used to produce this model:
models:
- model: NousResearch/Meta-Llama-3-8B
# Base model providing a general foundation without specific parameters
- model: NousResearch/Meta-Llama-3-8B-Instruct
parameters:
density: 0.60
weight: 0.25
- model: winglian/llama-3-8b-256k-PoSE
parameters:
density: 0.55
weight: 0.15
- model: nvidia/Llama3-ChatQA-1.5-8B
parameters:
density: 0.55
weight: 0.1
- model: asiansoul/Llama-3-Open-Ko-Linear-8B
parameters:
density: 0.55
weight: 0.2
- model: maum-ai/Llama-3-MAAL-8B-Instruct-v0.1
parameters:
density: 0.55
weight: 0.1
- model: NousResearch/Hermes-2-Pro-Llama-3-8B
parameters:
density: 0.55
weight: 0.1
- model: cognitivecomputations/dolphin-2.9-llama3-8b
parameters:
density: 0.55
weight: 0.05
- model: Danielbrdz/Barcenas-Llama3-8b-ORPO
parameters:
density: 0.55
weight: 0.05
- model: aaditya/Llama3-OpenBioLLM-8B
parameters:
density: 0.55
weight: 0.1
merge_method: dare_ties
base_model: NousResearch/Meta-Llama-3-8B
parameters:
int8_mask: true
dtype: bfloat16
β¨οΈ Codes
Code that serves as a summary
- TXT, PDF, WiKi Summary Code supporting both Korean, English By BrianHan(my follower) -> Because several models are mixed, if you attach a large file and ask a question in Korean and request a summary answer in Korean, sometimes the answer is given in English only for the large ctx cuz based on english maybe(for the several model test). In that case, I asked them to translate it into Korean using Google Translator. Even though the answer was sent in English, I confirmed that it was interpreted accurately and sent.
(.venv) jaylee@lees-MacBook-Pro-2 tmp % python han.py -m yacht:latest -s steve.txt -l en
Model: yacht:latest, Langguage: en
Source : steve.txt
Processing input...
Reading text file...
Summarizing content...using ollama model : yacht:latest
import sys
import os
import requests
from bs4 import BeautifulSoup
import PyPDF2
from langchain_community.chat_models import ChatOllama
from langchain.schema import AIMessage, HumanMessage, SystemMessage
from googletrans import Translator
from langchain.chains.summarize import load_summarize_chain
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_core.prompts import PromptTemplate
from langchain.docstore.document import Document
import argparse
import logging
def clean_output(text):
text = text.replace("</s>", "").strip()
return text
def translate_text(text, src_lang, dest_lang):
"""Translates text from source language to destination language using Google Translate."""
if src_lang == dest_lang:
return text
translator = Translator()
try:
translation = translator.translate(text, src=src_lang, dest=dest_lang)
return translation.text
except Exception as e:
logging.error(f"Translation failed: {e}")
return text
def detect_language(text):
"""Detects the language of the given text."""
translator = Translator()
try:
detected = translator.detect(text)
return detected.lang
except Exception as e:
logging.error(f"Language detection failed: {e}")
return None
def refine_summary(data,target_lang,ollama_model):
if target_lang == 'ko':
prompt_template = """
λ€μ ν
μ€νΈμ λν μ λ¬Έμ μΈ μμ½μ μ 곡νμ¬ μ£ΌμΈμ. μμ½μ νκ΅μ΄μ μΈμ΄μ λμμ€μ λ§κ² μ΅κ³ μμ€μ λͺ
νμ±κ³Ό μΈλΆ μ¬νμ μ€μν΄μ ν©λλ€
Text: `{text}`
CONCISE SUMMARY : """
refine_template= """
μ΅μ’
μμ½μ μ 곡νμ¬ μ£ΌμΈμ.
μ€κ° μμ½μ μ 곡 λ€μκ³Ό κ°μ΄ μ 곡ν©λλ€ : {existing_answer}.
μ΅μ’
μμ½μ νκ΅μ΄μ μΈμ΄μ λμμ€μ λ§κ² μ΅κ³ μμ μ λͺ
νμ±κ³Ό μΈλΆ μ¬νμ μ€μν΄μΌ ν©λλ€.
-------------
{text}
-------------
μ΅μ’
μμ½μ λμ
λΆκ° μμ΄μΌ ν©λλ€. λμ
λΆλ μ 체 μ£Όμ λ₯Ό μ 곡νμ¬μΌ ν©λλ€.
λ³Έλ¬Έμ BULLET POINTλ‘ μμνμ¬μΌ ν©λλ€. λ§μ§λ§μ κ²°λ‘ λΆκ° μμ΄μΌ ν©λλ€. κ²°λ‘ λΆλΆμ μ΅μ’
μμ½μ κ²°λ‘ μ΄μ΄μΌ ν©λλ€. """
else: # default to English if not Korean
prompt_template = """
Write a concise summary of the following extracting the key information:
Text: `{text}`
CONCISE SUMMARY : """
refine_template= """
Your job is to produce a final summary.
I have provided an existing summary up to a certain point : {existing_answer}.
Please refine eht existing summary with some more context blow.
-------------
{text}
-------------
Start the final summary with an INTRODUCTION PARAGRAPH that gives an overview of the the topic FOLLOWED
by BULLET POINTS if possible AND end the summary with CONCLUSION PHRASE. """
docs = [Document(page_content=data)]
initial_prompt = PromptTemplate(template=prompt_template, input_variables=['text'])
refine_prompt = PromptTemplate(
template=refine_template,
input_variables=['existing_answer', 'text']
)
llm = ChatOllama(model=ollama_model)
chain = load_summarize_chain(
llm=llm,
chain_type='refine',
question_prompt=initial_prompt,
refine_prompt=refine_prompt,
return_intermediate_steps=False
)
output_summary = chain.invoke(docs)
output_summary['output_text']
cleaned_content = clean_output(output_summary['output_text'])
# print(cleaned_content)
content_lang = detect_language(cleaned_content)
print(f"Current content language: {content_lang}, Target language to be translated to: {target_lang}")
if content_lang != target_lang:
return translate_text(cleaned_content, content_lang, target_lang)
return cleaned_content
def invoke_model(text,target_lang,ollama_model):
if target_lang == 'ko':
messages = [
SystemMessage(content='λ¬Έμμ ν΅μ¬ μμ½μ μμΈνκ² μ κ³΅ν΄ μ£Όμ€ μ λ¬Έκ°λ‘μ, λ€μ λ¬Έμλ₯Ό μμ½ν΄ μ£ΌμΈμ.'),
HumanMessage(content=f'λ€μ ν
μ€νΈμ λν μ λ¬Έμ μμ½μ μ κ³΅ν΄ μ£ΌμΈμ. μμ½μ νκ΅μ΄μ μΈμ΄μ λμμ€μ λ§κ² μ΅κ³ μμ€μ λͺ
νμ±κ³Ό μΈλΆ μ¬νμ μ€μν΄μΌ ν©λλ€:\n\nTEXT: {text}')
]
else: # default to English if not Korean
messages = [
SystemMessage(content='As an adept summarizer, your expertise is required to condense the following document into its essential points in detail.'),
HumanMessage(content=f'Kindly provide an expert summary of the text below, adhering to the highest standards of clarity and detail. Ensure the response is tailored to the linguistic nuances of English:\n\nTEXT: {text}')
]
try:
llm = ChatOllama(model=ollama_model)
summary_output = llm.invoke(messages)
if isinstance(summary_output, AIMessage):
cleaned_content = clean_output(summary_output.content)
# print(cleaned_content)
content_lang = detect_language(cleaned_content)
print(f"Current content language: {content_lang}, Target language to be translated to: {target_lang}")
if content_lang != target_lang:
return translate_text(cleaned_content, content_lang, target_lang)
return cleaned_content
else:
return "Unexpected data type for model output."
except Exception as e:
print(f"An error occurred while processing the model output: {str(e)}")
return None
def fetch_text_from_url(url):
try:
response = requests.get(url)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
main_content = soup.select_one('#mw-content-text, #bodyContent, .content')
if not main_content:
logging.error("No content found in the expected sections.")
return None
text_content = ' '.join(p.get_text() for p in main_content.find_all(['p', 'li'], string=True))
return text_content
except requests.RequestException as e:
print(f"Failed to fetch data from URL: {str(e)}")
return None
def read_text_file(file_path):
with open(file_path, "r", encoding="utf-8") as file:
return file.read()
def read_pdf(file_path):
'''
with open(file_path, "rb") as file:
reader = PyPDF2.PdfReader(file)
text_content = ""
for page in reader.pages:
extracted_text = page.extract_text()
if extracted_text:
text_content += extracted_text + "\n"
return text_content
'''
try:
with open(file_path, "rb") as file:
reader = PyPDF2.PdfReader(file)
return ' '.join(page.extract_text() for page in reader.pages if page.extract_text())
except Exception as e:
logging.error(f"Error reading PDF file: {e}")
return None
def summarize_content(source,language,model):
print("Processing input...")
text_content = None
if source.startswith(('http://', 'https://')):
print("Fetching content from URL...")
text_content = fetch_text_from_url(source)
elif os.path.isfile(source):
_, file_extension = os.path.splitext(source)
if file_extension.lower() == '.pdf':
print("Reading PDF...")
text_content = read_pdf(source)
elif file_extension.lower() in ['.txt', '.text']:
print("Reading text file...")
text_content = read_text_file(source)
else:
print("Unsupported file type")
return
else:
print("Unsupported file type")
return
if text_content:
print(f"Summarizing content...using ollama model : {model} ")
summary = refine_summary(text_content, language,model)
print("\n--- Summary of the document ---\n")
print(summary)
else:
print("No text found or unable to extract text from source.")
if __name__ == '__main__':
defSrc ='https://en.wikipedia.org/wiki/Britney_Spears'
defModel='llama3:latest'
defLang = 'en'
parser = argparse.ArgumentParser()
parser.add_argument('-s',dest='source',default = defSrc,help='text file or URL');
parser.add_argument('-m',dest='model',default = defModel,help='ollama Model');
parser.add_argument('-l',dest='language',default = defLang,help='en for English, kr for Korean');
arg= parser.parse_args()
print(f"Model: {arg.model}, Langguage: {arg.language}")
print(f"Source : {arg.source}")
summarize_content(arg.source,arg.language,arg.model)
'''
if len(sys.argv) < 2:
print("Usage: python script.py <file_path_or_url>")
else:
source = sys.argv[1]
summarize_content(source)
'''
π΄ Test Result(Streamlit + Ollama Server)
π΅ββοΈ Test Result(Summary Code)
- Downloads last month
- 63