sentiment-seq_bn-4
This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2917
- Accuracy: 0.8847
- Precision: 0.8648
- Recall: 0.8534
- F1: 0.8588
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 30
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.5556 | 1.0 | 122 | 0.5148 | 0.7343 | 0.6852 | 0.6970 | 0.6899 |
0.476 | 2.0 | 244 | 0.4507 | 0.7870 | 0.7577 | 0.6918 | 0.7095 |
0.4238 | 3.0 | 366 | 0.4003 | 0.8195 | 0.7958 | 0.7473 | 0.7644 |
0.3735 | 4.0 | 488 | 0.3799 | 0.8371 | 0.8089 | 0.7872 | 0.7966 |
0.3548 | 5.0 | 610 | 0.3634 | 0.8471 | 0.8153 | 0.8168 | 0.8160 |
0.3213 | 6.0 | 732 | 0.3584 | 0.8421 | 0.8077 | 0.8208 | 0.8136 |
0.3085 | 7.0 | 854 | 0.3318 | 0.8622 | 0.8448 | 0.8125 | 0.8259 |
0.2981 | 8.0 | 976 | 0.3429 | 0.8672 | 0.8722 | 0.7985 | 0.8238 |
0.2788 | 9.0 | 1098 | 0.3304 | 0.8797 | 0.8795 | 0.8224 | 0.8439 |
0.259 | 10.0 | 1220 | 0.3076 | 0.8772 | 0.8535 | 0.8481 | 0.8507 |
0.2587 | 11.0 | 1342 | 0.3025 | 0.8747 | 0.8471 | 0.8538 | 0.8503 |
0.2391 | 12.0 | 1464 | 0.2990 | 0.8847 | 0.8697 | 0.8459 | 0.8565 |
0.2443 | 13.0 | 1586 | 0.2919 | 0.8797 | 0.8600 | 0.8449 | 0.8518 |
0.237 | 14.0 | 1708 | 0.3040 | 0.8772 | 0.8483 | 0.8631 | 0.8550 |
0.2176 | 15.0 | 1830 | 0.2937 | 0.8897 | 0.8649 | 0.8720 | 0.8683 |
0.2202 | 16.0 | 1952 | 0.2920 | 0.8822 | 0.8610 | 0.8517 | 0.8561 |
0.2203 | 17.0 | 2074 | 0.2923 | 0.8822 | 0.8585 | 0.8567 | 0.8575 |
0.2204 | 18.0 | 2196 | 0.2927 | 0.8847 | 0.8621 | 0.8584 | 0.8602 |
0.2124 | 19.0 | 2318 | 0.2920 | 0.8872 | 0.8672 | 0.8577 | 0.8622 |
0.2108 | 20.0 | 2440 | 0.2917 | 0.8847 | 0.8648 | 0.8534 | 0.8588 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
Model tree for apwic/sentiment-seq_bn-4
Base model
indolem/indobert-base-uncased