sentiment-lora-r8-0
This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3235
- Accuracy: 0.8596
- Precision: 0.8307
- Recall: 0.8307
- F1: 0.8307
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 30
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.5593 | 1.0 | 122 | 0.4990 | 0.7243 | 0.6593 | 0.6374 | 0.6446 |
0.4939 | 2.0 | 244 | 0.4696 | 0.7619 | 0.7265 | 0.7590 | 0.7346 |
0.4469 | 3.0 | 366 | 0.4036 | 0.8070 | 0.7670 | 0.7760 | 0.7711 |
0.3781 | 4.0 | 488 | 0.3748 | 0.8195 | 0.7827 | 0.7798 | 0.7812 |
0.3532 | 5.0 | 610 | 0.4110 | 0.8045 | 0.7687 | 0.8017 | 0.7792 |
0.3273 | 6.0 | 732 | 0.3612 | 0.8321 | 0.7960 | 0.8137 | 0.8036 |
0.3098 | 7.0 | 854 | 0.3552 | 0.8371 | 0.8017 | 0.8197 | 0.8094 |
0.2953 | 8.0 | 976 | 0.3438 | 0.8546 | 0.8239 | 0.8272 | 0.8255 |
0.28 | 9.0 | 1098 | 0.3590 | 0.8446 | 0.8102 | 0.8301 | 0.8186 |
0.2701 | 10.0 | 1220 | 0.3354 | 0.8571 | 0.8299 | 0.8214 | 0.8255 |
0.2694 | 11.0 | 1342 | 0.3366 | 0.8571 | 0.8281 | 0.8264 | 0.8272 |
0.2657 | 12.0 | 1464 | 0.3378 | 0.8596 | 0.8287 | 0.8382 | 0.8332 |
0.2603 | 13.0 | 1586 | 0.3295 | 0.8647 | 0.8377 | 0.8342 | 0.8359 |
0.2564 | 14.0 | 1708 | 0.3318 | 0.8596 | 0.8299 | 0.8332 | 0.8315 |
0.2583 | 15.0 | 1830 | 0.3291 | 0.8596 | 0.8299 | 0.8332 | 0.8315 |
0.2438 | 16.0 | 1952 | 0.3323 | 0.8571 | 0.8260 | 0.8339 | 0.8298 |
0.2465 | 17.0 | 2074 | 0.3225 | 0.8546 | 0.8273 | 0.8171 | 0.8219 |
0.2494 | 18.0 | 2196 | 0.3292 | 0.8571 | 0.8266 | 0.8314 | 0.8289 |
0.2382 | 19.0 | 2318 | 0.3246 | 0.8571 | 0.8273 | 0.8289 | 0.8281 |
0.236 | 20.0 | 2440 | 0.3235 | 0.8596 | 0.8307 | 0.8307 | 0.8307 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2
Model tree for apwic/sentiment-lora-r8-0
Base model
indolem/indobert-base-uncased