Edit model card

nerui-pt-pl30-4

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0617
  • Location Precision: 0.9159
  • Location Recall: 0.9515
  • Location F1: 0.9333
  • Location Number: 103
  • Organization Precision: 0.9512
  • Organization Recall: 0.9123
  • Organization F1: 0.9313
  • Organization Number: 171
  • Person Precision: 0.9621
  • Person Recall: 0.9695
  • Person F1: 0.9658
  • Person Number: 131
  • Overall Precision: 0.9454
  • Overall Recall: 0.9407
  • Overall F1: 0.9431
  • Overall Accuracy: 0.9878

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100.0

Training results

Training Loss Epoch Step Validation Loss Location Precision Location Recall Location F1 Location Number Organization Precision Organization Recall Organization F1 Organization Number Person Precision Person Recall Person F1 Person Number Overall Precision Overall Recall Overall F1 Overall Accuracy
0.8501 1.0 96 0.3899 0.0 0.0 0.0 103 0.2283 0.2456 0.2366 171 0.2828 0.3130 0.2971 131 0.2492 0.2049 0.2249 0.8652
0.3538 2.0 192 0.2020 0.3805 0.4175 0.3981 103 0.5340 0.6433 0.5836 171 0.7063 0.8626 0.7766 131 0.5553 0.6568 0.6018 0.9348
0.1818 3.0 288 0.1081 0.8352 0.7379 0.7835 103 0.7514 0.7953 0.7727 171 0.9203 0.9695 0.9442 131 0.8268 0.8370 0.8319 0.9660
0.1278 4.0 384 0.0764 0.8165 0.8641 0.8396 103 0.7989 0.8363 0.8171 171 0.9412 0.9771 0.9588 131 0.8491 0.8889 0.8685 0.9751
0.1043 5.0 480 0.0636 0.8378 0.9029 0.8692 103 0.8529 0.8480 0.8504 171 0.9549 0.9695 0.9621 131 0.8816 0.9012 0.8913 0.9796
0.0902 6.0 576 0.0551 0.8 0.9320 0.8610 103 0.8683 0.8480 0.8580 171 0.9769 0.9695 0.9732 131 0.8825 0.9086 0.8954 0.9818
0.085 7.0 672 0.0493 0.9381 0.8835 0.9100 103 0.8579 0.9181 0.8870 171 0.9769 0.9695 0.9732 131 0.9146 0.9259 0.9202 0.9851
0.0767 8.0 768 0.0471 0.8962 0.9223 0.9091 103 0.8895 0.8947 0.8921 171 0.9769 0.9695 0.9732 131 0.9191 0.9259 0.9225 0.9856
0.0726 9.0 864 0.0472 0.8899 0.9417 0.9151 103 0.8922 0.8713 0.8817 171 0.9846 0.9771 0.9808 131 0.9212 0.9235 0.9223 0.9845
0.0632 10.0 960 0.0418 0.8909 0.9515 0.9202 103 0.8947 0.8947 0.8947 171 0.9621 0.9695 0.9658 131 0.9153 0.9333 0.9242 0.9862
0.0615 11.0 1056 0.0432 0.9048 0.9223 0.9135 103 0.9029 0.9240 0.9133 171 0.9695 0.9695 0.9695 131 0.9246 0.9383 0.9314 0.9878
0.0576 12.0 1152 0.0386 0.9038 0.9126 0.9082 103 0.8876 0.9240 0.9054 171 0.9769 0.9695 0.9732 131 0.9199 0.9358 0.9278 0.9873
0.0559 13.0 1248 0.0401 0.9604 0.9417 0.9510 103 0.9017 0.9123 0.9070 171 0.9697 0.9771 0.9734 131 0.9384 0.9407 0.9396 0.9878
0.0525 14.0 1344 0.0485 0.875 0.9515 0.9116 103 0.9236 0.8480 0.8841 171 0.9697 0.9771 0.9734 131 0.9252 0.9160 0.9206 0.9848
0.0472 15.0 1440 0.0359 0.9340 0.9612 0.9474 103 0.9294 0.9240 0.9267 171 0.9771 0.9771 0.9771 131 0.9459 0.9506 0.9483 0.9903
0.0455 16.0 1536 0.0400 0.9065 0.9417 0.9238 103 0.9444 0.8947 0.9189 171 0.9771 0.9771 0.9771 131 0.945 0.9333 0.9391 0.9881
0.0418 17.0 1632 0.0433 0.9314 0.9223 0.9268 103 0.9195 0.9357 0.9275 171 0.9549 0.9695 0.9621 131 0.9340 0.9432 0.9386 0.9865
0.0395 18.0 1728 0.0411 0.9074 0.9515 0.9289 103 0.9118 0.9064 0.9091 171 0.9549 0.9695 0.9621 131 0.9246 0.9383 0.9314 0.9873
0.0383 19.0 1824 0.0411 0.9238 0.9417 0.9327 103 0.9405 0.9240 0.9322 171 0.9621 0.9695 0.9658 131 0.9432 0.9432 0.9432 0.9878
0.0347 20.0 1920 0.0474 0.8684 0.9612 0.9124 103 0.9379 0.8830 0.9096 171 0.9771 0.9771 0.9771 131 0.9310 0.9333 0.9322 0.9865
0.0368 21.0 2016 0.0400 0.9091 0.9709 0.9390 103 0.9186 0.9240 0.9213 171 0.9697 0.9771 0.9734 131 0.9324 0.9531 0.9426 0.9892
0.0359 22.0 2112 0.0388 0.8991 0.9515 0.9245 103 0.9086 0.9298 0.9191 171 0.9621 0.9695 0.9658 131 0.9231 0.9481 0.9354 0.9870
0.0325 23.0 2208 0.0443 0.8534 0.9612 0.9041 103 0.9130 0.8596 0.8855 171 0.9771 0.9771 0.9771 131 0.9167 0.9235 0.9200 0.9859
0.0309 24.0 2304 0.0464 0.8609 0.9612 0.9083 103 0.9273 0.8947 0.9107 171 0.9624 0.9771 0.9697 131 0.9201 0.9383 0.9291 0.9851
0.0307 25.0 2400 0.0469 0.9 0.9612 0.9296 103 0.9329 0.8947 0.9134 171 0.9621 0.9695 0.9658 131 0.9335 0.9358 0.9346 0.9876
0.0311 26.0 2496 0.0425 0.9604 0.9417 0.9510 103 0.9364 0.9474 0.9419 171 0.9624 0.9771 0.9697 131 0.9509 0.9556 0.9532 0.9892
0.0283 27.0 2592 0.0381 0.9245 0.9515 0.9378 103 0.9244 0.9298 0.9271 171 0.9621 0.9695 0.9658 131 0.9366 0.9481 0.9423 0.9892
0.0294 28.0 2688 0.0444 0.9346 0.9709 0.9524 103 0.9240 0.9240 0.9240 171 0.9697 0.9771 0.9734 131 0.9415 0.9531 0.9472 0.9878
0.0269 29.0 2784 0.0457 0.9167 0.9612 0.9384 103 0.9345 0.9181 0.9263 171 0.9697 0.9771 0.9734 131 0.9412 0.9481 0.9446 0.9887
0.0261 30.0 2880 0.0444 0.9327 0.9417 0.9372 103 0.9086 0.9298 0.9191 171 0.9621 0.9695 0.9658 131 0.9319 0.9457 0.9387 0.9881
0.0272 31.0 2976 0.0400 0.9327 0.9417 0.9372 103 0.9138 0.9298 0.9217 171 0.9697 0.9771 0.9734 131 0.9366 0.9481 0.9423 0.9892
0.0219 32.0 3072 0.0442 0.9135 0.9223 0.9179 103 0.8960 0.9064 0.9012 171 0.9697 0.9771 0.9734 131 0.9242 0.9333 0.9287 0.9878
0.0249 33.0 3168 0.0400 0.8972 0.9320 0.9143 103 0.9172 0.9064 0.9118 171 0.9624 0.9771 0.9697 131 0.9267 0.9358 0.9312 0.9876
0.0244 34.0 3264 0.0420 0.9151 0.9417 0.9282 103 0.9235 0.9181 0.9208 171 0.9621 0.9695 0.9658 131 0.9338 0.9407 0.9373 0.9887
0.0234 35.0 3360 0.0519 0.8919 0.9612 0.9252 103 0.9030 0.8713 0.8869 171 0.9478 0.9695 0.9585 131 0.9146 0.9259 0.9202 0.9859
0.0215 36.0 3456 0.0504 0.8991 0.9515 0.9245 103 0.9202 0.8772 0.8982 171 0.9621 0.9695 0.9658 131 0.9282 0.9259 0.9271 0.9873
0.0219 37.0 3552 0.0520 0.9231 0.9320 0.9275 103 0.9172 0.9064 0.9118 171 0.9621 0.9695 0.9658 131 0.9333 0.9333 0.9333 0.9876
0.0234 38.0 3648 0.0489 0.8684 0.9612 0.9124 103 0.9494 0.8772 0.9119 171 0.9695 0.9695 0.9695 131 0.9330 0.9284 0.9307 0.9876
0.0215 39.0 3744 0.0456 0.9159 0.9515 0.9333 103 0.9455 0.9123 0.9286 171 0.9771 0.9771 0.9771 131 0.9479 0.9432 0.9455 0.9895
0.02 40.0 3840 0.0540 0.9238 0.9417 0.9327 103 0.9329 0.8947 0.9134 171 0.9621 0.9695 0.9658 131 0.9401 0.9309 0.9355 0.9881
0.0192 41.0 3936 0.0514 0.9151 0.9417 0.9282 103 0.9390 0.9006 0.9194 171 0.9695 0.9695 0.9695 131 0.9426 0.9333 0.9380 0.9890
0.0189 42.0 4032 0.0502 0.9151 0.9417 0.9282 103 0.9329 0.8947 0.9134 171 0.9695 0.9695 0.9695 131 0.9401 0.9309 0.9355 0.9873
0.0177 43.0 4128 0.0429 0.9238 0.9417 0.9327 103 0.9176 0.9123 0.9150 171 0.9695 0.9695 0.9695 131 0.9360 0.9383 0.9371 0.9884
0.0161 44.0 4224 0.0555 0.8839 0.9612 0.9209 103 0.9441 0.8889 0.9157 171 0.9695 0.9695 0.9695 131 0.9356 0.9333 0.9345 0.9873
0.0159 45.0 4320 0.0532 0.8772 0.9709 0.9217 103 0.9620 0.8889 0.9240 171 0.9474 0.9618 0.9545 131 0.9333 0.9333 0.9333 0.9878
0.0152 46.0 4416 0.0521 0.8991 0.9515 0.9245 103 0.9333 0.9006 0.9167 171 0.9697 0.9771 0.9734 131 0.9360 0.9383 0.9371 0.9878
0.0171 47.0 4512 0.0536 0.9151 0.9417 0.9282 103 0.9458 0.9181 0.9318 171 0.9621 0.9695 0.9658 131 0.9431 0.9407 0.9419 0.9870
0.0147 48.0 4608 0.0537 0.8870 0.9903 0.9358 103 0.9684 0.8947 0.9301 171 0.9695 0.9695 0.9695 131 0.9455 0.9432 0.9444 0.9884
0.0156 49.0 4704 0.0554 0.9252 0.9612 0.9429 103 0.9281 0.9064 0.9172 171 0.9695 0.9695 0.9695 131 0.9407 0.9407 0.9407 0.9878
0.0149 50.0 4800 0.0611 0.9 0.9612 0.9296 103 0.95 0.8889 0.9184 171 0.9695 0.9695 0.9695 131 0.9426 0.9333 0.9380 0.9884
0.0136 51.0 4896 0.0622 0.8899 0.9417 0.9151 103 0.9620 0.8889 0.9240 171 0.9621 0.9695 0.9658 131 0.9424 0.9284 0.9353 0.9867
0.0142 52.0 4992 0.0523 0.9159 0.9515 0.9333 103 0.9401 0.9181 0.9290 171 0.9621 0.9695 0.9658 131 0.9409 0.9432 0.9420 0.9878
0.0135 53.0 5088 0.0513 0.9167 0.9612 0.9384 103 0.9294 0.9240 0.9267 171 0.9697 0.9771 0.9734 131 0.9390 0.9506 0.9448 0.9878
0.0136 54.0 5184 0.0532 0.9151 0.9417 0.9282 103 0.9012 0.9064 0.9038 171 0.9621 0.9695 0.9658 131 0.9244 0.9358 0.9301 0.9867
0.0121 55.0 5280 0.0602 0.9159 0.9515 0.9333 103 0.9444 0.8947 0.9189 171 0.9695 0.9695 0.9695 131 0.945 0.9333 0.9391 0.9884
0.013 56.0 5376 0.0534 0.9320 0.9320 0.9320 103 0.9240 0.9240 0.9240 171 0.9621 0.9695 0.9658 131 0.9384 0.9407 0.9396 0.9887
0.0133 57.0 5472 0.0589 0.9159 0.9515 0.9333 103 0.9333 0.9006 0.9167 171 0.9695 0.9695 0.9695 131 0.9404 0.9358 0.9381 0.9873
0.013 58.0 5568 0.0602 0.9065 0.9417 0.9238 103 0.9451 0.9064 0.9254 171 0.9695 0.9695 0.9695 131 0.9428 0.9358 0.9393 0.9878
0.0147 59.0 5664 0.0539 0.8981 0.9417 0.9194 103 0.9286 0.9123 0.9204 171 0.9771 0.9771 0.9771 131 0.9361 0.9407 0.9384 0.9887
0.013 60.0 5760 0.0661 0.8991 0.9515 0.9245 103 0.9455 0.9123 0.9286 171 0.9695 0.9695 0.9695 131 0.9407 0.9407 0.9407 0.9873
0.0113 61.0 5856 0.0606 0.9327 0.9417 0.9372 103 0.9398 0.9123 0.9258 171 0.9621 0.9695 0.9658 131 0.9453 0.9383 0.9418 0.9887
0.012 62.0 5952 0.0615 0.9057 0.9320 0.9187 103 0.9212 0.8889 0.9048 171 0.9621 0.9695 0.9658 131 0.9305 0.9259 0.9282 0.9862
0.0129 63.0 6048 0.0613 0.9083 0.9612 0.9340 103 0.9747 0.9006 0.9362 171 0.9621 0.9695 0.9658 131 0.9524 0.9383 0.9453 0.9884
0.0123 64.0 6144 0.0532 0.9327 0.9417 0.9372 103 0.9464 0.9298 0.9381 171 0.9695 0.9695 0.9695 131 0.9504 0.9457 0.9480 0.9895
0.012 65.0 6240 0.0529 0.9143 0.9320 0.9231 103 0.9341 0.9123 0.9231 171 0.9695 0.9695 0.9695 131 0.9404 0.9358 0.9381 0.9887
0.0118 66.0 6336 0.0503 0.9143 0.9320 0.9231 103 0.9231 0.9123 0.9176 171 0.9618 0.9618 0.9618 131 0.9333 0.9333 0.9333 0.9887
0.0121 67.0 6432 0.0564 0.9057 0.9320 0.9187 103 0.9290 0.9181 0.9235 171 0.9695 0.9695 0.9695 131 0.9360 0.9383 0.9371 0.9878
0.0094 68.0 6528 0.0560 0.9083 0.9612 0.9340 103 0.9286 0.9123 0.9204 171 0.9545 0.9618 0.9582 131 0.9315 0.9407 0.9361 0.9878
0.0111 69.0 6624 0.0634 0.9159 0.9515 0.9333 103 0.9394 0.9064 0.9226 171 0.9695 0.9695 0.9695 131 0.9429 0.9383 0.9406 0.9867
0.0107 70.0 6720 0.0596 0.9151 0.9417 0.9282 103 0.9451 0.9064 0.9254 171 0.9695 0.9695 0.9695 131 0.9451 0.9358 0.9404 0.9881
0.0095 71.0 6816 0.0612 0.9151 0.9417 0.9282 103 0.9167 0.9006 0.9086 171 0.9695 0.9695 0.9695 131 0.9333 0.9333 0.9333 0.9876
0.0092 72.0 6912 0.0639 0.9074 0.9515 0.9289 103 0.9506 0.9006 0.9249 171 0.9771 0.9771 0.9771 131 0.9476 0.9383 0.9429 0.9881
0.0095 73.0 7008 0.0673 0.9074 0.9515 0.9289 103 0.9390 0.9006 0.9194 171 0.9695 0.9695 0.9695 131 0.9404 0.9358 0.9381 0.9870
0.0092 74.0 7104 0.0616 0.9151 0.9417 0.9282 103 0.9281 0.9064 0.9172 171 0.9695 0.9695 0.9695 131 0.9381 0.9358 0.9370 0.9873
0.0094 75.0 7200 0.0666 0.8981 0.9417 0.9194 103 0.9563 0.8947 0.9245 171 0.9695 0.9695 0.9695 131 0.9449 0.9309 0.9378 0.9878
0.0093 76.0 7296 0.0617 0.9 0.9612 0.9296 103 0.9568 0.9064 0.9309 171 0.9771 0.9771 0.9771 131 0.9479 0.9432 0.9455 0.9881
0.01 77.0 7392 0.0603 0.9083 0.9612 0.9340 103 0.9394 0.9064 0.9226 171 0.9695 0.9695 0.9695 131 0.9407 0.9407 0.9407 0.9887
0.0087 78.0 7488 0.0609 0.9174 0.9709 0.9434 103 0.9455 0.9123 0.9286 171 0.9771 0.9771 0.9771 131 0.9481 0.9481 0.9481 0.9895
0.0099 79.0 7584 0.0609 0.9151 0.9417 0.9282 103 0.9118 0.9064 0.9091 171 0.9771 0.9771 0.9771 131 0.9337 0.9383 0.9360 0.9876
0.0096 80.0 7680 0.0657 0.9167 0.9612 0.9384 103 0.9455 0.9123 0.9286 171 0.9695 0.9695 0.9695 131 0.9455 0.9432 0.9444 0.9873
0.0095 81.0 7776 0.0611 0.9167 0.9612 0.9384 103 0.9341 0.9123 0.9231 171 0.9621 0.9695 0.9658 131 0.9386 0.9432 0.9409 0.9870
0.0086 82.0 7872 0.0618 0.8839 0.9612 0.9209 103 0.9444 0.8947 0.9189 171 0.9621 0.9695 0.9658 131 0.9335 0.9358 0.9346 0.9865
0.0089 83.0 7968 0.0613 0.9143 0.9320 0.9231 103 0.9394 0.9064 0.9226 171 0.9621 0.9695 0.9658 131 0.9403 0.9333 0.9368 0.9876
0.0082 84.0 8064 0.0685 0.8909 0.9515 0.9202 103 0.9625 0.9006 0.9305 171 0.9621 0.9695 0.9658 131 0.9428 0.9358 0.9393 0.9876
0.008 85.0 8160 0.0658 0.9167 0.9612 0.9384 103 0.9571 0.9123 0.9341 171 0.9621 0.9695 0.9658 131 0.9479 0.9432 0.9455 0.9881
0.0079 86.0 8256 0.0656 0.9143 0.9320 0.9231 103 0.9394 0.9064 0.9226 171 0.9621 0.9695 0.9658 131 0.9403 0.9333 0.9368 0.9876
0.0072 87.0 8352 0.0637 0.9143 0.9320 0.9231 103 0.9451 0.9064 0.9254 171 0.9621 0.9695 0.9658 131 0.9426 0.9333 0.9380 0.9878
0.0074 88.0 8448 0.0641 0.9143 0.9320 0.9231 103 0.9451 0.9064 0.9254 171 0.9621 0.9695 0.9658 131 0.9426 0.9333 0.9380 0.9878
0.0068 89.0 8544 0.0618 0.9151 0.9417 0.9282 103 0.9337 0.9064 0.9199 171 0.9621 0.9695 0.9658 131 0.9381 0.9358 0.9370 0.9873
0.0067 90.0 8640 0.0616 0.9143 0.9320 0.9231 103 0.9451 0.9064 0.9254 171 0.9621 0.9695 0.9658 131 0.9426 0.9333 0.9380 0.9878
0.0078 91.0 8736 0.0586 0.9159 0.9515 0.9333 103 0.9341 0.9123 0.9231 171 0.9771 0.9771 0.9771 131 0.9432 0.9432 0.9432 0.9876
0.0069 92.0 8832 0.0627 0.9159 0.9515 0.9333 103 0.9455 0.9123 0.9286 171 0.9621 0.9695 0.9658 131 0.9431 0.9407 0.9419 0.9876
0.0069 93.0 8928 0.0634 0.9159 0.9515 0.9333 103 0.9455 0.9123 0.9286 171 0.9621 0.9695 0.9658 131 0.9431 0.9407 0.9419 0.9876
0.0084 94.0 9024 0.0633 0.9159 0.9515 0.9333 103 0.9455 0.9123 0.9286 171 0.9621 0.9695 0.9658 131 0.9431 0.9407 0.9419 0.9876
0.0072 95.0 9120 0.0591 0.9151 0.9417 0.9282 103 0.9337 0.9064 0.9199 171 0.9697 0.9771 0.9734 131 0.9406 0.9383 0.9394 0.9876
0.0066 96.0 9216 0.0610 0.9167 0.9612 0.9384 103 0.9512 0.9123 0.9313 171 0.9697 0.9771 0.9734 131 0.9480 0.9457 0.9468 0.9881
0.0074 97.0 9312 0.0623 0.9167 0.9612 0.9384 103 0.9571 0.9123 0.9341 171 0.9621 0.9695 0.9658 131 0.9479 0.9432 0.9455 0.9881
0.0061 98.0 9408 0.0620 0.9167 0.9612 0.9384 103 0.9571 0.9123 0.9341 171 0.9621 0.9695 0.9658 131 0.9479 0.9432 0.9455 0.9881
0.0074 99.0 9504 0.0614 0.9159 0.9515 0.9333 103 0.9512 0.9123 0.9313 171 0.9621 0.9695 0.9658 131 0.9454 0.9407 0.9431 0.9878
0.0067 100.0 9600 0.0617 0.9159 0.9515 0.9333 103 0.9512 0.9123 0.9313 171 0.9621 0.9695 0.9658 131 0.9454 0.9407 0.9431 0.9878

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for apwic/nerui-pt-pl30-4

Finetuned
(366)
this model