Edit model card


Fine-tuned facebook/wav2vec2-large-xlsr-53 on Tatar using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz.


The model can be used directly (without a language model) as follows:

import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

test_dataset = load_dataset("common_voice", "tt", split="test[:2%]")

processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-tatar")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-tatar")

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])


The model can be evaluated as follows on the Tatar test data of Common Voice.

import torch
import torchaudio
import urllib.request
import tarfile
import pandas as pd
from tqdm.auto import tqdm
from datasets import load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

# Download the raw data instead of using HF datasets to save disk space 
data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/tt.tar.gz"
filestream = urllib.request.urlopen(data_url)
data_file = tarfile.open(fileobj=filestream, mode="r|gz")

wer = load_metric("wer")

processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-tatar")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-tatar")

cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/tt/test.tsv", sep='\t')
clips_path = "cv-corpus-6.1-2020-12-11/tt/clips/"

def clean_sentence(sent):
    sent = sent.lower()
    # 'ё' is equivalent to 'е'
    sent = sent.replace('ё', 'е')
    # replace non-alpha characters with space
    sent = "".join(ch if ch.isalpha() else " " for ch in sent)
    # remove repeated spaces
    sent = " ".join(sent.split())
    return sent

targets = []
preds = []

for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]):
    row["sentence"] = clean_sentence(row["sentence"])
    speech_array, sampling_rate = torchaudio.load(clips_path + row["path"])
    resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
    row["speech"] = resampler(speech_array).squeeze().numpy()

    inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

    with torch.no_grad():
        logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

    pred_ids = torch.argmax(logits, dim=-1)


print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets)))

Test Result: 26.76 %


The Common Voice train and validation datasets were used for training.

Downloads last month
Hosted inference API
or or
This model can be loaded on the Inference API on-demand.

Dataset used to train anton-l/wav2vec2-large-xlsr-53-tatar

Evaluation results