SetFit
This is a SetFit model that can be used for Text Classification. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
0.0 |
|
1.0 |
|
Evaluation
Metrics
Label | F1 |
---|---|
all | 0.4317 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("anismahmahi/improve-G3-setfit-model")
# Run inference
preds = model("The settlement was approved by a federal judge.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 26.2226 | 129 |
Label | Training Sample Count |
---|---|
0 | 2362 |
1 | 1784 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 5
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0004 | 1 | 0.3949 | - |
0.0193 | 50 | 0.2806 | - |
0.0386 | 100 | 0.2461 | - |
0.0579 | 150 | 0.2522 | - |
0.0772 | 200 | 0.279 | - |
0.0965 | 250 | 0.2149 | - |
0.1157 | 300 | 0.2513 | - |
0.1350 | 350 | 0.2426 | - |
0.1543 | 400 | 0.2696 | - |
0.1736 | 450 | 0.2485 | - |
0.1929 | 500 | 0.2209 | - |
0.2122 | 550 | 0.2412 | - |
0.2315 | 600 | 0.1801 | - |
0.2508 | 650 | 0.197 | - |
0.2701 | 700 | 0.2223 | - |
0.2894 | 750 | 0.1825 | - |
0.3086 | 800 | 0.2067 | - |
0.3279 | 850 | 0.1726 | - |
0.3472 | 900 | 0.2091 | - |
0.3665 | 950 | 0.2159 | - |
0.3858 | 1000 | 0.2433 | - |
0.4051 | 1050 | 0.1102 | - |
0.4244 | 1100 | 0.081 | - |
0.4437 | 1150 | 0.1661 | - |
0.4630 | 1200 | 0.1574 | - |
0.4823 | 1250 | 0.1458 | - |
0.5015 | 1300 | 0.0881 | - |
0.5208 | 1350 | 0.0683 | - |
0.5401 | 1400 | 0.2053 | - |
0.5594 | 1450 | 0.0581 | - |
0.5787 | 1500 | 0.0742 | - |
0.5980 | 1550 | 0.1775 | - |
0.6173 | 1600 | 0.0541 | - |
0.6366 | 1650 | 0.1086 | - |
0.6559 | 1700 | 0.0654 | - |
0.6752 | 1750 | 0.0909 | - |
0.6944 | 1800 | 0.0571 | - |
0.7137 | 1850 | 0.0016 | - |
0.7330 | 1900 | 0.0963 | - |
0.7523 | 1950 | 0.0063 | - |
0.7716 | 2000 | 0.0011 | - |
0.7909 | 2050 | 0.0033 | - |
0.8102 | 2100 | 0.0069 | - |
0.8295 | 2150 | 0.0013 | - |
0.8488 | 2200 | 0.0051 | - |
0.8681 | 2250 | 0.0596 | - |
0.8873 | 2300 | 0.0007 | - |
0.9066 | 2350 | 0.0122 | - |
0.9259 | 2400 | 0.0012 | - |
0.9452 | 2450 | 0.0003 | - |
0.9645 | 2500 | 0.0012 | - |
0.9838 | 2550 | 0.002 | - |
1.0 | 2592 | - | 0.2706 |
1.0031 | 2600 | 0.001 | - |
1.0224 | 2650 | 0.0015 | - |
1.0417 | 2700 | 0.0594 | - |
1.0610 | 2750 | 0.0011 | - |
1.0802 | 2800 | 0.0087 | - |
1.0995 | 2850 | 0.0608 | - |
1.1188 | 2900 | 0.0531 | - |
1.1381 | 2950 | 0.0006 | - |
1.1574 | 3000 | 0.001 | - |
1.1767 | 3050 | 0.06 | - |
1.1960 | 3100 | 0.0003 | - |
1.2153 | 3150 | 0.0004 | - |
1.2346 | 3200 | 0.0002 | - |
1.2539 | 3250 | 0.0007 | - |
1.2731 | 3300 | 0.0006 | - |
1.2924 | 3350 | 0.0005 | - |
1.3117 | 3400 | 0.0007 | - |
1.3310 | 3450 | 0.0001 | - |
1.3503 | 3500 | 0.0587 | - |
1.3696 | 3550 | 0.0002 | - |
1.3889 | 3600 | 0.0001 | - |
1.4082 | 3650 | 0.0003 | - |
1.4275 | 3700 | 0.0002 | - |
1.4468 | 3750 | 0.0011 | - |
1.4660 | 3800 | 0.0007 | - |
1.4853 | 3850 | 0.0001 | - |
1.5046 | 3900 | 0.0001 | - |
1.5239 | 3950 | 0.0002 | - |
1.5432 | 4000 | 0.0001 | - |
1.5625 | 4050 | 0.0003 | - |
1.5818 | 4100 | 0.0002 | - |
1.6011 | 4150 | 0.0001 | - |
1.6204 | 4200 | 0.0002 | - |
1.6397 | 4250 | 0.0002 | - |
1.6590 | 4300 | 0.0003 | - |
1.6782 | 4350 | 0.0003 | - |
1.6975 | 4400 | 0.0002 | - |
1.7168 | 4450 | 0.0001 | - |
1.7361 | 4500 | 0.0037 | - |
1.7554 | 4550 | 0.0002 | - |
1.7747 | 4600 | 0.0001 | - |
1.7940 | 4650 | 0.0001 | - |
1.8133 | 4700 | 0.0001 | - |
1.8326 | 4750 | 0.0001 | - |
1.8519 | 4800 | 0.0003 | - |
1.8711 | 4850 | 0.0002 | - |
1.8904 | 4900 | 0.0001 | - |
1.9097 | 4950 | 0.0004 | - |
1.9290 | 5000 | 0.0001 | - |
1.9483 | 5050 | 0.0001 | - |
1.9676 | 5100 | 0.0001 | - |
1.9869 | 5150 | 0.0004 | - |
2.0 | 5184 | - | 0.2802 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.2
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.16.1
- Tokenizers: 0.15.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.