Edit model card

SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Evaluation

Metrics

Label Accuracy
all 0.7084

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("anismahmahi/doubt_repetition_with_noPropaganda_with_3_zeros_SetFit")
# Run inference
preds = model("The Twitter suspension caught me by surprise.")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 22.0291 129

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (2, 2)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 5
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: True

Training Results

Epoch Step Training Loss Validation Loss
0.0003 1 0.3532 -
0.0166 50 0.3413 -
0.0332 100 0.2743 -
0.0498 150 0.2635 -
0.0664 200 0.2444 -
0.0830 250 0.1883 -
0.0996 300 0.2231 -
0.1162 350 0.1763 -
0.1328 400 0.1868 -
0.1494 450 0.2057 -
0.1660 500 0.1734 -
0.1826 550 0.2594 -
0.1992 600 0.1024 -
0.2158 650 0.2351 -
0.2324 700 0.1863 -
0.2490 750 0.072 -
0.2656 800 0.1987 -
0.2822 850 0.1511 -
0.2988 900 0.0926 -
0.3154 950 0.1956 -
0.3320 1000 0.1354 -
0.3486 1050 0.2038 -
0.3652 1100 0.1166 -
0.3818 1150 0.3214 -
0.3984 1200 0.0703 -
0.4150 1250 0.1815 -
0.4316 1300 0.124 -
0.4482 1350 0.0955 -
0.4648 1400 0.1064 -
0.4814 1450 0.0429 -
0.4980 1500 0.0814 -
0.5146 1550 0.1483 -
0.5312 1600 0.0856 -
0.5478 1650 0.1072 -
0.5644 1700 0.0148 -
0.5810 1750 0.0571 -
0.5976 1800 0.052 -
0.6142 1850 0.0532 -
0.6308 1900 0.0088 -
0.6474 1950 0.1619 -
0.6640 2000 0.0618 -
0.6806 2050 0.0115 -
0.6972 2100 0.1402 -
0.7138 2150 0.0637 -
0.7304 2200 0.0194 -
0.7470 2250 0.0135 -
0.7636 2300 0.0109 -
0.7802 2350 0.133 -
0.7968 2400 0.0565 -
0.8134 2450 0.1508 -
0.8300 2500 0.0293 -
0.8466 2550 0.065 -
0.8632 2600 0.0029 -
0.8798 2650 0.008 -
0.8964 2700 0.0604 -
0.9130 2750 0.0074 -
0.9296 2800 0.0019 -
0.9462 2850 0.0129 -
0.9628 2900 0.0838 -
0.9794 2950 0.0044 -
0.9960 3000 0.0035 -
1.0 3012 - 0.2514
1.0126 3050 0.0086 -
1.0292 3100 0.0042 -
1.0458 3150 0.0833 -
1.0624 3200 0.058 -
1.0790 3250 0.013 -
1.0956 3300 0.0429 -
1.1122 3350 0.0044 -
1.1288 3400 0.0699 -
1.1454 3450 0.0535 -
1.1620 3500 0.0559 -
1.1786 3550 0.1459 -
1.1952 3600 0.118 -
1.2118 3650 0.14 -
1.2284 3700 0.0632 -
1.2450 3750 0.0026 -
1.2616 3800 0.0026 -
1.2782 3850 0.0052 -
1.2948 3900 0.0058 -
1.3114 3950 0.0018 -
1.3280 4000 0.0152 -
1.3446 4050 0.0186 -
1.3612 4100 0.039 -
1.3778 4150 0.0022 -
1.3944 4200 0.002 -
1.4110 4250 0.0032 -
1.4276 4300 0.0285 -
1.4442 4350 0.0213 -
1.4608 4400 0.0009 -
1.4774 4450 0.0262 -
1.4940 4500 0.0181 -
1.5106 4550 0.0629 -
1.5272 4600 0.0023 -
1.5438 4650 0.003 -
1.5604 4700 0.0024 -
1.5770 4750 0.049 -
1.5936 4800 0.0154 -
1.6102 4850 0.0009 -
1.6268 4900 0.0015 -
1.6434 4950 0.0068 -
1.6600 5000 0.057 -
1.6766 5050 0.0031 -
1.6932 5100 0.0189 -
1.7098 5150 0.0317 -
1.7264 5200 0.0013 -
1.7430 5250 0.0247 -
1.7596 5300 0.0062 -
1.7762 5350 0.0192 -
1.7928 5400 0.0019 -
1.8094 5450 0.1007 -
1.8260 5500 0.0384 -
1.8426 5550 0.0494 -
1.8592 5600 0.0615 -
1.8758 5650 0.0709 -
1.8924 5700 0.0308 -
1.9090 5750 0.0107 -
1.9256 5800 0.064 -
1.9422 5850 0.0009 -
1.9588 5900 0.0019 -
1.9754 5950 0.0037 -
1.9920 6000 0.0826 -
2.0 6024 - 0.2614
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.1
  • Sentence Transformers: 2.2.2
  • Transformers: 4.35.2
  • PyTorch: 2.1.0+cu121
  • Datasets: 2.16.1
  • Tokenizers: 0.15.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
7
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for anismahmahi/doubt_repetition_with_noPropaganda_with_3_zeros_SetFit

Finetuned
(247)
this model

Evaluation results