SetFit
This is a SetFit model that can be used for Text Classification. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 256 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
0.0 |
|
1.0 |
|
Evaluation
Metrics
Label | F1 |
---|---|
all | 0.3372 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("anismahmahi/Roberta-large-G3-setfit-model")
# Run inference
preds = model("There are 2 trillion Google searches per day.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 26.8625 | 105 |
Label | Training Sample Count |
---|---|
0 | 200 |
1 | 200 |
Training Hyperparameters
- batch_size: (8, 8)
- num_epochs: (3, 3)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 5
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.002 | 1 | 0.3467 | - |
0.1 | 50 | 0.2333 | - |
0.2 | 100 | 0.237 | - |
0.3 | 150 | 0.2466 | - |
0.4 | 200 | 0.208 | - |
0.5 | 250 | 0.2121 | - |
0.6 | 300 | 0.0076 | - |
0.7 | 350 | 0.0011 | - |
0.8 | 400 | 0.0007 | - |
0.9 | 450 | 0.0002 | - |
1.0 | 500 | 0.0015 | 0.3342 |
1.1 | 550 | 0.0001 | - |
1.2 | 600 | 0.0002 | - |
1.3 | 650 | 0.0003 | - |
1.4 | 700 | 0.0003 | - |
1.5 | 750 | 0.0002 | - |
1.6 | 800 | 0.0002 | - |
1.7 | 850 | 0.0001 | - |
1.8 | 900 | 0.0001 | - |
1.9 | 950 | 0.0001 | - |
2.0 | 1000 | 0.0001 | 0.3303 |
2.1 | 1050 | 0.0 | - |
2.2 | 1100 | 0.0 | - |
2.3 | 1150 | 0.0001 | - |
2.4 | 1200 | 0.0 | - |
2.5 | 1250 | 0.0 | - |
2.6 | 1300 | 0.0 | - |
2.7 | 1350 | 0.0001 | - |
2.8 | 1400 | 0.0001 | - |
2.9 | 1450 | 0.0 | - |
3.0 | 1500 | 0.0 | 0.3327 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.2
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.16.1
- Tokenizers: 0.15.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.