Edit model card

amiguel/mri_classifier

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0075
  • Validation Loss: 0.0023
  • Train Accuracy: 1.0
  • Epoch: 14

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Accuracy Epoch
0.1501 0.0619 0.9845 0
0.0524 0.0825 0.9733 1
0.0324 0.1416 0.9494 2
0.0243 0.0327 0.9887 3
0.0258 0.0095 0.9986 4
0.0166 0.0069 0.9986 5
0.0342 0.0126 0.9958 6
0.0131 0.0057 0.9986 7
0.0120 0.0037 0.9986 8
0.0163 0.0055 0.9972 9
0.0083 0.0018 1.0 10
0.0128 0.0027 0.9986 11
0.0070 0.0020 1.0 12
0.0083 0.0014 1.0 13
0.0075 0.0023 1.0 14

Framework versions

  • Transformers 4.42.4
  • TensorFlow 2.15.0
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for amiguel/mri_classifier

Finetuned
(1653)
this model